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In gas‑condensate reservoirs, liquid dropout occurs by reducing the pressure below the dew point 
pressure in the area near the wellbore. Estimation of production rate in these reservoirs is important. 
This goal is possible if the amount of viscosity of the liquids released below the dew point is available. 
In this study, the most comprehensive database related to the viscosity of gas condensate, including 
1370 laboratory data was used. Several intelligent techniques, including Ensemble methods, support 
vector regression (SVR), K‑nearest neighbors (KNN), Radial basis function (RBF), and Multilayer 
Perceptron (MLP) optimized by Bayesian Regularization and Levenberg–Marquardt were applied for 
modeling. In models presented in the literature, one of the input parameters for the development 
of the models is solution gas oil ratio (Rs). Measuring Rs in wellhead requires special equipment and 
is somewhat difficult. Also, measuring this parameter in the laboratory requires spending time and 
money. According to the mentioned cases, in this research, unlike the research done in the literature, 
Rs parameter was not used to develop the models. The input parameters for the development of 
the models presented in this research were temperature, pressure and condensate composition. 
The data used includes a wide range of temperature and pressure, and the models presented in this 
research are the most accurate models to date for predicting the condensate viscosity. Using the 
mentioned intelligent approaches, precise compositional models were presented to predict the 
viscosity of gas/condensate at different temperatures and pressures for different gas components. 
Ensemble method with an average absolute percent relative error (AAPRE) of 4.83% was obtained 
as the most accurate model. Moreover, the AAPRE values for SVR, KNN, MLP‑BR, MLP‑LM, and RBF 
models developed in this study are 4.95%, 5.45%, 6.56%, 7.89%, and 10.9%, respectively. Then, the 
effect of input parameters on the viscosity of the condensate was determined by the relevancy factor 
using the results of the Ensemble methods. The most negative and positive effects of parameters on 
the gas condensate viscosity were related to the reservoir temperature and the mole fraction of  C11, 
respectively. Finally, suspicious laboratory data were determined and reported using the leverage 
technique.

The process of hydrocarbon production is associated with a continuous reduction of reservoir pressure. By 
reducing the reservoir pressure below the dew point pressure, the condensate gas reservoir composition changes 
from a single-phase gas to a two-phase gas–liquid state. The liquid phase produced is the valuable condensate 
that basically cannot move and produce  spontaneously1. With continuous production from the gas condensate 
reservoir and further reduction of the reservoir pressure, condensate accumulates in the area around the wellhead 
and causes the production wellhead to be blocked and the gas production rate to be drastically reduced. On the 
other hand, these condensate compounds, which are known as rich compounds, remain in the reservoir. Con-
densate saturation is a function of fluid properties that affect the rate of reservoir production. One of the most 
important properties of fluid is viscosity. Providing an accurate model that well describes the phase behavior of 
the reservoir has a special place in economic projects and reservoir production  plans2. The multiphase flow in 
condensate gas reservoirs is due to reduction of the pressure below the dew point pressure and conversion of some 
heavy gases into liquid. In condensate-rich gas reservoirs, the accumulation of these liquids in the area around 
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the well gradually increases, which reduces the performance of the reservoir. In order to solve this problem in 
these reservoirs, an attempt is made to prevent the reservoir pressure from falling below the dew point pressure 
or to produce gas condensate created in the area around the well; thus, it is important to accurately predict vis-
cosity. In fact, inaccurate estimation of condensate liquid viscosity below the dew point has a detrimental effect 
on cumulative production and can lead to large errors in reservoir performance. Previous studies show 1% error 
in reservoir fluid viscosity resulted in 1% error in cumulative  production3–5.

Viscosity is a measure of the internal friction or flow resistance of fluid and occurs when there is relative 
motion between fluid layers. Viscosity is caused by the following two  factors6:

A) Molecular gravitational forces that occur in liquids.
B) Momentum exchange forces of molecules in gases.

Viscosity is the measure of fluid resistance to flow. The general unit of metric for absolute viscosity is Poise, 
which is defined as the force required to move one square centimeter from one surface to another in parallel at 
a speed of one centimeter per second (cm/s). A film is separated from the fluid with a thickness of one centim-
eter. For ease of use, centipoise (cp) (one-hundredth of a pup) is the usual unit used. In the laboratory, gravity is 
typically used to measure viscosity to create flow through a temperature-controlled capillary tube (viscometer). 
This measurement is called kinematic viscosity. The unit of kinematic viscosity is the stoke, which is expressed 
in square centimeters per second. The more commonly called unit is the cent stake (CST)7.

To date, efforts have been made to predict the viscosity of gas condensate under different conditions. Lohrenz 
et al.8 predicted the viscosity of gas condensate based on the fluid composition  used8. Lohrenz model has been 
used in industry due to its high accuracy in predicting viscosity and is known as LBC. This model was first 
used to predict the viscosity of heavy gas  mixture9. The LBC model is accurate for predicting gas viscosity in 
condensate/gas reservoirs but is not accurate enough to predict liquid phase viscosity, and therefore changing 
the coefficients of this model is necessary to increase  accuracy3. Yang et al.3 proposed a model for predicting 
fluid viscosity that is a function of reservoir pressure and temperature, gas/oil ratio (GOR), and specific gravity 
of the gas. Then Dean and Steele’s10 model was presented for gas mixtures. The main application of this model is 
in moderate and high-pressure conditions. The model was developed using the critical constants and molecular 
weight of the components and is a function of temperature and pseudo-reduced pressure. Hajirezaei et al.11 also 
presented an accurate model for calculating the viscosity of gas mixtures using gene expression programming 
(GEP) based on reduced temperature and pressure. Furthermore, different mathematical models have been 
proposed to predict the viscosity of gas mixture in different ranges of temperature, pressure, specific gravity, 
GOR, and liquid  viscosity12–15. All of these models, which estimate the viscosity in the liquid phase, are used for 
oil and are a function of the viscosity of the crude oil, which is very different from the liquid of the condensate 
reservoirs and is not suitable for predicting the viscosity of  condensate16. Also, due to the variability of viscosity 
in condensate reservoirs due to pressure changes, the empirical relationships provided to estimate the viscosity 
of gas mixture cannot well describe the behavior of  condensate4,17,18.

In recent years, the use of machine learning methods has been widely increased in the oil industry due to its 
ability to solve complex problems and very high accuracy. To date, these methods have been used to estimate 
GOR, dew point pressure, and other characteristics of condensate gas reservoirs, the main of which is to pre-
dict dew point  pressure19–22. As examples, in a research by  Onwuchekwa23, the application of machine learning 
was discussed to estimate the properties of reservoir fluids. The models used in it include K-nearest neighbors 
(KNN), support vector machine (SVM) and random forest (RF), and 296 data were used to estimate reservoir 
fluid properties. Also, to predict the relative permeability of condensate gas reservoirs, an accurate model was 
recently presented by Mahdaviara et al.24 using machine learning methods. After that, Mouszadeh et al.25 esti-
mated the viscosity of condensate using Adaptive Neuro Fuzzy Inference System-Particle Swarm Optimization 
(ANFIS-PSO) and Extreme Learning Machine (ELM) and concluded that the ELM model is more accurate. 
Finally, Mohammadi et al.26 investigated the effect of velocity on relative permeability in condensate reservoirs 
in the absence of inertial effects. Since the prediction of gas viscosity in gas condensate reservoirs has great 
importance and its accurate measurement has a special effect on cumulative production, in this paper, we have 
tried to model the viscosity of gas condensate using different algorithms and a complete database.

As mentioned, estimating the viscosity of gas condensate is a critical issue in the oil industry because by using 
this parameter, the flowrate of reservoirs can be estimated. Therefore, the accurate estimation of this parameter 
leads to the accurate estimation of the flowrate of gas reservoirs and checking their performance. For this reason, 
in this research, using a wide database including 1370 laboratory data, accurate compositional models are pre-
sented to estimate this parameter. The dataset is divided into two categories of training and testing in the form 
of 80/20. Temperature, pressure, and condensate compositions are used as inputs to the models. In the literature, 
the input data for the development of the models included temperature, pressure, solution gas oil ratio (Rs) and 
reservoir fluid composition. Also, some of the models presented in the literature were not highly accurate, and in 
some researches, a limited database was used. In this research, in addition to using a large database, some models 
with high accuracy were presented. Intelligent models including Ensemble methods, Support vector regression 
(SVR), K-nearest neighbors (KNN), Radial basis function (RBF), and Multilayer Perceptron (MLP) optimized 
by Bayesian Regularization (BR) and Levenberg–Marquardt (LM) are used for modeling the gas-condensate 
viscosity. Using the error parameters and graphical diagrams, the presented models are evaluated and finally, 
the effect of input parameters on the most accurate model is investigated and suspicious laboratory data are 
identified using the leveraging technique.
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Data gathering
In this study, a comprehensive set of data was collected to predict the viscosity of gas  condensate4,27–36. The data 
set includes 1370 laboratory data points comprising of temperature and pressure of gas reservoirs and compo-
nents of condensate mixtures (from  C1 to  C11 and the molecular weight of  C12+ along with  N2 and  CO2), which 
are the inputs of the models. The statistical parameters of the data used are shown in Table 1.

Model development
Support vector regression (SVR). The use of support vector machines (SVM) provided by  Vapnik37 has 
been developed as a solution to machine learning and pattern recognition. SVM makes its predictions using a 
linear combination of the Kernel function that acts on a set of training data called support vectors. The charac-
teristics of an SVM are largely related to its kernel selection.

By defining a ε-sensitive region across the function, SVM is generalized to SVR. Moreover, this ε solves the 
optimal problem again and estimates the target value in such a way that the model complexity and the model 
accuracy value are balanced. The SVR algorithm is one of the machine learning algorithms; which is based 
on the theory of statistical education. This method, which is one of the supervised training methods, estab-
lishes a relationship between the input data and the value of the dependent parameter, based on structural risk 
 minimization38. Classical statistical methods are superior and, unlike methods such as neural networks, do not 
converge to local responses. SVR is a method for estimating a function that is mapped to a real number based 
on training data from an input object. A multidimensional space is mapped; then a super plane is created that 
separates the input vectors as far apart as  possible39. A kernel function is used to solve the problem of operating 
in a large space, in which case the operation can be performed. Input the data space with the same speed as the 
kernel function, in fact, the problem of multidimensional and nonlinear mapping is  solved40. The optimization 
process must be accompanied by a modified drop function to include the distance measurement. In fact, the 
purpose of the SVR is to estimate the parameters of weights and bias is a function that best fits the  data41. The 
SVR function can be linear (Fig. 1a) or nonlinear (Fig. 1b) and the nonlinear model is the calculation of a regres-
sion function in a high-dimensional feature space in which input data is represented by a nonlinear function.

Assuming that there is training data if each input X has several D attributes (in other words, belongs to a space 
with dimension D) and each point has a value of Y—like all regression methods—the goal of finding a function 
is to establish a relationship between input and  output42.

To obtain the function f, it is necessary to calculate the values of w and b. To calculate the values of w and b, 
the next relationship must be  minimized37.

where C is a constant parameter and its value must be specified by the user. In fact, the function of the constant 
C parameter is to create equilibrium and change the weights of the amount of the fine due to negligence (variable 
ε ) and at the same time to maximize the size of the separation margin. The Lc function is the Vpnik function, 
which is defined as  follows43:

(1)f (x,w) = wTx + b

(2)R(C) =
1

2
�w�2 + C

1

l

l
∑

i=1

Lε(yi , fi(x,w))

Table 1.  Statistical Parameters of the used dataset.

Average Min Max Median Mode Kurtosis Skewness Standard deviation

Temperature, K 371.396 151.000 639.000 378.000 403.150 0.458 0.065 74.085

Pressure, MPa 33.102 0.020 138.060 30.150 0.101 3.763 1.465 23.752

N2, mole % 0.004 0.000 0.071 0.000 0.000 25.893 4.509 0.009

CO2, mole % 0.016 0.000 0.079 0.000 0.000 0.467 1.519 0.030

C1, mole % 0.415 0.000 0.898 0.410 0.100 −1.778 0.020 0.318

C2, mole % 0.013 0.000 0.131 0.000 0.000 7.844 2.663 0.026

C3, mole % 0.292 0.000 0.900 0.011 0.000 −1.381 0.785 0.415

C4, mole % 0.009 0.000 0.065 0.000 0.000 4.981 2.384 0.017

C5, mole % 0.012 0.000 0.133 0.000 0.000 9.505 3.315 0.033

C6, mole % 0.007 0.000 0.059 0.000 0.000 5.294 2.550 0.016

C7, mole % 0.035 0.000 0.580 0.000 0.000 21.250 4.405 0.094

C8, mole % 0.003 0.000 0.030 0.000 0.000 7.162 2.948 0.008

C9, mole % 0.003 0.000 0.032 0.000 0.000 8.665 3.206 0.008

C10, mole % 0.136 0.000 1.000 0.013 0.000 3.558 2.053 0.244

C11, mole % 0.003 0.000 0.040 0.000 0.000 10.189 3.463 0.010

Molecular Weight of  C12+ 65.654 0.000 271.000 0.000 0.000 −1.443 0.707 91.787
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The above problem is rewritten to maximize the following equation:

The conditions are as follows:

By solving the above equation, the SVR function, i.e., f, can be calculated using the kernel function as follows:

Support Vector Machines (SVM) is a widely used supervised learning algorithm in the field of machine learn-
ing, which is based on the principle of maximizing the margin between the different  classes44. The assumptions 
and limitations of SVM are as follows:

Assumptions:
Large Margin: SVM assumes that it is better to consider a large margin while separating the classes to achieve 

better generalization  performance44.
Support Vectors: SVM relies on support vectors, which are crucial data points that determine the boundary 

between the classes. Accurate selection of these points is important to achieve good modeling  results44.
Limitations:
Large Datasets: SVM is not well-suited for very large datasets as the time required to train the model increases 

significantly with the size of the  dataset45.
High Noise: SVM can be sensitive to high levels of noise in the dataset, which can affect the accuracy of the 

model, particularly in the case of Support Vector Regression (SVR)45.
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Figure 1.  Schematic of the proposed SVR; (a) linear and (b) nonlinear function.
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In summary, while SVM has certain assumptions and limitations, it remains a popular and effective machine 
learning algorithm for a wide range of applications. However, it is important to carefully consider the limitations 
and suitability of SVM for specific datasets and  problems45.

K‑nearest neighbors (K‑NN). KNN regression is a nonparametric regression that was first used by Karls-
son and Yakowitz in 1987 46 to predict and estimate hydrological variables. In this method, a predetermined 
parametric relationship is not established between the input and output variables, but in this method, to model 
a process, the information obtained from the observational data is used based on the similarity between the 
desired real-time variables and the observational period  variables38. The logic used in this method is to calculate 
the probability of an event occurring based on similar historical events (observational events). In this method, 
to determine the similarity of current conditions to historical conditions, the kernel f(Dri) probability function 
is used as  follows47:

where Dri is the Euclidean distance of the current condition vector (Xr) from the historical observational vector 
(Xi) and K is the number of neighborhoods closest to the current condition. The output of this regression model 
(Yr) for the input vector Xr is calculated based on the above kernel relation and the corresponding Yi values for 
each Dri from the following  relation47:

In the KNN model, the choice of the number of nearest neighbors (K) affects the accuracy of the results, so 
that if the number of neighbors is large, the results are close to the average of the observational data, and if it 
is very small, the possibility of increasing the error  increases48. Therefore, determining the optimal number of 
this parameter in this model is necessary to achieve the least error. Figure 2 shows the flowchart of the KNN 
algorithm used in this research.

The advantages of using the KNN algorithm in prediction processes can be mentioned as  follows49:

1. Simple execution.
2. No need to estimate the parameters.
3. Non-linear modeling capability.
4. Effectiveness and performance with high efficiency in the face of a large number of data sets.

Limitations of using the K-NN algorithm in predictive processes include the following:
Since this model tries to identify similar patterns in time series and use them in forecasting, sufficient informa-

tion is necessary to validate it. Short-term information can lead to many errors in modeling using this algorithm. 
As can be seen from the relationships related to the structure of the K-NN method for estimating information 
by this algorithm, this algorithm is not capable of producing values greater than the most historically observed 
value and less than the least observed observational value. In other words, this algorithm only has the ability to 
interpolate information and is not capable of extrapolation. Therefore, the use of this algorithm in predicting 
values may to some extent lead to significant  errors50.

The K-Nearest Neighbors (KNN) algorithm has certain assumptions and limitations that should be taken 
into consideration.

Assumptions:
Local Similarity: This assumption is important since the algorithm determines the class of a data point based 

on the classes of its nearest neighbors. Full explanation regarding this assumption are mentioned  above47.
Relevant Features: The algorithm assumes that all features used in the model are equally relevant and con-

tribute to the prediction task. This may not always be the case in real-world scenarios, as some features may have 
more impact on the target variable than  others47.

Limitations:
Parameter Tuning: One limitation of the KNN algorithm is the need to determine the value of K, which 

can be a complex process. Choosing the wrong value for K can lead to overfitting or underfitting of the model, 
resulting in poor  performance38.

High Computational Cost: The algorithm requires computing the distances between the query point and all 
the data points, which can be computationally expensive, particularly with large datasets. The high computational 
cost can limit the scalability of the algorithm for large  datasets38.

In summary, the KNN algorithm has assumptions and limitations that need to be considered while using it. It 
is essential to choose the appropriate value for K and consider the computational cost when using the algorithm 
on large  datasets38.

Ensemble learning. In machine learning, the combined methods of algorithms are used to better predict 
the results than the individual results of each algorithm. The models used in this set are limited and specific but 
form a flexible structure and this algorithm reports better results when there is a lot of variation between the 
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models used. Variation in the training phase for regression is done by correlation and for classification using 
cross-entropy51–53. Figure 3 shows the ensemble flowchart method used in this research. The following item is 
the most widely used ensemble method.

Bayesian model averaging. In the Bayesian model averaging method, known as BMA, predictions are made by 
averaging the weights given to each model. The BMA method is more accurate than single models when differ-
ent models perform the same function during  training54. The greatest understandable question with any method 
that usages Bayes’ theorem is the prior, i.e., a specification of the likelihood (subjective, perhaps) whether every 
model is the most accurate or not. Theoretically, BMA is utilized by each prior. In Bayesian probabilistic space, 
for hypothesis h, the conditional probability distribution is defined  as55:

Using the point x and the training sample S, the forecast of the function f(x) can be calculated oppositely:

It can also be rewritten as a weighted sum of all hypotheses. This problem can be considered as an ensemble 
problem consisting of hypotheses in H, each of which is weighted by its posterior probability P (h | S). In Bayes-
ian law, the posterior probability is proportional to the likelihood multiplication of the training data in the prior 
probability h: P (h | S) ∝ P (S | h) P (h).

Also, in some cases, the Bayesian committee can be calculated by considering and calculating P (S | h) and P 
(h). Also, if the correct function f is selected from H according to P (h) then Bayesian voting works  optimally54.

Bayesian Model Averaging (BMA) is an ensemble modeling technique that includes certain assumptions and 
limitations that should be taken into account.

Assumptions:

(9)h(x) = P
(

f(x) = y|x, h
)

(10)P(f(x) = y|S, x)

Start

Get K values 

Finish  

Is the error of 
the test points 

satisfying?

Estimate the value of test point by 
weighted average of its neighbor

Sort the distance of all points and select the k point with smallest 
distance (neighbors)

Sort the distance of all 
points

Calculate the distance of 
new point from all point 

Consider all data points and new points 
in a n- dimensional space

Yes  

No  

Figure 2.  Flowchart of K-NN algorithm used in this study.
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Model Independence: BMA assumes that the models in the ensemble are independent of each other, and 
their errors are  uncorrelated54.

Model Fit: The ensemble model assumes that each model is well-suited to the dataset and provides accurate 
 predictions54.

Limitations:
Hyperparameter Selection: One of the main limitations of the ensemble model is the challenge of selecting 

the hyperparameters for each individual model. The wrong choice of hyperparameters can lead to lower accuracy 
than the individual  models54.

Time and Space Complexity: BMA requires more computational resources and time than individual mod-
els, as it uses multiple algorithms simultaneously. This can be a limitation when working with large datasets or 
limited computational  resources55.

In summary, Bayesian Model Averaging is an effective technique for ensemble modeling, but it has certain 
assumptions and limitations that should be considered. Proper selection of hyperparameters and computational 
resources are important factors for achieving good performance with the ensemble  model55.

Multi‑layer perceptron (MLP). One of the most common types of neural networks is the multilayer per-
ceptron (MLP). This network consists of an input layer, one or more hidden layers, and an output. MLP can be 
trained by a backward propagation  algorithm56. Typically, MLP is organized as an interconnected layer of input, 
hidden, and output artificial neurons. Then, by comparing network output and actual output, the error value is 
calculated, and this error is returned as BP in the network to reset the connecting weights of the nodes. The BP 
algorithm consists of two steps; in the first step the effect of network inputs is pushed forward to reach the output 
layer. The error value is then reversed and distributed in the  network57.

In each layer, a number of neurons are considered that are connected to the neurons of the adjacent layer by 
connections. It should be noted that the number of intermediate layers and the number of neurons in each layer 
should be determined by trial and error by the  designer6.

The error in the output node j is shown as the nth point of the data. Where d is the target value and y is the 
value produced by perceptron.

Node values are adjusted based on corrections that minimize the total error rate as  follows58:

Using the gradient, the change in weight is as follows:

(11)MSE =

∑P
j=0

∑N
i=0

(

dij − yij
)2

N

(12)ε(n) =
1

2

∑

j
e2j (n)

(13)�ωji(n) = −η
∂ε(n)

∂vj(n)
yi(n)

Training data

SVR K-NN

Model 2Model 1

Regressor Voting Final Model

Figure 3.  Schematic of the proposed Ensemble methods.
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where yi is the output of the former neuron and the amount of learning that is chosen to ensure that the weights 
converge rapidly to the more accurate response. The calculated derivative depends on the induced local field vj, 
which itself changes. It is easy to prove that this derivative can be simplified for the output node.

where ϕ ′ is a derivative of the activation function and does not change itself. The analysis is more difficult to 
change the weights to a hidden node, but the corresponding derivative can be shown as follows:

This depends on the change in weight of the nodes that represent the output layer; therefore, to change the 
hidden layer weights, the output layer changes according to the derivative of the activation function, and thus 
this algorithm shows a function of the activation  function59. Figure 4 shows the MLP structure presented in this 
research.

Multilayer Perceptron (MLP) is a widely used artificial neural network model to extract and learn features 
from the data. However, there are certain assumptions and limitations that should be considered when using 
 MLP56.

Assumptions:
Dense Connectivity: The MLP model assumes that neurons in consecutive layers are densely connected, 

meaning that all input values are passed to the next neuron, and their output is then sent to the neurons in the 
next  layers56.

Limitations:
Large Number of Parameters: MLP can have a large number of parameters, particularly when using multiple 

hidden layers or large input sizes, resulting in increased model complexity and longer training times. This can 
be a limitation when working with limited computational resources or large  datasets57.

Overfitting: Due to the large number of parameters, MLP is prone to overfitting, particularly when working 
with small datasets or complex models. Regularization techniques such as dropout or weight decay can be used 
to mitigate this  limitation57.

In summary, MLP is a powerful machine learning model with certain assumptions and limitations. Dense 
connectivity between neurons and the large number of parameters used are important factors to consider when 
using MLP. Careful selection of the model architecture and regularization techniques can help to achieve better 
performance and prevent  overfitting6.

(14)−
∂ε(n)

∂vj(n)
= ej(n)ϕ
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Figure 4.  MLP structure proposed in this research.
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Bayesian Regularization (BR) Algorithm. BR algorithm is a backpropagation error method. The backpropaga-
tion network training process with the BR algorithm begins with the random distribution of initial weights. 
Distribution Randomization of these parameters determines the initial orientation before providing data to the 
network. After giving data to the network, optimization of primary weights is started until a secondary distri-
bution is obtained using BR since the data used may be associated with many errors, effective methods will be 
necessary to improve the generalization performance. Hence, the BR includes network complexity regulation 
and modifying performance  function60,61.

Levenberg–Marquardt (LM) Algorithm. This algorithm, also called TRAINLM, is one of the fastest back-prop-
agation algorithms that uses standard numerical optimization techniques. This method tries to reduce the calcu-
lations by not calculating the Hessian matrix of the second derivative of the data matrix. When the performance 
function is the sum of the squares common in leading networks, the Hessian matrix can be estimated using the 
following Eqs. 62. In this relation, J is the Jacobin matrix, which contains the first derivatives of network errors 
relative to weights and biases, and e is the network error vector. The Jacobin matrix can be calculated using 
standard back-propagation techniques, and its computational complexity is much less than that of the Hessian 
 matrix63.

Like other numerical algorithms, the LM algorithm has an iterative cycle. In a way that starts from a start-
ing point as a conjecture for the vector P and in each step of the iterative cycle the vector P is replaced by a new 
estimate q + p in which the vector q is obtained from the following  approximation63:

In the above equation, J is Jacobin f in P that there is a network weights optimizing process in the problem 
of the sum of squares S: ∇qS = 0.

By linearizing the above formula, the following equation can be obtained:

In the above formula, q can be obtained by inverting ( JT J)64.

Radial Basis Function (RBF). The RBF neural network has a very strong mathematical basis based on the 
hypothesis of regularity and is known as a statistical neural network. In general, this network consists of three 
layers including input, hidden, and output. In the hidden layer, the Gaussian transfer function is used and in the 
output layer, it is a linear transfer function. In fact, the neuron of the RBF method is a Gaussian function. The 
input of this function is the Euclidean distance between each input to the neuron with a specified vector equal to 
the input  vector65. Equation (19) shows the general form of the output neurons in the RBF  network65.

where in this equation:
Cj(x) : function dependent on  jth output,
K: number of radial basis function,
φ : radial basis function with µi center and σi bandwidth,wji : the weight depends on the  jth class and the  ith 

center,
φ(�x − µi�; σi) : radial basis function and || || means Euclidean distance.
In the RBF network, the distance between each pattern and the center vector of each neuron in the middle 

layer is calculated as a radial activation  function66,67. The RBF flowchart used in this research is presented in Fig. 5.
Radial Basis Function (RBF) is a widely used machine learning algorithm. However, there are certain assump-

tions that should be taken into consideration when using RBF.
Assumptions:
Two-Layer Neural Network: RBF assumes a two-layer neural network architecture, consisting of a hidden 

layer with radial activation functions and an output layer that computes the weighted sum of the hidden layer’s 
 outputs65.

Radial Activation Functions: RBF uses radial activation functions in the hidden layer, which are centered on 
specific points in the input space and have a bell-shaped activation  function65.

Nonlinear Inputs, Linear Outputs: RBF assumes that the inputs are nonlinear and that the outputs are linear, 
meaning that the model can capture nonlinear relationships between the input features, while still providing a 
linear  output65.

Limitations:
Scalability: RBF can be computationally expensive and challenging to scale for large datasets or high-dimen-

sional feature  spaces60.
Sensitivity to Hyperparameters: RBF requires careful selection of hyperparameters, such as the number of 

radial basis functions and their centers, which can impact the model’s  performance60.

(16)H = JJT

(17)g = eJT

(18)f (p+ q) ≈ f (p)+ Jq

(19)(JT J)q = −JT f

(20)Cj(x) =

k
∑

i=1

wjiφ(�x − µi�; σi)
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In summary, RBF is a powerful algorithm that assumes a two-layer neural network with radial activation 
functions in the hidden layer and linear outputs. However, it has certain limitations such as scalability and sen-
sitivity to hyperparameters. Proper selection of hyperparameters and careful consideration of the computational 
resources required are important factors to consider when using  RBF60.

Results and discussion
In this study, using different algorithms including Ensemble-Methods, SVR, KNN, RBF, and MLP neural network 
trained with BR and LM algorithms, several models were presented for predicting the viscosity of gas conden-
sate. The time required for running and the hyper-parameters related to each model are reported in Table 2. The 
statistical parameters of error used in this study to check the accuracy of the models include standard deviation 
(SD), average percent relative error (APRE, %), determination coefficient  (R2), average absolute percent relative 
error (AAPRE, %), and root mean square error (RMSE) as defined  below68:

(21)APRE =
100

N

N
∑

i=1

(

µact
gi

− µcal
gi

µact
gi

)

(22)RMSE =







�N
i=1

�
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gi

− µcal
gi

�2

N







1
2

Figure 5.  RBF structure utilized to predict gas-condensate viscosity.

Table 2.  Hyper-parameters and run time of developed models.

Model Hyper-parameters Run time (min)

Ensemble methods
SVR + K-NN
C = 200, ε = 0.00001

K-neighbours = 2
3

SVR C = 200, ε = 0.00001 5

K-NN K-neighbours = 2 2

MLP-LM Transfer function = Tansig-Tansig
Number of neurons = 10,12 80

MLP-BR Transfer function = Tansig-Tansig
Number of neurons = 10,12 55

RBF Max neuron = 300
Spread = 1.5 15
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Precisions and validities of the models. Table 3 is presented to evaluate the accuracy of the models 
developed in this study using statistical error parameters calculated for training, test, and total data. Accord-
ing to the results presented in this table, it can be concluded that Ensemble methods showed a small AAPRE 
and the difference between train error and test error in this model is less than in the other developed models. 
The calculated AAPRE for this algorithm is 4.83% and its other error parameters are as follows:  R2 = 0.9781, 
APRE = −0.05%, SD = 0.031966, and RMSE = 0.044646.

According to the AAPREs reported in this table, the models presented in this research can be ranked in terms 
of accuracy as follows:

Ensemble methods>SVR>KNN>MLP-BR>MLP-LM>RBF
It is clear that the highest accuracy after Ensemble methods is related to SVR with an AAPRE of 4.95% and 

the highest error is related to the RBF model. Also, the KNN algorithm has relatively good accuracy and MLP-
LM and MLP-BR models report close to each other and relatively acceptable accuracy.

To show the accuracy of the models graphically, the cross-plot for each model using laboratory and predicted 
data is presented in Fig. 6. Considering the cross-plots and high density of data around the X = Y line for all 
models, it can be concluded that the accuracy of the models presented in this research to predict gas-condensate 
viscosity is high. It is clear that the data density above and below the X = Y line is very small and it can be inferred 
that no underestimation or overestimation has been occurred in the models. Also in this diagram, the high 
compatibility of laboratory data with the data predicted by the models can be seen.

The error distribution diagram based on laboratory data and the relative error of each model is plotted in 
Fig. 7. As can be seen, the accumulation of data around the zero-error line for Ensemble methods is more than in 
other models and shows low deviation and high accuracy of this model. In general, in the error distribution dia-
gram, the higher the data scatter around the zero-error line, the lower the accuracy of the model, and the denser 
the data around this line, the higher the accuracy of the model. If the model has very little accuracy, the data will 
be completely above or below the zero-error line, indicating overestimating and underestimating, respectively.

Despite the high accuracy of the models presented in this research, the introduction of the most accurate 
model in terms of precision is important. Figure 8 shows the cumulative diagram of the developed models, which 
is visually plotted for a better comparison of the models. It is observed that Ensemble methods report an error 
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Table 3.  Statistical parameters of the proposed models for determination of viscosity of gas condensate.

Model APRE, % AAPRE, % RMSE SD, % R2

Ensemble methods

Train −0.712 4.58 0.043951 0.031448 0.9805

Test −0.068 5.86 0.047429 0.034041 0.9695

Total −0.55 4.83 0.044646 0.031966 0.9788

SVR

Train 0.45 4.56 0.053017 0.024128 0.9719

Test 0.40 6.49 0.047857 0.044276 0.9692

Total 0.44 4.95 0.051985 0.0281576 0.9715

K-NN

Train −1.93 5.24 0.044429 0.089516 0.9800

Test −0.23 6.31 0.053367 0.060065 0.9612

Total −1.59 5.45 0.046217 0.083579 0.9771

MLP-LM

Train −2.96 8.11 0.032649 0.026572 0.9883

Test −1.80 7.10 0.055282 0.017382 0.971

Total −2.71 7.89 0.038174 0.024672 0.9844

MLP-BR

Train −2.34 6.42 0.020271 0.021717 0.9956

Test −0.03 7.35 0.055470 0.038123 0.9679

Total −1.92 6.56 0.030417 0.024720 0.9899

RBF

Train −4.262 10.59 0.032402 0.054177 0.989

Test −3.240 12.11 0.069143 0.051809 0.9449

Total −4.060 10.90 0.042395 0.053665 0.9808
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1% for 90% of the data and have high accuracy. In addition, the accuracy of SVR and KNN models are almost 
equal, and for 80% of the data, they report an error of less than 5%. MLP neural networks trained with LM and 
BR algorithms report errors below 10% for 80% of data. Moreover, the RBF neural network reports errors below 
20% for 70% of the data.

Also, in order to check the validity of the Ensemble model as the most practical model presented, a complete 
comparison was done based on AAPRE with the illustrious models of literature. According to Table 4, it is clear 
that the most accurate model in the literature reports AAPRE of 7.23%, which is presented by Fouadi et al.5. 
Also, the Ugwu et al.69 models report high average absolute errors to predict viscosity. To compare these results 
graphically, a bar chart was presented in Fig. 9, which shows a comparison of the average absolute relative error 
of two of the most accurate models presented with the well-known models in the literature.

A three-dimensional graph was used to determine the points that report the most absolute error. Figure 10 
shows a three-dimensional graph of the absolute error obtained by Ensemble Methods in terms of temperature 
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Figure 6.  Cross-plot of presented models to predict gas-condensate viscosity.
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and pressure. In this diagram, the peaks represent high absolute error and the smooth surfaces indicate tempera-
ture and pressure conditions that report a low absolute error. It is clear that in most temperature and pressure 
conditions, a low error is seen, although some points in the temperature range of 250–300 K and the pressure 
range of 80–100 MPa report a large absolute error of about 200%.

Figure 11 shows a good correlation between the data estimated by the ensemble methods model and the 
laboratory data for training and testing. This indicates a high accuracy obtained from this model.
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Figure 7.  Error distribution plot of the presented models to predict gas-condensate viscosity.
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Figure 8.  Cumulative frequency curve for the developed models in this study.
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Figure 10.  Three-dimensional diagram of AAPRE in terms of temperature and pressure for the Ensemble 
Methods model.
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Sensitivity analysis. One of the most important statistical analyses is the check of the effect of input 
parameters on the output of the model, which is known as sensitivity analysis and uses the Pearson equation 
70,71. The outputs of this relationship are between −1 and 1, and negative values indicate a negative effect of the 
parameter on the output and positive values indicate a positive effect, and the larger the value, the greater effect 
of the parameter on the model output, and vice  versa72. The formula used to perform this analysis is as  follows73:

In this regard, the number of data, ith input, ith output, mean kth input, and mean output are denoted by 
n, Ik,i , Oi , Ik , and O , respectively.

Figure 12 illustrates the effect of model inputs on the output of Ensemble Methods. As it is clear, the most 
negative effect is related to the reservoir temperature and the most positive effect is related to the mole of  C11. 
Also, reservoir pressure and mole of  C1 to  C4 as well as the mole of non-hydrocarbon components including  N2 
and  CO2 report negative effects on viscosity, and with increasing them, the viscosity decreases. Also, the mole 
fraction of other condensate components from  C5 to  C11 and the molecular weight of  C12+ report positive effects 
on the viscosity of the condensate, and with increasing them, the amount of viscosity also increases. In addi-
tion, according to the diagram, it can be seen that the mole fractions of  N2 and  C7 have very little effect on the 
viscosity of the condensate.

Trend analysis. The viscosity behavior of condensate at different temperatures and pressures is shown in 
Fig. 13. According to particle  theory74, with increasing temperature, the distance between molecules increases 
which leads to a decrease in the viscosity of liquids. Changes in the viscosity of condensate with temperature can 
be expressed using the following formula:

In this formula, a and b are constant coefficients and a function of condensate composition. Also, according to 
the diagram, the condensate viscosity decreases with increasing pressure. The reason for the decrease in viscosity 
with increasing pressure can be related to the complex behavior of gas condensate reservoir.
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Methods for the (a) Train and (b) Test subsets.
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Outlier detection. There are a variety of ways to find outlier and suspected laboratory data. In this research, 
the Leverage technique and William diagram have been  used75,76. Using this method, the data is placed in the 
valid, suspected, and outlier regions.

To draw a graph, first, the value of H is calculated using the following formula, and then the values of Stand-
ardized Residual (SR) and Hat * are calculated using the following  formula76,77:

Figure 14 shows the William plot obtained by Ensemble Methods. In this figure, Hat * defines the boundary 
between outlier data and other data, and when the value of a given data exceeds Hat *, they are out of the scope 
of the model. Also, data with SR more than 3 or less than −3 are known as suspected laboratory data and report 
a high error (Regardless of their hat value), and data that is in the valid area of the model, their Hii is less than 
Hat * and their SR is between 3 and −378. Table 5 shows outlier data indicated by the leverage technique for the 
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Figure 12.  Investigation of the effect of input parameters of the most accurate model presented in this research 
on the viscosity of condensate.
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Ensemble Methods. An examination of Williams plot indicates that most of the data points are located in a valid 
area, indicating the high validity of ensemble methods and high reliability of the data bank used in this work.

Conclusions
In this study, an accurate model was presented to predict the viscosity of gas condensate in models presented in 
the literature, one of the input parameters for the development of the models is solution gas oil ratio (Rs). Meas-
uring Rs in wellhead requires special equipment and is somewhat difficult. Also, measuring this parameter in 
the laboratory requires spending time and money. According to the mentioned cases, in this research, unlike the 
research done in the literature, Rs parameter was not used to develop the models. The input parameters for the 
development of the models presented in this research were temperature, pressure and condensate composition. 
The data used includes a wide range of temperature and pressure, and the models presented in this research are 
the most accurate models to date for predicting the condensate viscosity. The accuracy and validity of the models 
were compared with each other using statistical error parameters as well as graphically, and finally, ensemble 
method with an AAPRE of 4.83% was introduced as the most accurate model. Also, the accuracy of the best 
models presented in this study was compared with well-known models of literature. It was observed that some 
models in the literature report good accuracy only in limited conditions of temperature and pressure and have a 
high error at different conditions of temperature and pressure. Sensitivity analysis showed that the most negative 
effect of inputs on the viscosity of condensate is related to the reservoir temperature and the most positive effect 
is related to the mole fraction of  C11. Also, reservoir pressure and mole fraction of hydrocarbon components 
from  C1 to  C4 as well as the weight fractions of non-hydrocarbon components including  N2 and  CO2 report 
negative effects on viscosity and with increasing them, the viscosity decreases. Also, the mole fraction of other 
condensate components from  C5 to  C11 and the molecular weight of  C12+ report positive effects on the viscosity 
of the condensate, and with increasing them, the amount of viscosity also increases. Finally, the great reliability 
of the employed data set for modeling and excellent validity of ensemble methods were proved by applying the 
Leverage approach, and suspected data were reported in a table.
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Figure 14.  William’s plot to determine outliers and suspected data points.

Table 4.  Comparison of the AAPRE of the models presented in this research with the literature models.

Models RMSE AAPRE%

Yang et al. (2007)3 0.0544 14.80

Ugwu et al. (2011)69 0.0616 17.66

Beggs and Robinson (1975)12 0.0264 9.95

Kartoatmodjo and Schmidt (1994)79 0.0232 11.66

Elsharkawy and Alikhan (1999)14 0.0248 8.52

Sutton (2005)80 0.3673 15.84

Faraji et al. (2021)5 0.0194 7.12

Tuned LBC 0.0196 8.32

Ensemble methods 0.0446 4.83

SVR 0.0519 5.95
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Pressure 
(MPa)

Reservoir 
Temp.(K) N2 CO2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 MWC12+ Viscosity

0.061363 392.15 0 0 0.7355 0.08 0.0485 0.0296 0 0.0442 0.0423 0 0 0 0 271 0.066

0.040679 392.15 0 0 0.7355 0.08 0.0485 0.0296 0 0.0442 0.0423 0 0 0 0 271 0.05

0.019995 392.15 0 0 0.7355 0.08 0.0485 0.0296 0 0.0442 0.0423 0 0 0 0 271 0.031

0.073084 392.15 0 0 0.7355 0.08 0.0485 0.0296 0 0.0442 0.0423 0 0 0 0 271 0.076

0.089632 392.15 0 0 0.7355 0.08 0.0485 0.0296 0 0.0442 0.0423 0 0 0 0 271 0.087

0.082737 392.15 0 0 0.7355 0.08 0.0485 0.0296 0 0.0442 0.0423 0 0 0 0 271 0.083

3.447372 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.508

10.34212 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.365

45.98795 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.222

48.36663 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.223

42.644 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.219

40.08605 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.218

24.13161 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.273

17.23686 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.31

36.65936 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.217

31.02635 482.0051 0.0439 0.0324 0.6249 0.0421 0.0281 0.0276 0.0201 0.0185 0.024 0.0277 0.0226 0.0176 0.0125 232 0.243

5.515796 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.442

48.79411 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.462

9.652643 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.384

44.54005 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.414

14.47896 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.339

41.9821 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.356

40.31357 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.312

39.43794 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.295

19.30529 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.312

24.13161 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.292

28.95793 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.277

34.47372 390.4242 0.0708 0.0062 0.7104 0.0757 0.0348 0.0207 0.0106 0.0075 0.0107 0.0136 0.0086 0.0061 0.0041 232 0.264

138.06 323.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.119

34.56 473.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.092

137.94 473.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.076

137.97 373.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.097

41.52 473.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.034

138 373.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.315

34.56 423.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.115

137.94 473.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.205

131.03 323.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.414

34.56 323.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.219

137.95 423.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.085

137.94 423.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.246

34.56 373.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.154

41.45 323.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.057

41.61 423.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.038

41.72 373.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.048

51.86 473.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.039

121.07 323.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.108

120.69 323.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.393

51.74 473.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.112

51.88 323.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.065

120.7 473.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.069

120.73 473.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.188

120.71 373.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.089

51.81 323.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.254

51.9 423.15 0 0 0.6962 0.1314 0.0919 0.031 0.0101 0.0056 0.006 0.0063 0.0042 0.0028 0.0024 191 0.044

120.76 373.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.287

51.74 423.15 0 0 0.42 0 0 0 0 0 0.58 0 0 0 0 0 0.142

Continued
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