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Effect of signal timing on vehicles’ 
near misses at intersections
Zubayer Islam *, Mohamed Abdel‑Aty , Amrita Goswamy , Amr Abdelraouf  & Ou Zheng 

Driving characteristics often vary between the different states of the signal. During red and yellow 
phase, drivers tend to speed up and reduce the following distance which in turn increases the 
possibility of rear end crashes. Intersection safety, therefore, relies on the correct modelling of signal 
phasing and timing parameters, and how drivers respond to its changes. This paper aims to identify 
the relationship between surrogate safety measures and signal phasing. Unmanned aerial vehicle 
(UAV) video data has been used to study a major intersection. Post encroachment time (PET) between 
vehicles was calculated from the video data as well as speed, heading and relevant signal timing 
parameters such as all red time, red clearance time, yellow time, etc. Random parameter ordered 
logit model was used to model the relationship between PET and signal timing parameters. Overall, 
the results showed that yellow time and red clearance time is positively related to PETs. The model 
was also able to identify certain signal phases that could be a potential safety hazard and would need 
to be retimed by considering the PETs. The odds ratios from the models also indicate that increasing 
the mean yellow and red clearance times by one second can improve the PET levels by 10% and 3%, 
respectively.

Driver behavior is an important element of road safety which indicates how an individual vehicle behaves due 
to the driving scene and surrounding environment. The presence of signalized intersections can affect how a 
person drives. In this study, the authors have used a quantitative surrogate safety measure to model the driving 
behavior from a safety standpoint: post encroachment time (PET) which can be considered as the temporal gap 
between two vehicles. Low PET indicates that the lagging vehicle is following too closely which can result in a 
rear end crash. Therefore, accepting low gaps can be an indicator of risky driving behavior. The authors have 
investigated whether this behavior can be modelled with respect to signal timing.

Moreover, traffic analysis from a safety point of view has largely relied on crash data. Various statistical 
methods and machine learning methods have been implemented to understand proactive natures of crash 
enabling real time prediction of these events. Countermeasures have been developed based on accident data as 
well. However, crash data can be rare events and there are notable shortcomings of these types of data such as 
incorrect reasoning, subjectivism, inaccurate data, etc.1, 2. Moreover, the specific reasoning to a crash can often 
be factors other than roadway characteristics and traffic features which cannot be modelled using the prediction 
algorithms in the literature. On the other hand, conflict events are more common and therefore, can help better 
to understand design flaws of roadway as well as traffic conditions that impacts conflicts. Several previous studies 
have definitively proven conflict analysis as an alternative to crash analysis with similar  results2–5. Several metrics 
has thus been developed to measure conflict such as Time-to-collision (TTC)6, time exposed TTC (TET), time 
integrated TTC (TIT), time-to-lane crossing (TLC)7, Post encroachment time (PET), gap time (GT), encoding 
time (ET), and time advantage (TAdv)8, etc.

The surrogate safety measures are usually dependent on exact localization of road users. For example, to cal-
culate TTC, initial location and velocity would be needed. This requires precise GPS locations. An effective way 
to study an intersection would be with the help of an Unmanned Aerial Vehicle (UAV) that can be then used to 
extract accurate trajectories at the centimeter level. These are a better alternative than roadside cameras which 
have distortion of localization at camera edges. UAVs are also known for easy maneuvering, flexibility, and low 
cost. UAVs have become an emerging video analysis solution at the transportation level in the recent years. It is 
often augmented with radar and infrared cameras that can provide a bird’s eye view of an intersection including 
the approaches. In this study, an intersection was analyzed with respect to PET from the data available through 
UAV. The signal timing at that instant was also captured. The purpose of this study was to analyze the interaction 
of safety events and relate it to the signal states.
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Literature review
Traffic safety at intersections has been shown to be dependent on signal timing at that intersection. For exam-
ple, altering signal phases can better or worsen intersection  safety9. Several studies have found that there is a 
direct relation between signal timings and crashes. After any retiming of signals, a crash reduction factor is also 
estimated but few studies have also reported that there were no significant  relationships10. Guo,  Wang11 showed 
that adaptive intersections experienced fewer crashes than isolate ones. The study was extensive and included 
over 170 intersections in Florida, USA but the results were based on signal timing sheets only since real traffic 
data was not available. Midenet,  Saunier12 evaluated signal safety by measuring the exposure to lateral collisions 
using video feed. Approach level data from traffic detectors including speed, volume was found to be associated 
with significant crash  risk13. It was also reported in this study that longer green time for left turn, higher green 
ratio can improve the safety at intersections. The main limitation of all the studies is that crash events are usu-
ally rare and therefore, these studies would only rely on the spatial relationship between crash events and traffic 
parameters. It has been shown in several studies that the temporal relationship need to be included as well since 
traffic parameters and signal timing would vary largely throughout the day and even across  days14–16. Moreover, 
there are notable shortcomings of these types of police reported crash data such as incorrect reasoning, subjectiv-
ism, inaccurate data, etc.1, 2. Additionally, there is the moral dilemma of waiting for fatalities to happen before 
taking an appropriate countermeasure making it a reactive approach. Crash events are also rare, and it takes a 
long time to study a location or conduct a before-after study. Surrogate safety measures provide an alternate and 
proactive methodology that does not require much time and solves the moral dilemma to a great extent. Several 
studies have also shown that it can significantly correlate to crashes and can mostly be used as an  alternative2–5, 17.

Using surrogate safety measures for signal timing was first proposed by Stevanovic,  Stevanovic18. The study 
proposed the integration of optimization and surrogate safety measure assessment at the microscopic level con-
sidering both the safety and efficiency. Network wide optimization was also studied in recent  time19. This work 
also incorporates simulation and surrogate safety measures to find optimal solution using a model calibrated 
from real-world data. The influence of signal phasing on the safety and traffic smoothness was also  studied20, 21. It 
was also shown that optimization of the left turn waiting zones would improve capacity without degrading traffic 
 flow22 while Lin and  Huang23 improved both at signal coordination level across multiple intersections. All the 
studies have relied on simulation software such as VISSIM to model traffic signals and safety. While some studies 
calibrate the models based on real traffic flow, the ground data can be significantly different than the simulation. 
This work addresses this research gap and uses real-world data from UAVs to evaluate signal timing based on 
Post Encroachment Time (PET). The main objective of this work was to evaluate the impact of all-red time, red 
clearance time, red time, yellow time and green time on the surrogate safety measures based on real-world data. 
These can also help relevant authorities to understand intersection traffic with respect to PET and gain insight 
whether the signal timing need optimization or not. Moreover, the odds ratio was also calculated to show that 
one second increase of yellow and red clearance time will help to increase the PET level thereby improving the 
safety condition of the intersection.

DATA preparation
Trajectory data. The vehicle trajectories provided by the CitySim  dataset24 were utilized to identify, process, 
and analyze PET conflicts in this study. The CitySim dataset is composed of top-view drone-video-based vehi-
cle trajectories. The authors identified vehicle trajectories using mask-RCNN and subsequently extracted and 
exported rotation-aware bounding boxes. The process involves an extensive five-step pipeline: video stabiliza-
tion, object filtering, video stitching, detection and tracking, and enhanced error filtering. Video stabilization 
was obtained through Scale-Invariant Feature Transform (SIFT) algorithm. Gaussian-mixture-based algorithm 
was used to filter background objects. Afterwards, object detection algorithm Mask R-CNN was used to obtain 
rotating bounding boxes. Finally, any remaining errors were filtered using human-in-the-loop. Each frame was 
checked manually to ensure the exactness of the bounding boxes.

The dataset contains vehicle trajectories sampled at 30 frames per second. For each trajectory point, the data-
set provides four bounding box positions, speed, and heading. In this work, the University@Alafaya intersection 
location was selected for development, evaluation, and analysis. The intersection geometry is illustrated in Fig. 1. 
It is a signalized intersection between Alafaya Trail (9 lanes) and University Boulevard (9 lanes). The utilized 
trajectories were extracted from a video recorded on a weekday between 5:40 PM and 6:40 PM (afternoon peak). 
A total of 4871 vehicles passed through the intersection during that period of time. The different phases for each 
traffic direction are also shown in Fig. 1. There are three through lanes for each of the phases 2,4,6 and 8 while 
two left turning lanes for phases 1,3,5 and 7. The approach 4 does not have any exclusive right turn lanes while 
the other through phases all have an exclusive right turn lane.

Post encroachment time (PET). Post Encroachment Time is a conflict indicator that serves as a sur-
rogate safety measure. Figure 2 depicts an example PET conflict between two vehicles at a single timestep. PET 
measures the period of time between a leading vehicle leaving a particular location and a lagging vehicle arriving 
at the same location. In this scenario, the location where both vehicles interact is dubbed the conflict zone. The 
PET conflict indictor generates a sequence of PET values that describe the serial interaction between two vehicle 
trajectories under observation. A PET value exists in the generated PET sequence as long as the lagging vehicle 
remains in a conflict zone. Otherwise, the PET value at a timestep where no encroachment occurs is undefined.

In this research effort, the PET values were computed using the rotation-aware vehicle bounding boxes pro-
vided by the CitySim Dataset. At each timestep, and for each possible pair of vehicles, the PET value was meas-
ured between the moment a lagging vehicle bounding box intersects with a leading vehicle’s previous bounding 
box location (i.e., the lagging vehicle intersects with the conflict zone as described in Fig. 2). For each pair of 
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vehicles, an output PET sequence that describes their interaction was generated. The selected timestep was 1/3 s 
(3 Hz). PET values under 5 s were recorded.

Table 1 describes the PET conflicts extracted from the study area. When sampled at 3 Hz, a total of 193,000 
PET conflicts under 5 s were captured in the study area. Additionally, Table 1 reports the minimum PETs (min-
PETs). The minPET is defined as the minimum PET recorded between 2 vehicle trajectories. It describes the 
single most hazardous moment between unique vehicle pairs. Table 1 indicates that, during the recorded time, 
717 unique vehicle pairs recorded a minPET under 1 s, and 7345 unique vehicle pairs encountered a minPET 
conflict under 5 s.

Utilizing the vehicle bounding boxes for PET calculation is not common within previous research efforts. 
Instead, most previous work relied on the trajectories of the center-point-based conflict identification. As illus-
trated in Fig. 2, the vehicle geometry is essential for robust PET measurement. Center points misrepresent vehicle 
geometries and lead the conflict identification algorithm to neglect conflicts or underestimate their  severity25. 

Figure 1.  Study intersection location showing the different phases.

Figure 2.  Example PET calculation between leading vehicle (V1) and lagging vehicle (V2) in the time period 
between (T1) – (T2) in the conflict zone V1(T1).

Table 1.  Number of PET conflicts and minPET values for different thresholds.

PET threshold  < 1.0s  < 2.0s  < 3.0s  < 4.0s  < 5.0s

Number of PET conflicts (sampled at 3 Hz) 9 K 62 K 106 K 150 K 193 K

Number of minPETs for unique vehicle pairs 717 2785 4365 5897 7345
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Figure 3 compares heatmap plots of minPETs recorded in the study intersection using bounding boxes versus 
center points. It can be clearly observed that the bounding box approach was able to recall more conflicts than 
the center point method. For a minPET < 1.0 s, the center point method identified 141 compared to 717 conflicts 
captured by the bounding box. Similarly, for a minPET maximum threshold of 3.0 s, the center point and bound-
ing box methods identified 3637 and 4365 conflicts, respectively. Figure 3 clearly demonstrates the superiority 
and robustness of the bounding box approach. Furthermore, it indicates that the center point misdetection rate 
is proportional to the conflict severity, meaning that center-point-based computations fail to capture the most 
hazardous traffic conflicts.

Five different levels of PET were chosen based on past literature. In a study conducted by Zheng,  Ismail26, it 
was found that a PET threshold of 1.5 s exhibited the strongest correlation between crashes and conflicts. Results 
also indicated that PET thresholds of 1.5 s, 2 s, 2.5 s, and 3 s were all significantly correlated with crashes. Peesa-
pati,  Hunter27 found through their study using CDF and absolute number of PETs that values less than 1 s and 
1.5 s were the most related to crashes, and PETs less than 3 s showed a degrading Pearson Coefficient. Another 
study by Zheng and  Sayed28 chose a threshold value of 4 s to analyze extreme values of conflicts only. Based 
on previous research, PET values less than 1 s or 2 s are considered critical, while those between 2 and 4 s are 
intermediate, and those between 4 and 5 s are mild conflicts. PETs were preferred over other conflict measures, 
such as TTC, because TTC assumes a straight-line collision course and is not suitable for intersections with left 
and right turn motions. PETs, on the other hand, can capture angle/crossing conflicts  accurately29.

All the different datasets involving PET, speed, heading, and signal timing were merged together to obtain 
the final dataset. The descriptive statistics of the different variables as well as brief explanation of each variable 
in the final dataset are shown in Table 2. The various signal timing such as red, green, yellow, etc. are modelled 
as a countdown timer to understand the impact of the time remaining of a phase on PETs.

A sample case of changing PETs towards the end of a cycle is shown in Fig. 4. The PETs between interacting 
vehicles are shown in the figure. The lower the PET, the redder is the bounding box indicating high severity. It 
can be noted that as the phase turns green the vehicles start to move with PETs between 1.5 to 2 s. As the phase 
turns from yellow to red, the PET even lowers to 0.8 s as drivers try to clear the intersection.

Model
Random parameter ordered logit model. Random parameters logit model is a logit model for which 
the parameters are assumed to vary from one case to another. It is therefore a model that takes the heterogeneity 
of the population into account. In this study five levels of PET were considered.

We follow Milton et al. (2008) and Washington et al. (2011), and start with

minPETs computed using bounding boxes minPETs computed using center points

(a) minPETs < 1.0s = 717 (b) minPETs < 1.0s = 141

(c) minPETs < 3.0s = 4365 (d) minPETs < 3.0s = 3637

Figure 3.  minPET heatmaps computed using bounding boxes versus center points.
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where Uij is a function determining the PET level i on individual PET for observaions, Xij is a vector of explana-
tory variables; βi is a vector of estimable parameters for outcome i which may vary across observations, and εij is 
the error term which is assumed to be generalized extreme value distributed (McFadden, 1981).

In order to develop random parameter models, we consider the following latent process as described by 
Sarrias Mauricio, 2016

where  y∗it is a latent (unobserved) process for individual i in period t, xit is a vector of covariates, and ǫit is the 
error term.

Note that the conditional probability density function (PDF) of the latent process f
(
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∣

∣xit,βi
∣

∣

)

 is determined 
once the nature of the observed yit and the population PDF of ǫit is known. If yit is binary and ǫit is distributed 
as normal, then the latent process becomes the traditional probit model; if yit is an ordered categorical variable 
and εit is logistically distributed, then the traditional ordered logit model arises. Formally, the PDF for binary, 
ordered, and Poisson model are, respectively

For the binary and ordered models, F (·) represents the cumulative distribution function (CDF) of the error 
term, which F(ǫ) = �(ǫ) for probit and F(ǫ) = Ŵ(ǫ) for logit. For the ordered model, κj represents the threshold 
for alternative j = 1, . . ., J − 1, such that κ0 = −∞ and κ0 = ∞.
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Table 2.  Variable statistics.

Feature Description Count Mean SD Min Max

PET level

1, if 0.3 s < PET <  = 1 s

78,859 3.3 1.18 1 5

2, 1 s < PET <  = 2 s

3, 2 s < PET <  = 3 s

4, 3 s < PET <  = 4 s

5, 4 s < PET <  = 5 s

Distance (ft) Spatial gap between two vehicles 78,859 13.98 1.53 0 15

red_clearance (s) Red clearance time remaining at the end of each phase 78,859 0.2 0.76 0 4.9

all_red (s) All red time remaining at the end of each cycle 78,859 0.02 0.22 0 3.9

Red (s) Red time remaining 78,859 6.11 25.28 − 1 175.9

Yellow (s) Yellow time remaining 78,859 0.01 0.61 − 1 4.9

Green (s) Green time remaining 78,859 19.25 16.8 − 1 85.3

Phase 1

1, if phase is active, 0, otherwise

78,859 0.13 0.34 0 1

Phase 2 78,859 0.32 0.46 0 1

Phase 3 78,859 0.12 0.33 0 1

Phase 4 78,859 0.02 0.15 0 1

Phase 5 78,859 0.03 0.19 0 1

Phase 6 78,859 0.09 0.29 0 1

Phase 7 78,859 0.11 0.32 0 1

Phase 8 78,859 0.06 0.24 0 1

Speed (mph) Current vehicle Speed 78,859 19.48 10.43 0 59.98

Heading (degrees) Direction of travel 78,859 190.81 100.83 0 360

Lane Lane information for any PET 78,859 28.3 10.31 3 35

Volume Number of vehicles per 5 min 78,859 49.1 11.68 19 86

Intersection 1, if the vehicle is at intersection 0, otherwise 78,859 0.6 0.49 0 1

speeding_prop speed−speedlimit
speedlimit  for leading vehicle 78,859 − 0.45 0.24 − 0.89 0.33

Movement Location of the vehicle 0, left turning lane 1, through lane 2, at intersection 78,859 1.48 0.7 0 2
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In the structural model given by Eq. (1), we allow the vector coefficient βi to be different for each individual 
in the population. In other words, the marginal effect on the latent dependent variable is individual-specific. 
Nevertheless, we do not know how these parameters vary across observations. All we know is that they vary 
according to the population PDF g(βi|θ |) where θ represents the moments of the distribution such as the mean 
and the variance, which must be estimated. A fully parametric model arises once g(βi|θ |) and the distribution 
of ǫ are specified.

For simplicity in notation, assume that the coefficient vector is independent normal distributed, so that 
βk ∼ N

(

βk , σ
2
k

)

 for the k-th element in i. Note that each coefficient can be written as βki = βk + σkωi where wi ∼ 
N(0, 1), or in vector form as βi = β + Lωi , where L is a diagonal matrix that contains the standard deviation 
parameters, σk . All the information about the individual heterogeneity for each individual attribute is captured 
by the standard deviation parameter σk . If σk = 0, then the model is reduced to the fixed parameter model, but if 
it is indeed significant then it would reveal that the relationship between xitk and yit is heterogeneous and focus-
ing just on the central tendency k alone would veil useful information. It is useful to note that the random effect 
model is a special case in which only the constant is random.

Some measures of goodness-of-fit including Log-Likelihood and Akaike Information Criterion (AIC) were 
used to find the best fitted model. The best fitted model that displayed the maximum value of the log-likelihood 
function was chosen to obtain the parameter estimates that made the data most likely. AIC value was used to 
compare the performances of the GLMs. The preferred model is the one with the minimum AIC value. The AIC 
value can be evaluated using:

where k = The number of estimated parameters in the model, L = The maximum value of the likelihood function 
for the model.

AIC = 2k− 2ln (L)

Figure 4.  Sequence of signal timing events showing decrease in PET for phase 1.
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The Bayesian Information Criterion (BIC) values were also calculated to conclude the best model that 
describes the relationship between each crash type and the explanatory variables. The AIC introduces a penalty 
term that is represented by the parameter number in the AIC. The BIC introduces the penalty term as a combi-
nation between the parameter number and sample  size30.

Random parameter ordered logit model with observed heterogeneity. This extension of the 
ordered logit model, allows the coefficients to be corelated. The covariance matrix of the random parameters 
can be shown as LLT =

∑

 , where L is a lower triangular matrix. If 
∏

 is a matrix of parameters, si is a vector of 
covariates not varying in time and ω ∼ N(0, 1) , the parameter vector, its mean and covariance can be written as

Results
The results from the Random Parameter Logit Model and that with heterogeneity are shown in Table 3 and the 
conclusions are presented in the subsections. It is important to note here that the signal times are modelled as 
a countdown timer. For example, a yellow time of 4 s means that the signal state is currently yellow and has 4 s 
remaining. The reason the authors decided to model the signal timings as a countdown timer is that most of the 
times the drivers would try to speed up or slow down to comply with the end of the signal timings. Since AIC 
is used for selecting prediction model and BIC is used for model  explanation31, the authors have chosen the 
appropriate model based on BIC values. The model with heterogeneity in means had better BIC values except 
for yellow time. Thus, the random parameter ordered logit model is suggested for yellow time and that with 
heterogeneity in means is suggested for all other signal times. The signs of the different variables were identical 
in both the models.

It was seen that the random parameters models performed better than the fixed effects models as the AIC 
and BIC values of the random parameter models were much lower than those of the fixed effects models. The 
study evaluated the effect of signal times on PET levels. Thus, five models for different signal times (yellow, all 
red, red clearance, red and green) were performed to ascertain its effects on PETs. As mentioned before, PETs 
less than 1 was indicated as level 1, and the data had five levels of PET, with PET values ranging from 0.3 s to 
4.97 s. Other independent variables in the models were the different phases for the signal cycle, phase 1 through 
8, where phases 2,4,6,8 were for through and right turn and phases 1,3,5,7 were left turning ones. In summary, 
the negative signs of the coefficients in Table 3 reduce PET levels (increases conflict severity) while positive signs 
increase PET levels (decreases conflict severity).

PET for intersection. PET values also have different effects when vehicles are inside the intersection verses 
when they were at the approach. It can be seen that for the models of red clearance, red and green timings, the 
intersection indicator variable was significant and the coefficient being negative indicates that in intersections 
the PET levels are in general low meaning the vehicles have tendency to maintain small gaps between them, 
which can in turn be a risky situation.

Yellow time vs PET. The overall yellow time is positively related to the different PETs. The lower the yellow 
time, the lower the PET which shows that the vehicles tend to follow each other closely towards the end of the 
yellow phase. The variable phase 5 shows that when the yellow for this phase is active, there are low PETs. This 
essentially indicates a probable issue with the length of the yellow time. The other phases that came out to be 
significant have the opposite relationship and can be interpreted to be safer.

All red time vs PET. All red time is negatively correlated to PET. This shows that the vehicles that enter 
the intersection at the end of yellow have lower PET since they are essentially trying to clear the intersection. 
Together with the yellow time and all red time, it can be concluded that there are lower PETs at the boundary of 
yellow and all red time. The variables phase 1 and phase 3 have negative sign meaning that when the all red of 
these phases are active, there are lower PETs resulting in an unsafe state. This also helps to conclude the visualiza-
tion in Fig. 2, where we see a snapshot of the traffic state for phase 1 at all red time of 1.8 s.

Red clearance time vs PET. The red clearance time was not significant in the model but from the indi-
vidual red clearance time per phase it is noted that the relationship is negative meaning that each of the clearance 
times experience lower PET. This can also be noted as a potential safety condition that will require careful signal 
timing optimization. Almost all phases except phase 1, were found to be significant.

Red time, green time vs PET. It can be seen that increase green signal times of a cycle have positive signs 
indicating potential for increasing PET level. Which in turn signifies that increase in these timings have potential 
to increase PET values between vehicles and increasing safety by reducing probability of conflict leading to rear 
end crashes. On the other hand, increase in red times, influences the PET levels to decrease meaning that the 

βi = β +
∏

si + Lωi

E(βi) = β +
∏

si + LE(ω) = β +
∏

si

VAR(βi) = E(Lω(ωL)T ) = LE(ωωT )LT = LLT =
∑
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Yellow time

Random parameters ordered logit models Random parameters ordered logit model with heterogeneity in means

Coefficients: Estimate Odds ratio Std. error z-value Pr( >|z|) Coefficients: Estimate Odds ratio SE z-value Pr( >|z|)

No. of Obs = 2955, Log Likelihood = − 3667, AIC = 7361, BIC = 7445 No. of Obs = 2955, Log Likelihood = − 3658, AIC = 7351, BIC = 7459

Constant 4.685 – 0.884 5.301 0*** Constant 4.603 0.824 5.584 0.000***

Distance − 0.175 0.839 0.048 − 3.661 0*** Distance − 0.198 0.820 0.050 − 3.979 0.000***

Yellow 0.151 1.163 0.035 4.359 0*** Mean: yellow 0.104 1.109 0.043 2.434 0.015*

SD: yellow 0.363 1.437 0.031 11.528 0.000***

Phase 3 0.728 2.071 0.321 2.269 0.023* Phase 3 1.257 3.513 0.299 4.196 0.000***

Phase 5 − 0.897 0.408 0.474 − 1.893 0.058 Phase 5 − 0.461 0.631 0.337 − 1.367 0.172

Phase 6 2.004 7.416 0.55 3.641 0*** Phase 6 3.262 26.093 0.808 4.035 0.000***

Phase 7 1.444 4.238 0.288 5.022 0*** Phase 7 1.650 5.205 0.362 4.552 0.000***

Phase 8 2.032 7.628 1.005 2.022 0.043* Phase 8 2.190 8.940 0.733 2.989 0.003**

Mean. volume 0.01 1.01 0.013 0.745 0.456 Mean. volume 0.022 1.023 0.013 1.782 0.075

SD volume 0.056 1.058 0.003 18.97 0*** SD volume 0.051 1.052 0.002 24.037 0.000***

Heterogeneity in mean: 
volume * yellow − 0.001 0.999 0.002 − 0.707 0.480

Kappa.1 3.853 – 0.117 32.892 0*** Kappa.1 3.862 – 0.115 33.700 0.000***

Kappa.2 5.298 – 0.13 40.651 0*** Kappa.2 5.339 – 0.130 41.144 0.000***

Kappa.3 7.004 – 0.15 46.577 0*** Kappa.3 7.080 – 0.151 46.880 0.000***

All red time

No. of Obs = 805, Log Likelihood = − 683.8, AIC = 1399.564, BIC = 1474.618 No. of Obs = 805, Log Likelihood = − 651.1, AIC = 1342, BIC = 1435

Constant 14.475 – 1.162 12.451 0*** Constant 13.571 1.199 11.319 0.000***

Speeding prop 3.956 52.274 0.732 5.404 0*** Speeding_prop 5.040 154.526 0.563 8.949 0.000***

All red − 0.558 0.572 0.124 − 4.515 0*** Mean. all_red 0.172 1.188 0.129 1.333 0.183

SD. all_red 1.252 3.496 0.111 11.285 0.000***

Distance 0.111 1.117 0.054 2.044 0.041*

Phase 1 − 2.573 0.076 0.57 − 4.514 0*** Phase 1 − 1.843 0.158 0.568 − 3.244 0.001**

Phase 2 3.644 38.238 0.605 6.027 0*** Phase 2 1.792 6.001 0.410 4.374 0.000***

Phase 3 − 1.262 0.283 0.573 − 2.202 0.028* Phase 3 − 2.431 0.088 0.482 − 5.040 0.000***

Phase 4 4.986 146.288 1.332 3.743 0*** Phase 4 1.133 3.105 0.944 1.200 0.230

Phase 5 4.196 66.43 1.122 3.739 0*** Phase 5 1.593 4.917 0.598 2.665 0.008**

Phase 7 4.058 57.855 0.861 4.711 0*** Phase 8 − 2.607 0.074 1.067 − 2.444 0.015*

Mean. volume − 0.089 0.915 0.018 − 5.022 0*** Volume − 0.074 0.929 0.013 − 5.742 0.000***

SD volume 0.117 1.124 0.007 15.714 0*** mean. intersection 7.445 1711.371 1.370 5.435 0.000***

SD intersection 4.824 124.454 0.322 14.999 0.000***

Heterogeneity in mean: 
intersection.all_red − 2.648 0.071 0.396 − 6.684 0.000***

Kappa.1 4.96 – 0.438 11.316 0*** Kappa.1 5.22277 – 0.44709 11.682 0.000***

Kappa.2 8.259 – 0.515 16.039 0*** Kappa.2 8.71902 – 0.54801 15.91 0.000***

Kappa.3 11.026 – 0.596 18.487 0*** Kappa.3 11.38398 – 0.61409 18.538 0.000***

Red clearance

No. of Obs = 6785, Log Likelihood = − 8881, AIC = 19,792, BIC = 19,915 No. of Obs = 6785, Log Likelihood = − 8956, AIC = 17,952, BIC = 18,088

Constant 8.072 – 0.574 14.058 0*** Constant 7.327 0.418 17.511 0.000***

Speeding prop 0.421 1.523 0.159 2.654 0.008** Speeding_prop 0.156 1.169 0.167 0.933 0.351

Distance − 0.155 0.856 0.023 − 6.672 0*** Distance − 0.158 0.854 0.024 − 6.544 0.000***

Red clearance 0.033 1.033 0.023 1.443 0.149 Mean. red_clearance 0.034 1.034 0.028 1.225 0.220

SD. red_clearance 0.513 1.671 0.021 23.887 0.000***

Intersection − 0.338 0.714 0.084 − 4.003 0*** Mean. intersection 1.825 6.200 0.297 6.138 0.000***

SD. intersection 1.646 5.186 0.091 18.054 0.000***

Phase 1 − 0.701 0.496 0.413 − 1.696 0.09 Phase 1 − 0.618 0.539 0.395 − 1.565 0.118

Phase 2 − 1.03 0.357 0.209 − 4.937 0*** Phase 2 − 0.701 0.496 0.138 − 5.088 0.000***

Phase3 − 1.821 0.162 0.605 − 3.01 0.003** Phase 3 − 1.437 0.238 1.380 − 1.041 0.298

Phase 4 − 5.175 0.006 0.703 − 7.36 0*** Phase 4 − 4.856 0.008 0.629 − 7.726 0.000***

Phase 5 − 3.126 0.044 0.329 − 9.492 0*** Phase 5 − 2.391 0.092 0.203 − 11.804 0.000***

Phase 6 − 1.471 0.23 0.23 − 6.402 0*** Phase 6 − 0.820 0.441 0.192 − 4.272 0.000***

Phase 7 − 1.488 0.226 0.218 − 6.82 0*** Phase 7 − 1.528 0.217 0.174 − 8.775 0.000***

Phase 8 − 1.106 0.331 0.319 − 3.466 0.001*** Phase 8 − 1.728 0.178 0.389 − 4.447 0.000***

Continued
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increase in these timings have potential to decrease the PET. This is expected since as red time is increased, the 
vehicles are stopped at the approach and therefore have no conflicts.

Speeding proportion vs PET. Increase of speed of the vehicle also leads to an increase in PET. The speed-
ing proportion is calculated for the leading vehicle and as such once this vehicle speeds, the distance between 
interacting vehicles increases thus increasing PET.

Odds ratio. Standard interpretation of the ordered logit coefficient is that for a one unit increase in the pre-
dictor, the response variable level is expected to change by its respective regression coefficient in the ordered log-

Red clearance

Mean. volume − 0.001 0.999 0.01 − 0.063 0.95 Volume 0.005 1.005 0.004 1.388 0.165

SD volume 0.042 1.043 0.002 25.986 0***

Heterogeneity in mean: 
intersection.red_clearance − 0.532 0.071 − 7.533 0.000***

Kappa.1 3.514 – 0.083 42.558 0*** Kappa.1 3.456 – 0.080 43.082 0.000***

Kappa.2 4.85 – 0.089 54.498 0*** Kappa.2 4.754 – 0.086 55.066 0.000***

Kappa.3 6.514 – 0.098 66.606 0*** Kappa.3 6.380 – 0.095 67.419 0.000***

Red time

No. of Obs = 7112, Log Likelihood = − 10,150, AIC = 20,334, BIC = 20,451 No. of Obs = 7112, Log Likelihood = − 10,130, AIC = 20,301, BIC = 20,432

Constant 4.198 – 0.222 18.95 0*** Constant 4.982 0.284 17.577 0.000***

Speeding prop 1.398 4.049 0.105 13.264 0*** Speeding_prop 1.471 4.354 0.117 12.545 0.000***

Distance 0.096 1.101 0.011 9.036 0*** Distance 0.104 1.110 0.011 9.114 0.000***

Red − 0.004 0.996 0.001 − 7.579 0*** Mean. red − 0.014 0.986 0.003 − 5.666 0.000***

SD. red 0.007 1.007 0.001 7.238 0.000***

Intersection − 1.043 0.352 0.07 − 14.912 0*** Intersection − 1.101 0.333 0.078 − 14.075 0.000***

Phase 2 0.371 1.45 0.089 4.158 0*** Phase 2 0.429 1.535 0.095 4.531 0.000***

Phase 4 0.639 1.894 0.163 3.921 0*** Phase 4 0.617 1.853 0.176 3.504 0.000***

Phase 5 − 0.245 0.783 0.134 − 1.826 0.068*

Phase 6 0.652 1.92 0.134 4.868 0*** Phase 6 0.769 2.158 0.142 5.432 0.000***

Mean. volume − 0.011 0.989 0.002 − 4.674 0*** Mean. volume − 0.023 0.977 0.004 − 6.216 0.000***

SD volume 0.013 1.013 0.003 4.616 0*** SD volume 0.014 1.015 0.003 4.622 0.000***

Heterogeneity in mean: 
volume.red 0.0002 1.000 0.000 4.212 0.000***

Kappa.1 2.4 – 0.084 28.496 0*** Kappa.1 2.568 – 0.108 23.883 0.000***

Kappa.2 3.659 – 0.122 30.101 0*** Kappa.2 3.920 – 0.159 24.668 0.000***

Kappa.3 4.859 – 0.157 30.943 0*** Kappa.3 5.197 – 0.206 25.172 0.000***

Green time

No. of Obs = 62,416, Log Likelihood = − 91,730, AIC = 183,497, BIC = 183,651 No. of Obs = 62,416, Log Likelihood = − 91,730, AIC = 183,449, BIC = 183,631

Constant 4.767 – 0.092 51.701 0*** Constant 4.870 0.111 43.990 0.000***

Speeding prop 0.85 2.34 0.033 25.571 0*** Speeding_prop 0.856 2.353 0.033 25.624 0.000***

Distance − 0.082 0.921 0.005 − 14.983 0*** Distance − 0.082 0.921 0.005 − 15.020 0.000***

Green 0.019 1.02 0.001 28.633 0*** Mean. green 0.015 1.015 0.002 6.178 0.000***

SD. green 0.000 1.000 0.001 0.205 0.837

Intersection − 0.272 0.762 0.016 − 16.767 0*** Intersection − 0.273 0.761 0.016 − 16.785 0.000***

Phase 2 − 0.265 0.767 0.027 − 9.951 0*** Phase 2 − 0.254 0.776 0.027 − 9.301 0.000***

Phase 4 − 0.922 0.398 0.05 − 18.607 0*** Phase 4 − 0.897 0.408 0.051 − 17.507 0.000***

Phase 5 0.146 1.157 0.046 3.202 0.001** Phase 5 0.166 1.181 0.047 3.525 0.000***

Phase 6 − 0.641 0.527 0.035 − 18.238 0*** Phase 6 − 0.642 0.526 0.035 − 18.245 0.000***

Phase 7 0.174 1.19 0.032 5.374 0*** Phase 7 0.176 1.193 0.032 5.440 0.000***

Phase 8 − 0.606 0.546 0.039 − 15.69 0*** Phase 8 − 0.594 0.552 0.039 − 15.112 0.000***

Mean. volume − 0.001 0.999 0.001 − 1.206 0.228 Mean. volume − 0.003 0.997 0.001 − 2.037 0.042*

SD volume 0.006 1.006 0.001 4.394 0*** SD volume 0.006 1.006 0.001 4.484 0.000***

Heterogeneity in mean: 
volume. green 0.0001 1.000 0.000 1.665 0.096

Kappa.1 2.511 – 0.024 103.157 0*** Kappa.1 2.512 – 0.024 102.981 0.000***

Kappa.2 3.531 – 0.032 110.856 0*** Kappa.2 3.533 – 0.032 110.595 0.000***

Kappa.3 4.712 – 0.041 115.072 0*** Kappa.3 4.715 – 0.041 114.763 0.000***

Table 3.  Models for PET levels on signal timing.
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odds scale while the other variables in the model are held constant. Thus, we calculate Odds ratio. Odds Ratios 
can be obtained by exponentiating the ordered logit coefficients, ecoef . For a one unit change in the predictor 
variable, the odds for cases in a group that is greater than k versus less than or equal to k are the proportional 
odds times larger, where k is the level of the response variable. Therefore, as the coefficients of all red and red 
timings were negative, with one unit increase in all red and red (when other variables are constant), the odds of 
low PET meaning high risk values are 1.188 and 0.986 times larger respectively. So, for yellow, red clearance and 
green timings, as these coefficients are positive, with one unit increase in yellow, red clearance and green timings 
(when other variables are constant in each of the models), the odds of values in high PET meaning low risk levels 
are 1.109, 1.034 and 1.015 times larger respectively. This leads to an important conclusion regarding improving 
the PETs at intersections. Increasing the yellow, red clearance and green timings would lead to better PETs than 
increasing all red and red time. Since the data collected was during the afternoon peak, it might also be impactful 
to increase yellow and red clearance time for these periods only rather than for the entire length of day.

Heterogeneity analysis. From Table 3, yellow time was found to be significant normally distributed ran-
dom parameters with mean of 0.014 and standard deviation of 0.363. Therefore, larger yellow times are associ-
ated with higher PET levels meaning less critical conflicts. Intersection variable is also normally distributed with 
a mean of 7.445 and standard deviation of 4.824. This means that vehicles within an intersection are more likely 
to be associated with higher levels of PET during all red time. An intersection is a less critical conflict location 
than an approach during all red time. The same can be said about red clearance time since the intersection vari-
able was also statistically significant with a mean of 1.8 and standard deviation of 1.6. Red time was also signifi-
cant with a mean of − 0.014 and standard deviation of 0.007. Therefore, more critical conflicts are noticed at the 
start of red time. This is expected since at the start of red time, the vehicles slow down and come to a complete 
stop. Therefore, no unsafe PET levels are observed at the end of red time. The volume variable was also signifi-
cant during red time (mean − 0.023, standard deviation 0.014). Higher volumes during red time are related to 
lower PET levels giving rise to more critical conflicts. Similarly, higher volume during green time also results in 
more critical conflicts (mean − 0.003 and standard deviation 0.006). The volume was not significant during the 
yellow, red clearance and all red time but was significant during the longer durations such as green and red time.

Conclusions
In summary, this paper proposes the use of UAV vehicle trajectory data to identify the relationship between signal 
timing and PET. One hour of UAV data was collected to obtain PETs, speeding, heading and signal phasing and 
timing. The PETs were calculated using rotating bounding boxes and also using the back of the leading vehicle 
and front of the lagging vehicle which gives a much accurate PET than that using center points of the vehicles. It 
was then modelled using Random Parameter Ordered Logit Model with heterogeneity in means. The PET values 
were divided into five classes. Results from the model showed that the yellow time and red clearance time are 
negatively related with PET while all red time, red time and green time are positively related to PET. The odds 
ratio indicated that it would be possible to increase the PET levels and thereby improve safety by only increasing 
the yellow time and red clearance time by 1 s. The practical application of this study can be achieved in signal 
timing optimization. Usually, the various times are decided based on traffic volume and intersection geometry 
only. Safety remains largely disregarded. Using the results from this study, the signal timing can be optimized 
based on safety parameters also so that less conflicts are expected.

This study can be used to understand the safety of an intersection in terms of signal timing. Following distance 
was calculated to indicate aggressive driving behavior and how it varies with the different phases. The results 
showed that drivers tend to follow closely during the end of yellow and during all red time. It can also assist in 
determining if signal retiming is warranted to help improve safety. Only an hour of video data processing has the 
potential to provide these insights to relevant authorities. Future studies can focus on the traffic dynamic features 
as well as different types of intersections to understand the relationship between surrogate safety measures and 
signal timing. Moreover, other measures of conflicts such as time to collision (TTC), modified time to collision 
(MTTC), deceleration rate to avoid a crash (DRAC), etc. can also be studied.

Data availability
The datasets used during the current study are available on GitHub: https:// github. com/ ozhen g1993/ UCF- SST- 
CityS im- Datas et.
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