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The genetics of a “femaleness/ 
maleness” score in cardiometabolic 
traits in the UK biobank
Daniel E. Vosberg 1,2,3, Zdenka Pausova 3,4 & Tomáš Paus 1,2,5,6,7*

We recently devised continuous “sex-scores” that sum up multiple quantitative traits, weighted by 
their respective sex-difference effect sizes, as an approach to estimating polyphenotypic “maleness/
femaleness” within each binary sex. To identify the genetic architecture underlying these sex-scores, 
we conducted sex-specific genome-wide association studies (GWASs) in the UK Biobank cohort 
(females: n = 161,906; males: n = 141,980). As a control, we also conducted GWASs of sex-specific 
“sum-scores”, simply aggregating the same traits, without weighting by sex differences. Among 
GWAS-identified genes, while sum-score genes were enriched for genes differentially expressed in the 
liver in both sexes, sex-score genes were enriched for genes differentially expressed in the cervix and 
across brain tissues, particularly for females. We then considered single nucleotide polymorphisms 
with significantly different effects (sdSNPs) between the sexes for sex-scores and sum-scores, 
mapping to male-dominant and female-dominant genes. Here, we identified brain-related enrichment 
for sex-scores, especially for male-dominant genes; these findings were present but weaker for sum-
scores. Genetic correlation analyses of sex-biased diseases indicated that both sex-scores and sum-
scores were associated with cardiometabolic, immune, and psychiatric disorders.

In animals, including humans, there are numerous sex differences that extend well beyond sex hormones and 
reproductive systems. Sex differences in multiple physiological, developmental, and behavioural traits have been 
delineated in species ranging from Drosophila melanogaster1 to cetaceans2. In a study of 14,250 wildtype mice, 
over half (56.6%) of the 903 datasets, comprising 225 continuous traits, demonstrated sex differences3. Conserved 
sex-bias in gene expression has been identified in an investigation of five mammalian species (human, macaque, 
mouse, rat, and dog) across 12 tissues4. Moreover, in wild mammals (101 species), the median life expectancy 
is 18.6% longer among females, as compared with males, thus indicating the relevance of sex differences for 
morbidity and mortality5.

In humans, sex differences are evident in many continuous traits. For example, adult females (vs. males) have 
a higher fat mass, lower lean-body mass, and preferentially deposit fat subcutaneously, while males (vs. females) 
have a greater amount of visceral fat6,7. Perhaps not surprisingly, there are sex differences in the prevalence, 
expression, and outcomes of physical and mental disorders. In the United States, for example, there are subtle 
albeit significant differences in the percentages of each sex who die of heart disease (females: 21.8%; males: 
24.2%), cancer (females: 20.7%; males: 21.9%), stroke (females: 6.2%; males: 4.3%), type 2 diabetes (females: 
2.7%; males: 3.2%), and Alzheimer’s disease (females: 6.1%; males: 2.6%)8,9. The prevalence of autoimmune, 
chronic pain, eating, and anxiety disorders is higher in females while the opposite is true about Parkinson’s Dis-
ease, autism, attention-deficit hyperactivity disorder, and oppositional defiant disorder8,10,11. These phenotypic 
sex differences likely stem from both genetic and environmental (including socio-cultural) influences8,12,13. For 
instance, eating disorders and depression may be underdiagnosed in men due to sociocultural influences14,15.

At a molecular level, investigators recently delineated genetic sex-differences across complex traits in ~ 450,000 
middle-aged adults in the UK Biobank16. Among the ~ 84 continuous phenotypes, there were (i) sex differences 
in heritability for 48.88% of traits, (ii) inter-sex genetic correlations lower than rg = 1 in 69.88% of traits indicat-
ing a global deviation between the sexes in the genetic effects on a given trait, and (iii) significant sex differences 
(in the strength/direction of genotype–phenotype associations) for at least one autosomal single nucleotide 
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polymorphism (SNP) for 72.62% of traits16. The largest number of sex-different SNPs were identified for anthro-
pometric traits including the ratio of waist-to-hip circumference, standing height, and trunk fat-percentage16.

While many sex differences in continuous traits are undoubtedly robust, the distributions for a given trait of 
each sex almost invariably overlap. Thus, our group recently devised continuous polyphenotypic “sex-scores” 
that capture, within each sex, "femaleness/maleness", by summing up standardized values across quantitative 
traits, weighted by respective sex-difference effect-sizes17. We use the term “femaleness/maleness” rather than 
“masculinity/femininity" since our sex-scores are based on quantitative sex differences (i.e., females vs. males) 
rather than self-reported measures of conformity to gender roles or stereotypes. The initial study of these sex-
scores, carried out in a community-based sample of adolescents, revealed within-sex correlations of several traits 
(e.g., testosterone, externalizing behaviour) with the individual’s “femaleness/maleness”, thus complementing a 
binary biological (male vs. female) approach to the study of sex differences17.

In the current report, our first aim was to elucidate the molecular architecture underlying sex-scores based 
on routinely assessed anthropometric and metabolic phenotypes. To tease apart whether our genetic findings are 
driven by latent “femaleness/maleness” or the simple aggregation of traits, we also evaluated the genetic architec-
ture underlying “sum-scores”, whereby we summed up the standardized traits, without applying a sex-difference 
weighting. Thus, we performed sex-specific genome-wide association studies (GWAS) in the UK Biobank of 
sex-scores and sum-scores. Our second aim was to investigate the genetic correlations among the scores between 
the two sexes and sex differences in these scores at the level of SNPs (“sex different” SNPs [sdSNPs]). Next, we 
assessed genetic correlations between sex-scores and sum-scores and clinical conditions with a sex-biased preva-
lence. Finally, we assessed the degree of pleiotropy among sex-score SNPs and sum-score SNPs, to estimate the 
extent to which the SNPs were capturing variance across the composite traits.

Results
Polyphenotypic sex‑scores and sum‑scores.  To compute sex-scores, we first selected 13 commonly 
assessed anthropometric and cardiometabolic traits in the UK Biobank (Fig. S1). Each of these were assessed 
in at least 100,000 participants and were available in other cohorts including, for example, the Saguenay Youth 
Study (SYS), the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS) and the Rotterdam 
study (RS)18–21. To adjust for correlations among the comprising traits, pairs of traits with correlations exceeding 
a threshold (r2 = 0.25) were averaged (Fig. S2); body mass index (BMI) was not included as it is a mathematical 
combination of weight and height. Next, we computed sex-scores by summing up standardized values across 
traits, each weighted by respective sex-difference effect sizes, and adjusted for age at recruitment (Table 1). Note 
that, by design, higher sex-scores indicate higher “femaleness” (in both sexes; Fig. 1A). Additionally, we com-
puted “sum-scores” by summing up standardized values across traits per individual, without weighting by the 
sex-difference effect sizes (Fig. 1B). Confirming that the variability in sex-scores was not entirely determined by 
the aggregation of traits, the sum-scores were phenotypically correlated with sex-scores but explained a fraction 
of the variance (males: r =  − 0.37, r2 = 0.14, p < 1 × 10–300; females: r =  − 0.44, r2 = 0.19, p < 1 × 10–300).

Genome wide association study (GWAS) of sex‑scores and sum‑scores.  To elucidate the genetic 
architecture underlying polyphenotypic sex-scores, we conducted sex-specific genome-wide association studies 
(GWASs). The results of these two GWASs are presented in the Miami plots in Fig. 2. Following the GWASs, we 
used FUMA-GWAS22 for positional mapping of SNPs to genes and for assessing the function of these genes. For 
sex-scores, we identified 1373 independent genome-wide significant SNPs (GWAS-sig. SNPs), mapping to 1242 
genes in females (n = 161,906) and 1227 GWAS-sig. SNPs (1110 genes) in males (n = 141,980). In comparison, 
for sum-scores, there were 331 GWAS-sig. SNPs (317 genes) in females and 216 GWAS-sig. SNPs (180 genes) in 
males (Tables S1-2). We conducted enrichment analyses using ‘GENE2FUNC’ with the FUMA-GWAS platform, 
identifying enrichment for numerous Gene Ontology Biological Processes (GO-BP) for sex-scores (females: 

Table 1.   Age-adjusted sex difference effect sizes. Age-adjusted sex difference effect sizes (betas) across 
routinely assessed cardiometabolic and anthropometric traits, in the UK biobank cohort. Due to the moderate 
correlations (r > 0.5) among certain trait pairs, we averaged (1) cholesterol and LDL, (2) systolic and diastolic 
blood pressure, and (3) weight and waist circumference. Note that the samples used to compute effect sizes are 
independent from those used for the GWASs. The p-values of “ < 1 × 10–300” indicate values that are below R’s 
floating-point number limit.

Domain Phenotype N (Females) N (Males) Effect size (F > M) p value

Biochemistry HDL-cholesterol 69,422 56,440 0.84  < 1 × 10–300

Biochemistry Average of cholesterol and LDL-cholesterol 92,110 72,251 0.27  < 1 × 10–300

Cardiovascular Pulse rate 92,466 71,491 0.15 9.76 × 10–208

Biochemistry CRP 92,224 72,376 0.06 6.92 × 10–31

Biochemistry Glucose 68,602 55,129  − 0.12 4.95 × 10–104

Cardiovascular Average of diastolic and systolic blood pressure 86,120 66,764  − 0.31  < 1 × 10–300

Biochemistry Triglycerides 92,524 72,722  − 0.43  < 1 × 10–300

Anthropometric Average of weight and waist circumference 109,966 85,590  − 0.92  < 1 × 10–300

Anthropometric Height 110,196 85,684  − 1.40  < 1 × 10–300
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249 terms; males: 161 terms) and sum-scores (females: 136 terms; males: 157 terms; Tables S3A-D). For sex-
scores, but not sum-scores, these included hormone-related terms for females (e.g., “cellular response to pep-
tide hormone stimulus”, “steroid hormone mediated signalling pathway”, “cellular response to growth hormone 
stimulus”) and males (e.g., “cellular response to growth hormone stimulus”, “response to growth hormone”). 
To assess systematically the most prominent overall similarities and differences in GO-BP enrichment patterns 
between sex-scores and sum-scores, we used R’s ‘clusterProfiler’23. Here, we identified that the top enrichment 
terms were implicated in chromatin, protein-lipid remodelling, and homeostasis of lipids, triglycerides, and cho-
lesterol and these were significant and highly similar across all four GWASs, with subtle variations in the effect 
sizes (Fig. S3−4). Nevertheless, striking differences emerged between the sex-scores and sum-scores GWASs in 
a Genotype-Tissue Expression (GTEx) v8 54 tissue analysis, using FUMA. Namely, while female sex-score genes 
were enriched for the upregulated ‘cervix/endocervix’ gene set, they were downregulated for numerous brain-
tissue gene sets including the frontal cortex, amygdala, hippocampus, hypothalamus, substantia nigra, putamen, 
anterior cingulate cortex, and caudate nucleus. In comparison, male sex-score genes were only enriched for the 
downregulated frontal-cortex gene set, with nominally significant effects among other brain tissues. By contrast, 
sum-scores genes for both sexes were strongly enriched for genes upregulated in the liver (Fig. 3).

Genetic correlations and SNP‑based heritability of the sex‑ and sum‑scores.  Next, we con-
ducted genetic correlations between the two sexes for each score and between the two scores for each sex, using 
linkage disequilibrium score regression (LDSC) version 1.0.124,25. While the between-sex genetic correlations 
were high for sex-scores (rg = 0.95, SE = 0.012, p < 1 × 10–300) and sum-scores (rg = 0.91, SE = 0.02, p < 1 × 10–300), 
both differed significantly from 1 (sex-scores: z = 4.44, p = 9.08 × 10–6; sum-scores: z = 3.71, p = 2.07 × 10–4). More-
over, the genetic correlations between sex-scores and sum-scores were moderate among females (rg =  − 0.57, 
SE = 0.028, p = 4.77 × 10–91) and males (rg =  − 0.53, SE = 0.03, p = 2.90 × 10–62). Additionally, the SNP-based herit-
abilities, estimated by LDSC, were notably higher for sex-scores (female h2 = 0.294; male h2 = 0.308), relative to 
sum-scores (female h2 = 0.155; male h2 = 0.128).

Sex‑different single nucleotide polymorphisms (sdSNPs).  At a fine-grained level of sex-score genet-
ics, we identified 9,997 “female-dominant” sdSNPs and 13,422 “male-dominant” sdSNPs (see Methods for defi-
nition of “dominant”), at a p-value threshold of 1 × 10–5, and 776 female-dominant sdSNPs and 836 male-dom-
inant sdSNPs at a threshold of p < 5 × 10–8 (Table S4A, B). Using MAGMA, we identified 162 female-dominant 
genes and 216 male-dominant genes in males that survived a gene-wide adjustment in each sex (p < 2.99 × 10–6; 
p = 0.05/16,710 genes in MAGMA; Table S5). Note that only 6 genes (FHIT, CSMD1, PTPRD, RBFOX1, WWOX, 
and CDH13), were found in common between the sexes; these were excluded in the subsequent analysis. For 
sum-scores, we identified 1761 female-dominant sdSNPs and 2,708 male-dominant sdSNPs at a p-value thresh-
old of 1 × 10–5, and 38 female-dominant sdSNPs and 71 male-dominant sdSNPs at a threshold of p < 5 × 10–8 
(Table S4C, D). Using MAGMA, we identified 42 female-dominant genes and 86 male-dominant genes in males 
that survived a gene-wide adjustment in each sex (p < 3.11 × 10–6; p = 0.05/16,069 genes in MAGMA; Table S5). 
Two genes, CDH18 and WWOX, intersected between the sexes and were excluded in the subsequent analysis. 
Conducting a GTEx analysis with FUMA for these sex-different genes, the male-dominant sex-score genes were 

Figure 1.   Distributions of sex-scores and sum-scores. Density plots for the distributions of age-adjusted (A) 
sex-scores and (B) sum-scores, which overlap between the sexes. Blue indicates males and green indicates 
females. Whereas, by design, higher sex-scores indicate higher "femaleness" and are higher among females, 
compared with males (Cohen’s D = 2.08, t297,788 = 572.17, p < 1e−300), the sum-scores are subtly higher among 
males (Cohen’s D = 0.53, t301,443 = 147.44, p < 1e−300).
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enriched for genes upregulated across 12 brain tissues, namely the frontal cortex, anterior cingulate cortex, brain 
cortex, caudate nucleus, basal ganglia, hypothalamus, nucleus accumbens, hippocampus, amygdala, substantia 
nigra, cerebellar hemisphere, and cerebellum, all surviving a Bonferroni correction. By contrast, the female-
dominant sex-score genes were enriched for genes differentially expressed in the hypothalamus, hippocampus, 
frontal cortex, and cortex, all surviving a Bonferroni correction. The male-dominant sum-score genes were 
enriched for genes differentially expressed in the frontal cortex, cerebellar hemisphere, and nucleus accumbens, 
while there was no enrichment of female-dominant sum-score genes in differentially expressed gene sets (Fig. 4).

Genetic correlations with the comprising traits and disorders.  We found positive genetic correla-
tions (i.e. higher femaleness, higher trait values) between the sex-specific sex-scores and HDL-cholesterol, total 
cholesterol, and LDL-cholesterol (males only), and negative genetic correlations between the sex-specific sex-
scores and weight, waist circumference, BMI, height, triglycerides, CRP, diastolic and systolic blood pressure 
(females only), and glucose, but not pulse (i.e., higher femaleness, lower trait values). For sum-scores, only HDL-
cholesterol (females only) had a negative genetic correlation while all other traits were positively genetically 
correlated (females only for LDL-cholesterol; Fig. S5). Finally, regarding genetic correlations with sex-biased and 
cardiometabolic disorders, we identified that—within each sex—the sex-scores were negatively associated (i.e., 
higher femaleness, lower probability of these disorders) with type 1 diabetes, type 2 diabetes, rheumatoid arthri-
tis, ischemic heart disease (females only), stroke (females only), ADHD, and depression (females only), and 
positively associated with anorexia (i.e., higher femaleness, higher probability of these disorders), all surviving 
a Bonferroni correction. A very similar pattern of effects was observed between the disorders and sum-scores, 

Figure 2.   Sex-score and sum-score Miami plot in (A) females and (B) males. The horizontal red dotted bars 
indicate the thresholds for genome-wide statistical significance. For females (n = 161,906), there were 1373 
GWAS-sig. SNPs (1242 genes) for sex-scores, and 331 GWAS-sig. SNPs (317 genes) for sum-scores. For males 
(n = 141,980), sex-scores, there were 1227 GWAS-sig. SNPs (1110 genes) for sex-scores, and 216 GWAS-sig. 
SNPs (180 genes) for sum-scores.
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suggesting that these effects were driven by the aggregation of traits rather than latent “femaleness/maleness” 
(Fig. 5).

Pleiotropy.  Finally, we sought to evaluate and compare the pleiotropy of sex-score SNPs and sum-score 
SNPs. In females, 6001/27,622 (21.7%) sex-score SNPs and 1774/5678 (31.2%) sum-score SNPs were considered 
pleiotropic (associations with ≥ 8/12 constituent traits). Among the pleiotropic SNPs, 5081/6001 (84.7%) sex-
score SNPs and 1545/1774 (87.1%) sum-score SNPs were considered concordant (same directionality of effects 
as the score in ≥ 2/3 nominally significant traits). For males, 3632/23,770 (15.3%) sex-score SNPs and 429/3049 
(14.1%) sum-score SNPs were considered pleiotropic (≥ 8/12 traits). Among the pleiotropic SNPs, 3253/3632 
(89.6%) sex-score SNPs and 183/429 (42.7%) sum-score SNPs were considered concordant (≥ 2/3; Fig. S6).

Discussion
Here, we have elucidated the genetic architecture underlying our polyphenotypic sex-scores and sum-scores. 
We identified that while GWAS-identified sex-score genes were enriched for genes upregulated in the cervix and 
downregulated in brain tissues (particularly among females), sum-score genes were enriched for genes upregu-
lated in the liver. Moreover, we identified “sex-different” SNPs along with female-dominant and male-dominant 
genes for both scores. Among these genes, the male-dominant genes were enriched for genes upregulated across 
multiple brain tissues while the female-dominant genes were enriched for genes expressed differentially in the 
hypothalamus, hippocampus, and cerebral cortex. There was also significant enrichment for three brain tissues 
among sum-scores in males, but no significant tissue enrichment for sum-scores in females. Finally, we identi-
fied genetic associations with sex-biased disorders and with cardiometabolic diseases, but these were largely 
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Figure 3.   Gene enrichment of GWAS genes in GTEx v8 with 54 tissues. The horizontal red bars indicate 
statistically significant findings, surviving a Bonferroni correction for 54 tissues (p = 0.00093). A hypergeometric 
test was conducted to assess enrichment of genes for differentially expressed genes (DEG) sets. The Y-axis 
indicates the enrichment p-value for the intersect between upregulated DEG and (A) sex-scores and (B) 
sum-scores, and downregulated DEG for (C) sex-scores and (D) sum-scores. The DEGs were determined by 
assessing standardized, log2-transformed gene expression (transcript per million [TPM] or reads per kilobase 
of transcript per million mapped reads [RPKM]) in one region, versus all the other regions (absolute log fold 
change ≥ 0.58; pbonferroni ≤ 0.05)22.
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similar for sex-scores and sum-scores, indicating that these genetic effects were driven by the aggregation of 
cardiometabolic traits, rather than latent “femaleness/maleness.”

The most striking functional differences between sex-score and sum-score GWASs emerged in the analyses of 
enrichment of gene expression across tissues. The sex-score genes, identified in females, were enriched for genes 
that were upregulated in the cervix and downregulated in the brain. Although this remains to be established, 
this effect is perhaps related to the actions of hormones and their receptors such as the oxytocin receptor, whose 
expression is critically modulated in both the brain26 and cervix27, and prevents masculinization in rodents28. This 
is also supported by our identification of significant hormone-related enrichment terms for sex-score genes but 
not sum-score genes. Moreover, the enrichment of sum-score genes (derived from cardiometabolic traits) in the 
liver may be related to its role in glucose and lipid metabolism, with consequences for cardiometabolic disorders 
such as type 2 diabetes, with which we demonstrated the sum-scores are genetically correlated29.

Furthermore, in our analyses of sdSNPs for each score, we found that male-dominant genes were enriched for 
genes upregulated in multiple brain tissues while female-dominant genes were enriched for genes differentially 
expressed in fewer brain tissues. Multiple brain regions control feeding behaviours, including those involved 
in homeostatic functions, which maintain energy balance (e.g., hypothalamus) and reward-related processing 
(e.g., basal ganglia, anterior cingulate cortex)30–36. Thus, the primarily male-dominant gene-enrichment in brain 
tissues may indicate a sex-biased pathway with potential relevance for effects on cardiometabolic traits. Indeed, 
there is evidence of sex differences in the hypothalamic regulation of homeostasis and feeding behaviours37–39. 
Additionally, differences between obese individuals and controls in “anatomical connectivity”, assessed with 
diffusion tensor imaging (DTI), have been reported in the basal ganglia with sex-specific effects40. Moreover, 
in a GTEx study of 29 tissues in humans, the most pronounced sex differences in brain tissues were in the basal 
ganglia41; in line with our male-dominant gene enrichment in the putamen, nucleus accumbens, and caudate, 
thus pointing to the possible sex bias in reward processing vis-à-vis effects on cardiometabolic syndrome.

Sex-score “maleness” was genetically correlated—in both males and females—with type 1 diabetes, type 2 dia-
betes, stroke, and ischemic heart disease, whereas sex-score “femaleness” was genetically correlated with anorexia; 
thus, higher “maleness” reflected cardiometabolic syndrome traits. We also found additional genetic associations 
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C. Sex scores: Downregulated genes

B. Sum scores: Upregulated genes

A. Sex scores: Upregulated genes
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Figure 4.   Gene enrichment of Sex-different SNP genes in GTEx v8 with 54 tissues. The red bars indicate 
statistically significant findings, surviving a Bonferroni correction. A hypergeometric test was conducted to 
assess enrichment of genes for differentially expressed genes (DEG) sets. The Y-axis indicates the enrichment 
p-value for the intersect between upregulated DEG and (A) sex-scores and (B) sum-scores, and downregulated 
DEG for (C) sex-scores and (D) sum-scores. The DEGs were determined by assessing standardized, 
log2-transformed gene expression (transcript per million [TPM] or reads per kilobase of transcript per 
million mapped reads [RPKM]) in one region, versus all the other regions (absolute log fold change ≥ 0.58; 
pbonferroni ≤ 0.05)22.
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between sex-score “maleness” and depression and ADHD; that is, traits not included in the sex-scores. The latter 
findings may nevertheless reflect indirect relationships between sex-scores and cardiometabolic syndrome, given 
that this syndrome is associated with depression42 and ADHD43, as well as rheumatoid arthritis44, and type 1 
diabetes45. Given that the same pattern of effects was observed with sum-scores, these findings likely reflect the 
trait aggregation rather than latent “femaleness/maleness.”

Our finding that sex-scores and sum-scores were each highly genetically similar between the sexes is congru-
ent with findings of a UK Biobank study that the majority of continuous traits are highly genetically correlated 
between the two sexes16. Moreover, in a previous study using sex-specific GWAS summary statistics across 20 
behavioural traits, inter-sex genetic correlations approached rg = 1, and only a few were significantly lower than 
rg = 1, namely risk-taking and educational attainment46. To our knowledge, the most notable exception to this 
common pattern of genetic similarity between the sexes is testosterone, which demonstrates no genetic correla-
tion and distinct effects between the sexes47–50.

Finally, we were interested in determining whether sex-score pleiotropic SNPs capture concordant “female-
ness/maleness” across multiple traits. Among the pleiotropic sex-score SNPs, ~ 85–90% passed our directionality-
concordance threshold, indicating that most pleiotropic sex-score SNPs capture “femaleness/maleness” across 
traits. In other words, we have identified a set of SNPs that are broadly implicated in “femaleness/maleness” rather 
than simply identifying a set of sex-score SNPs that are each associated with a single trait.

Here, we have examined the genetic architecture underlying polyphenotypic and polygenic sex-scores. Since 
these analyses are restricted to the UK Biobank, validation in external cohorts is warranted. While this trait is 
globally similar between the sexes with similar associated functions, distinct sex-specific effects at the level of 
single SNPs and tissue enrichments were identified. We have demonstrated how such scores partly reflect the 
summation of traits, but are phenotypically, genetically, and functionally distinct from these simple sums. Given 
the availability of increasingly large datasets with rich phenotypic, genetic, and gene expression data, quantita-
tive and data-driven approaches to “femaleness/maleness” may be of high value, complementing gender-based 
studies of “femininity/masculinity”.

Type 2 diabetes

Type 1 diabetes

Rheumatoid arthritis

Ischemic heart disease

Stroke

Attentive deficit hyperactivity disorder (ADHD)

Anxiety disorder

Major depressive disorder (MDD)

Cannabis use disorder

Autism spectrum disorder (ASD)

Inflammatory bowel disease (IBD)

Celiac disease

Systemic lupus erythematosus (SLE)

Multiple sclerosis (MS)

Anorexia

0.4 0.2 0.0 0.2 0.4 0.6

Genetic correlation (rg)

p1

Female Sex Scores

Female Sum Scores

Male Sex Scores

Male Sum Scores

p_value

pFWE < 0.05

p > 0.05

Sex Scores and Sum Scores Genetic Correlations (LDSC)

Figure 5.   Genetic correlations of the sex-scores and sum-scores with sex-biased and cardiometabolic 
disorders. To facilitate comparisons between scores, the sign of sex-scores was flipped. Generated using linkage 
disequilibrium score regression (LDSC), sex-stratified genetic correlations were conducted between the sex-
score and sum-score GWASs and sex-biased disorder GWASs. The significant effects are filled-in, surviving a 
Bonferroni correction for 60 genetic correlations for each score (15 traits × 2 sexes × 2 scores; p < 0.00083). The 
error bars represent the 95% confidence intervals.
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Materials and methods
Participants.  The UK Biobank is a richly phenotyped and genotyped cohort comprising approximately 
500,000 participants, recruited between 2006 and 2010 by 22 assessment centres in the United Kingdom51. Par-
ticipants provided informed electronic signed consent, completed questionnaires and interviews, underwent 
functional and physical assessments, and provided blood, urine, and saliva samples51. All methods were carried 
out according to relevant guidelines and regulations52. The UK Biobank study was approved by the North West 
Multi-centre Research Ethics Committee as a Research Tissue Bank (see: https://​www.​ukbio​bank.​ac.​uk/​learn-​
more-​about-​uk-​bioba​nk/​about-​us/​ethics). The study herein was approved under the UK Biobank Resource 
Application Number 43688 and by local ethics committees at the Research Institute of the Hospital for Sick 
Children (SickKids) and the Centre Hospitalier Universitaire (CHU) Sainte-Justine. The phenotypic assessments 
include physical measures, multimodal imaging, accelerometery, questionnaires, biochemical assays, and health 
outcomes51. The data (baseline measures only) were downloaded on March 12, 2020.

Polyphenotypic sex‑scores.  Firstly, to render distributions across traits normal, positively skewed varia-
bles were log-transformed and values greater than or equal to 4 standard deviations from the mean were excluded 
as outliers. As previously conducted in the Saguenay Youth Study17, we created individual-level continuous sex-
scores by summing standardized values across traits; for each trait, the standardized value was weighted by the 
respective sex-difference effect size (Table 1). This is described by the equation:

in which x indicates the participant’s standardized value for each phenotype and B indicates the sex effect size for 
each phenotype. The sex effect-sizes were derived using the semi-standardized beta coefficients corresponding 
to the effect of binary sex for each standardized trait, adjusting for age. We initially selected 13 routinely assessed 
anthropometric and cardiometabolic traits in the UK Biobank with large sample sizes (n ≥ 100,000) that were also 
available in other cohorts, including the Saguenay Youth Study (SYS), the Cardiovascular Health Study (CHS), 
the Framingham Heart Study (FHS) and the Rotterdam study (RS)18–21. To adjust for correlations among the 
comprising traits, pairs of traits with correlations exceeding r2 = 0.25, were averaged prior to computing sex-scores 
(Fig. S2), resulting in 9 traits. To facilitate interpretation and visualization, the sex-scores were normalized to 
achieve ranges between 0 and 1 as follows:

with higher values signifying greater “femaleness.” Additionally, sum-scores were computed by summing up 
the values of the standardized 9 traits for each individual, without the sex-difference weighting. To avoid sample 
overlap, the GWAS sample was reserved for participants who passed genetic quality control (QC), described 
below, and who were not missing values on any of the comprising traits (n = 303,886). All other participants 
were used to compute the sex-difference effect sizes across the traits (n range: 123,731–195,880). Moreover, as 
a sensitivity analyses, we compared our approach of linear regression (i.e., Phenotypei ~ Sex + Age) with logistic 
regression (i.e., Sex ~ Phenotypei + Age). The coefficients extracted using linear regression and logistic regression 
were highly correlated (r = 0.97, r2 = 0.94, p = 2.02 × 10–5; Fig. S7). We decided to retain our original linear-model 
approach to estimating sex-difference effect sizes because although the coefficients were very similar for most 
of the traits (absolute difference ≤ 0.02 for 6/9 traits), differences emerged for traits with the largest effect sizes, 
particularly height (linear regression: − 1.40; logistic regression: − 2.79). Thus, we selected linear regression to 
minimize the overrepresentation of traits with the largest sex differences (Fig. S7). Additionally, as an external 
validation, we identified that the correlation between the sex-difference effect sizes among the UK Biobank and 
SYS adult participants were highly correlated (r = 0.94, p = 1.83 × 10–6; Fig. S8).

Genome‑wide association studies (GWAS).  To conduct GWAS analyses, we used PLINK 2.053, assess-
ing associations with sex-scores and sum-scores across single nucleotide polymorphisms (SNPs) in each sex. 
Before conducting association testing, the participants and SNPs were quality controlled (QC) in a sex-specific 
manner. We excluded individuals demonstrating heterozygosity or missingness outliers, a mismatch between 
genetic and reported sex, sex chromosomal aneuploidy, and non-European ancestry. Additionally, individu-
als with more than ten 3rd-degree relatives were removed, followed by the removal of individuals with close 
kinship using the R package ‘ukbtools’ version 0.11.3 (KING coefficient = 0.0884)54. We excluded SNPs with 
greater than 5% missingness, a minor allele frequency < 0.01, a significant deviation from Hardy Weinberg 
Equilibrium (threshold: p < 1 × 10−10), or an INFO score < 0.8. After the QC, the final “genetic” dataset included 
209,383 females with 8,642,454 SNPs, and 181,389 males with 8,644,321 SNPs. Among these participants, there 
were 161,906 females and 141,980 males with values for sex-scores and sum-scores. We conducted sex-specific 
GWASs for the sex-score or sum-score as a dependent measure, implementing a general linear model, with age 
and the first 10 principal components of genetic ancestry as covariates.

In order to facilitate comparisons between the sex-specific GWASs, we created Miami plots using the R pack-
age, ‘miami plot’ (https://​github.​com/​julie​dwhite/​miami​plot/). To map SNPs to genes, we used the functional 
mapping and annotation (FUMA)-GWAS platform22. Following the recommended parameters for positional 
mapping, we used an r2 ≥ 0.6 to define ’independent’ significant SNPs, and an r2 ≥ 0.1 to define ’lead independent’ 
significant SNPs. We used the reference panel population of 1000G Phase3 EUR, a minimum minor allele fre-
quency (MAF) of 0.01, and a maximum distance of 250 kb between LD blocks, to constitute a locus. To perform 
positional mapping of SNPs to genes, FUMA searches for ‘candidate SNPs’ which are in LD (r2 ≥ 0.6) with the 

Sex score =
∑

(xi × Bi),

Normalized sex score =
Sex score −min(Sex score)

max(Sex score)−min(Sex score)
,

https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://github.com/juliedwhite/miamiplot/
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‘independent SNPs’, and identifies genes within 10 kb of the either independent SNPs or candidate SNPs. To eluci-
date the functional roles of the identified genes, we used FUMA-GWAS’s "GENE2FUNC" platform, inputting the 
list of genes mapped from SNPs, and testing their overrepresentation among genes from FUMA-GWAS’s GWAS 
catalogue. We used the recommended parameters, namely a minimum of two overlapped genes and applying a 
false-discovery-rate Benjamini-Hochberg (FDR-BH) correction for multiple comparisons.

Genetic correlations.  Firstly, we conducted an inter-sex genetic correlation between the sex-specific 
GWASs for sex-scores. To assess whether the inter-sex genetic correlation differed from 1, we used the equa-
tion, z =

1−rg
SE  . Secondly, we conducted genetic correlations between the sex-specific sex-score and sum-score 

GWASs and the sex-specific traits that comprised them. Thirdly, we conducted genetic correlations between 
the sex-specific sex-score and sum-score GWASs and previously published GWASs for sex-biased disorders 
and metabolic-syndrome disorders. Based on sex differences in prevalence8,55, the sex-biased disorder GWASs 
comprised autoimmune disorders (systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, type 
1 diabetes), psychiatric disorders (anorexia, anxiety, substance abuse, autism, attention deficit hyperactivity dis-
order [ADHD], depression), and inflammatory bowel syndrome. Moreover, given the inclusion of anthropo-
metric and cardiometabolic traits in the sex-scores, we also assessed genetic correlations with type 2 diabetes, 
ischemic heart-disease, and stroke. Information about the sources of these summary GWAS statistics is pro-
vided in Table S6. These analyses were run using linkage disequilibrium score regression (LDSC) version 1.0.1 
(https://​github.​com/​bulik/​ldsc/​wiki/​Herit​abili​ty-​and-​Genet​ic-​Corre​lation)24,25. The analyses were restricted to 
HapMap3 SNPs and we used LDSC’s 1000 Genomes European LD scores (https://​data.​broad​insti​tute.​org/​alkes​
group/​LDSCO​RE/). Bonferroni corrections were applied to the genetic correlation analyses, for the traits com-
prising each of the scores (13 traits × 2 sexes × 2 scores = 52 tests; p < 0.00096) and the clinical conditions (15 
conditions × 2 sexes × 2 scores = 60 tests; p < 0.00083).

Sex‑different single nucleotide polymorphisms (sdSNPS).  To compute sdSNPs, we used the fol-
lowing equation:

whereby B indicates the standardized beta weight for each SNP, SE indicates the standard error for each SNP, 
and r indicates the overall inter-sex Spearman’s correlation between all the effects of all the retained SNPs16,56. 
For sex-scores and sum-scores, we retained SNPs that were nominally (p < 0.05) in at least one sex. We excluded 
SNPs that were associated with sex as a dependent variable, as associations with these SNPs likely resulted from 
sex-specific participation bias57, leaving 1,844,503 and 1,426,959 SNPs for sex-scores and sum-scores, respec-
tively. We considered SNPs “male-dominant” if the absolute beta coefficient was greater in males than females 
(abs[Bmales] > abs[Bfemales]), and “female-dominant’ for the opposite effect (abs[Bfemales] > abs[Bmales])56. Following 
the example of Bernabeu et al., two-tailed p-values were transformed to one-tailed p-values, such that the p-value 
list for males ( pM) was computed as pM =

p2T
2  for “male-dominant” SNPs, and pM = 1−

( p2T
2

)

 for female-
dominant SNPs16. Similarly, the p-value list for females 

(

pF
)

 was computed as pF =
p2T
2  for “female-dominant” 

SNPs, and pF = 1−
( p2T

2

)

 for male-dominant SNPs.
Subsequently, we inputted the full lists of male SNPs and female SNPs with one-tailed p-values, separately, on 

the FUMA-GWAS platform. Using this platform, we performed a gene-wide association analysis (MAGMA) to 
retrieve p-values for each gene. Finally, we conducted gene enrichment analyses using FUMA’s “GENE2FUNC”. 
Analyses and data preparation were conducted using R version 4.1.158, including the R packages ‘tidyverse’ ver-
sion 1.14.259, ‘data.table’ version 1.3.160 and ‘broom’ version 0.8.0 (https://​CRAN.R-​proje​ct.​org/​packa​ge=​broom).

Pleiotropy.  For each of the GWAS-significant sex-score SNPs, we counted the number of nominally sig-
nificant associations with the 12 constituent traits and set our pleiotropy threshold at 8/12. We then counted 
the degree of concordance in the directionality of the effect of each sex-score SNP and the directionality of each 
constituent trait and set our concordance threshold at 2/3. For sex-scores, concordance was based on the sex-
difference effect size. For example, a SNP was considered concordant between sex-scores and HDL if both effects 
were positive since a higher sex-score indicates greater “femaleness” and HDL is higher in females, compared 
with males. These analyses were repeated for the sum-scores for comparison.

 Data availability
The data can be provided by the UK Biobank pending scientific review and a completed material transfer agree-
ment. Applications for access to the data can be completed at: https://​www.​ukbio​bank.​ac.​uk/​enable-​your-​resea​
rch/​apply-​for-​access. Data base produced during this study is also available from corresponding author on rea-
sonable request. GWAS summary statistics are available on the GWAS Catalog (https://​www.​ebi.​ac.​uk/​gwas/) 
under the following study accession IDs: GCST90270116, GCST90270117, GCST90270118, and GCST90270119. 
Finally, PLINK and R scripts have been provided as supplemental files.
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t =
Bmales − Bfemales

√

SE2males + SE2females − 2r × SE males × SE females

https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://CRAN.R-project.org/package=broom
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ebi.ac.uk/gwas/
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