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Comparison of Oxford Nanopore 
Technologies and Illumina 
MiSeq sequencing with mock 
communities and agricultural soil
Bo Maxwell Stevens 1, Tim B. Creed 2, Catherine L. Reardon 3 & Daniel K. Manter 2*

Illumina MiSeq is the current standard for characterizing microbial communities in soil. The newer 
alternative, Oxford Nanopore Technologies MinION sequencer, is quickly gaining popularity because 
of the low initial cost and longer sequence reads. However, the accuracy of MinION, per base, is 
much lower than MiSeq (95% versus 99.9%). The effects of this difference in base-calling accuracy on 
taxonomic and diversity estimates remains unclear. We compared the effects of platform, primers, 
and bioinformatics on mock community and agricultural soil samples using short MiSeq, and short and 
full-length MinION 16S rRNA amplicon sequencing. For all three methods, we found that taxonomic 
assignments of the mock community at both the genus and species level matched expectations 
with minimal deviation (genus: 80.9–90.5%; species: 70.9–85.2% Bray–Curtis similarity); however, 
the short MiSeq with error correction (DADA2) resulted in the correct estimate of mock community 
species richness and much lower alpha diversity for soils. Several filtering strategies were tested 
to improve these estimates with varying results. The sequencing platform also had a significant 
influence on the relative abundances of taxa with MiSeq resulting in significantly higher abundances 
Actinobacteria, Chloroflexi, and Gemmatimonadetes and lower abundances of Acidobacteria, 
Bacteroides, Firmicutes, Proteobacteria, and Verrucomicrobia compared to the MinION platform. 
When comparing agricultural soils from two different sites (Fort Collins, CO and Pendleton, OR), 
methods varied in the taxa identified as significantly different between sites. At all taxonomic levels, 
the full-length MinION method had the highest similarity to the short MiSeq method with DADA2 
correction with 73.2%, 69.3%, 74.1%, 79.3%, 79.4%, and 82.28% of the taxa at the phyla, class, 
order, family, genus, and species levels, respectively, showing similar patterns in differences between 
the sites. In summary, although both platforms appear suitable for 16S rRNA microbial community 
composition, biases for different taxa may make the comparison between studies problematic; and 
even with a single study (i.e., comparing sites or treatments), the sequencing platform can influence 
the differentially abundant taxa identified.

The current standard for characterizing microbiomes is the Illumina MiSeq sequencing platform, which pro-
duces 16S rRNA reads up to 300 bp, and around 550 bp if forward and reverse reads are joined. Conversely, the 
Oxford Nanopore Technologies (ONT) MinION sequencer can potentially sequence more than 200,000 base 
 pairs1. The main concern for using MinION sequencing is the lower base-calling accuracy, which is currently 
estimated around 95% compared to 99.9% for  MiSeq1. However, continuous improvements are expected to 
improve accuracy substantially. The accuracy has increased to 96.5%, up from 65% when the MinION sequencer 
was first  released2. Initial comparisons of these technologies indicate that MinION may be as good as, or better 
than MiSeq for taxonomic resolution at the genus and species  level3. The accuracy of taxonomic assignment at 
the species level is considered to be low for both  technologies4; however, the recent release of a new expecta-
tion–maximization algorithm-based classifier (Emu) may improve species level classification; particularly for 
full-length rRNA  sequences5.

Bias and errors are introduced at many steps throughout the data production and analysis pipeline. Different 
DNA extraction methods and primer selection can have effects on the relative abundance of  microbes6,7; high 
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GC contents may reduce PCR  efficiency8. PCR conditions such as annealing and denaturation time can have an 
impact on taxonomic  output9. Furthermore, the reference database used for identification will also influence 
taxonomic assignments for both MiSeq and  MinION3.

Bioinformatic methods are still in development for the MinION sequencer. Throughout the history of MiSeq 
sequencing, continuous improvements have been made to the bioinformatics pipeline, resulting in the removal 
of spurious sequences that artificially inflated estimates of alpha  diversity10–13. Previously, sequences were clus-
tered into operational taxonomic units (OTUs) using a similarity threshold (e.g., 99%), to minimize sequencing 
artifacts. Filtering thresholds based on abundance data have been used to remove rare OTUs that are typically 
associated with PCR and sequencing  errors14,15. Currently, denoising techniques provide the best methods to 
estimate richness of microbial communities. QIIME2 with DADA2 provides the best estimate of richness, based 
on sequencing of complex mock  communities13,16. Unfortunately, DADA2 is not available for MinION  output10.

The purpose of this study was to compare the results of the MiSeq and MinION sequencers. Specifically, we 
wanted to examine if the sequencing platform influences: (1) estimates of species richness, (2) relative abundances 
of specific taxa, and (3) interpretations or comparisons between different sites. Because the typical protocol for 
each platform utilizes different sequencing primers and bioinformatics; we generated sequencing libraries using 
typical 16S rRNA protocols for each platform (i.e., full-length with MinION and V3–V4 region with MiSeq) and 
under conditions as similar as possible (e.g., V34 rRNA primers on both platforms).

Methods
Study sites. Soils were collected from two different sites (ARDEC: Colorado State University’s Agricultural 
Research, Development and Education Center in Fort Collins, CO; and CPCRC: USDA Columbia Plateau Con-
servation Research Center in Pendleton, OR). At each site, four replicate plots of no-till corn (ARDEC) or no-till 
annual wheat (CPCRC) were sampled. At ARDEC, the soils are clay loam and CPCRC the soils are Walla Walla 
silt loams (fine-loamy, mesic Aridic Haplustalls). For each plot, six 1″ diameter cores (15 cm deep) were sampled 
near plant crowns, composited in resealable plastic bags and stored on ice in coolers until transfer to the labora-
tory (less than 30 min). Once in the laboratory, the soils were homogenized by hand, sieved to 4 mm, and stored 
in the freezer (− 20 °C) until DNA extraction. Prior to freezing, subsamples (~ 5 g) were removed from each 
sample to measure gravimetric soil water content.

DNA extraction. DNA was extracted from three replicate 0.25 g soil samples from each plot using the Qia-
gen DNeasy Powersoil Pro Kit (Qiagen, Germantown, MD). The extraction process was carried out using a fully 
automated Qiagen QIAcube robot with a 10-min vortex lysis step. DNA quality was assessed using a Nanodrop 
1000 (Thermo Scientific, Waltham, MA) and quantified fluorometrically with the Invitrogen dsDNA HS Assay 
Kit on a Qubit 2.0 (Life Technologies, Carlsbad, CA).

Library preparation. PCR amplifications were performed on each DNA sample using two different 16S 
rRNA gene primer pairs. The first primer pair, 341F/806R17, targets the V3-V4 region of the 16S gene and was 
used for both platforms. The second primer pair, 27F/1492R, targets the full-length 16S rRNA gene and was only 
used on the ONT MinION platform (Table 1).

ONT MinION PCR conditions and library preparation. Extracted DNA samples were amplified in 
60 µL PCR reactions containing 30 µL Phusion HSII (Thermo Scientific) master mix, 0.6 µL of each forward 
and reverse primer (10 µM concentration), 21.6 µL molecular grade  H2O, and 6 µL soil DNA diluted 1:20 with 
nuclease-free water. Reactions were held at 98 °C for 30 s, with amplification proceeding for 25 cycles at 98 °C for 
15 s, 50 °C for 15 s, and 72 °C for 60 s with a final extension at 72 °C for 5 min. The PCR products (PCR1) were 
purified using AMPure XP beads (Beckman Coulter, Indianapolis, IN).

Unique barcodes (EXP-PBC096, ONT, Oxford, UK) were added to both ends of the DNA fragments by PCR. 
These were 50 µL PCR reactions containing 25 µL Phusion HSII master mix, 19 µL  H2O, 1 µL of forward/reverse 
barcodes, and 5 µL PCR1 product diluted 1:10 with nuclease-free water. Reactions were held at 98 °C for 30 s, with 

Table 1.  Summary of platforms and bioinformatics methods compared in this study. 1 Adapters are in italics; 
gene-specific primers are underlined.

Method Platform Adapter/Primer1 Target Classifier Error-correction

MinION V34 ONT MinION
341F: TTT CTG TTG GTG CTG ATA TTGC  CCT ACG GGNGGC WGC AG

V3–V4 minimap2 EMU
806R: ACT TGC CTG TCG CTC TAT CTTC  GGA CTA CHVGGG TAT CTA ATC C

MinION Full ONT MinION
27F: TTT CTG TTG GTG CTG ATA TTGC  AGR GTT YGATYMTGG CTC AG

Full-length minimap2 EMU
1492R: ACT TGC CTG TCG CTC TAT CTTC  TAC CTT GTT ACG ACTT 

MiSeq V34 Illumina MiSeq
341F: TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG  CCT ACG GGNGGC WGC AG

V3–V4 minimap2 EMU806R: GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACAG  GGA CTA CHVGGG TAT 
CTA ATC C

MiSeq V34 DADA2 Illumina MiSeq
341F: TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG  CCT ACG GGNGGC WGC AG

V3–V4 minimap2 DADA2806R: GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACAG  GGA CTA CHVGGG TAT 
CTA ATC C
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amplification proceeding for 15 cycles at 98 °C for 15 s, 62 °C for 15 s, and 72 °C for 60 s; a final extension at 72 °C 
for 5 min. The barcoded products of this PCR reaction were purified a second time using AMPure XP beads.

Barcoded amplicons from all samples were pooled and prepared for sequencing using the SQK-LSK109 
Ligation Sequencing Kit (ONT). The library was loaded on a MinION flow cell FLO-MIN106D-R9 (ONT) per 
manufacturers’ protocol and sequencing was started with a runtime of 48 h and voltage of − 180 V. All libraries 
included no template  (H2O-only) negative controls and a mock community (ZymoBIOMICS Microbial Com-
munity DNA Standard D6305; Zymo Research, Irvine CA).

MiSeq PCR conditions and library preparation. Extracted DNA was amplified in triplicate, in 20 µL 
PCR reactions containing 10 µL Maxima SYBR-green (Thermo Scientific), 2 µL of each forward and reverse 
primer (10 μL concentration), 4 µL molecular grade  H2O, and 2 µL soil DNA diluted 1:20 with nuclease-free 
water. Reactions were held at 95 °C for 5 min, with amplification proceeding for 28 cycles at 95 °C for 40 s, 55 °C 
for 120 s, and 72 °C for 60 s; a final extension at 72 °C for 7 min. Thermocycling was performed with a Roche 
96 Lightcycler (Roche, Indianapolis, IN). The products of the triplicate PCR reactions were pooled and purified 
using AMPure XP beads.

Nextera XT barcode sequences (Illumina, San Diego, CA) were added to both ends of the DNA fragments 
by PCR using 50 µL PCR reactions containing 25 µL Maxima SYBR-green, 10 µL  H2O, 5 µL of each forward and 
reverse barcode (5 µM concentration), and 5 µL of sample PCR1 product. Reactions were held at 95 °C for 3 min, 
with amplification proceeding for 8 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s; a final extension 
at 72 °C for 5 min. The barcoded products of this PCR reaction were purified a second time using AMPure XP 
beads. Barcoded amplicons from all samples were pooled and sequenced on an Illumina MiSeq instrument at 
Colorado State University using an Illumina MiSeq v3 600-cycle Kit with 25% PhiX spike-in (Illumina).

Bioinformatics and sequence processing. Emu MinION and Emu MiSeq. Sequences generated on 
the MinION platform were base-called and demultiplexed using Guppy v6.0.1 (ONT). Except were otherwise 
noted, default parameters were used. Sequences were filtered based on length (V34: 300–600 bp; Full: 1000–
2000 bp) and a minimum q-score of 70 using Filtlong v0.2.118 and Cutadapt v3.219. Chimeras were filtered using 
 vsearch20, and taxonomy was assigned with minimap2 v2.2221. Error-correcting was done with Emu v3.0.05, us-
ing default parameters (–min-abundance = 0.0001, –N = 50, –K = 500 MB, –keep-counts = FALSE), which applies 
an expectation minimization algorithm to adjust taxonomic assignments using up to 50 sequence alignments 
per sequence read.

Paired forward and reverse MiSeq reads were joined using PEAR v0.9.822. Sequences were then filtered based 
on length (V34: 300–600 bp) and a minimum quality score of 70 using Filtlong v0.2.118 and Cutadapt v3.219. 
Chimeras were filtered using vsearch UCHIME v2.13.320, taxonomy was assigned with minimap2 and error-
corrected with Emu v3.0.05.

For  DADA223 MiSeq, all primers were removed from demultiplexed raw fastq files using Cutadapt v3.219 
and amplicon sequence variants were inferred using the default pipeline in DADA2. Each sequence variant was 
classified to the default NCBI-linked reference database available from the Emu v3.0.0 website (https:// gitlab. 
com/ trean genlab/ emu) using minimap2 v2.2221 and the primary alignment for each sequence was chosen with 
SAMtools v1.924 and used for taxonomic assignments. One phylum of bacteria has not been assigned a name, 
and is reported as “p_of_Bacteria.” All downstream data analyses were performed on taxonomic abundance 
tables following classification using the rank level(s) defined below.

Data analysis. Total library sizes were as follows: MinION Full 1,695,436 total sequence reads with an aver-
age of 66,843 reads per sample; MinION V34 2,318,235 total sequence reads with an average of 96,730 reads per 
sample; and MiSeq V34 2,111,798 total sequence reads with an average of 83,345 reads per sample (Table 2). 
Therefore, prior to calculating alpha diversity (i.e., species richness) estimates all samples were rarefied to 50,000 
reads. Principal Coordinates Analysis (PCoA) was performed using Bray–Curtis distances (BC) calculated from 
square root-transformed, genus-level relative abundances, and significant differences between platforms and/or 
sites were tested using adonis in the vegan package for  R25. Figure 3 was constrained by both platform and site. 
Differential abundances were tested using either the DESeq2 package or Wilcoxon test in the metacodeR pack-
age using a false discovery rate < 0.0526.

Table 2.  Summary data of sequencing results from the four platform and bioinformatics pipelines (MinION 
Full, MinION V34, MiSeq V34, and MiSeq V34 DADA2). Similarity was calculated with Bray–Curtis against 
the expected Zymo mock community. F statistics are shown for perMANOVA results for site differences 
(F Site) with each full dataset, and plot differences (F ARDEC and F Pendleton) for each site subset.subset 
(ARDEC and Pendleton).

Method Reads Mock reads Mock genera Mock species Mock similarity (%) F (Site) F (ARDEC) F (Pendleton)

MinION Full 16,95,435 55,747 18 75 85.2 134.0 2.54 5.14

MinION V34 23,18,234 1,16,705 90 284 74.4 109.0 2.20 3.67

MiSeq V34 21,11,798 91,138 48 145 73.6 151.0 2.90 6.88

MiSeq DADA2 NA NA 8 8 80.9 77.5 1.78 4.50

https://gitlab.com/treangenlab/emu
https://gitlab.com/treangenlab/emu
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Results
Sequencing of the ZymoBIOMICS mock community standard for the MinION Full, MinION V34, and MiSeq 
V34 libraries yielded 55,747, 116,705, and 91,138 high-quality reads (Table 2). Sequences from these libraries were 
classified to 18, 90, 48, and 8 genera or 75, 284, 145, and 8 different species for the MinION Full, MinION V34, 
MiSeq V34, and MiSeq V34 DADA2 pipelines, respectively (Table 2). All eight of the expected ZymoBIOMICS 
bacterial species present in each sample. Despite the extraneous taxa (“Other”) observed in the MinION and 
MiSeq Emu pipelines, the highest Bray–Curtis similarity (1 − BC) to the mock community at the species level 
was observed for the MinION Full (0.852), followed by the MiSeq V34 DADA2 (0.809), MiSeq V34 (0.744), and 
MinION V34 (0.736) (Fig. 1 and Table 2).

For the soil samples from two different agricultural sites (ARDEC, Colorado and Pendleton, Oregon), all 
methods except MinION V34 detected significant differences in species richness estimates; however, methods 
varied greatly in their richness estimates (Fig. 2A). For example, the MinION Full method estimated species 
richness of 762 for ARDEC and 909 for Pendleton with a p-value = 0.002. For the MinION V34, species rich-
ness estimates were 1276 for ARDEC and 1228 for Pendleton with a p-value = 0.748. The MiSeq V34 method 
resulted in 887 species for ARDEC and 1072 species for Pendleton (p-value = 0.001). Applying the DADA2 
pipeline to this same library greatly reduced species richness: 248 species at ARDEC and 307 species at Pendleton 
(p-value = 0.047). Based on the inflated species richness in the non-DADA2 pipelines (> 8 species in the mock 
community and up to fivefold greater richness in the soil samples), we tested the effect of three different filtering 
methods on alpha diversity estimates in the non-DADA2 pipelines. The first method was to (1) remove all species 
below a user-specified relative abundance threshold, the second method employed a permutation-based strategy 
(PERFect R package, Smirnova et al. 2018) using either (2) all samples in each library (i.e., soils and mock com-
munities) or (3) only the soil samples in each library. Iterative testing showed that a relative abundance threshold 
of 0.07% and 1% was necessary to achieve richness estimates that were closest to the MiSeq DADA2 levels for the 
soil and mock communities, respectively (Fig. S1). The threshold (0.07%) filtering approach resulted in similar 
species richness estimates between the filtered and non-filtered DADA2 pipelines with significant differences 
between sites (Fig. 2B); MinION Full: p < 0.001 (mean = 277 ARDEC; 331 Pendleton), MinION V34: p = 0.003 
(266 ARDEC; 292 Pendleton), MiSeq V34: p < 0.001 (244 ARDEC; 270 Pendleton), and MiSeq V34 DADA2: 
p = 0.047 (247 ARDEC; 306 Pendleton). Both permutation methods significantly reduced alpha diversity measure-
ments but still resulted in greater richness estimates than the unfiltered MiSeq V34 DADA2 pipeline (Fig. 2C,D); 
furthermore, significant site differences (p ≤ 0.05) were detected with the MiSeq but not the MinION pipelines.

Genus-level community composition was significantly different between sequencing methods (F = 26.1, 
p = 0.001) and sites (F = 26.1, p = 0.001) based on a perMANOVA and visualized by PCoA (Fig. 3A) for the 
unfiltered data. The sites separated along Axis 1 (32.9%) and platforms (MinION vs MiSeq) separated along Axis 
2 (28.5%). A biplot of phyla relative abundances showed that the MiSeq platform was enriched for Actinobacteria 
as compared to the MinION platform (Fig. 3A). Filtering had little impact on these patterns and perMANOVA 
showed that method and site differences (p = 0.001) were maintained (Fig. 3B–D). Biplots showed that phyla 
abundances showed similar patterns across all filtering methods with Actinobacteria positively correlated and 
Acidobacteria, Bacteroidetes, and Proteobacteria negative correlated with Axis 2  (r2 > 0.5). These patterns were 
confirmed by differential abundance analysis (DESeq2) which showed that the MiSeq platform (relative to the 
MinION) was enriched for Actinobactera, Chloroflexi, and Gemmatimonadetes; whereas, the MinION platform 

Figure 1.  Taxonomic classification at the genus (A) and species (B) level for mock community sequencing 
output from the four platform and bioinformatics pipelines (MinION Full, MinION v34, MiSeq v34, and MiSeq 
V34 DADA2). Taxa not contained in the ZymoBIOMICS standard were grouped into the ‘Other’ category. 
Similarity (Bray–Curtis) between the expected mock community output and the sample is displayed above each 
sample.
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(relative to the MiSeq) was enriched for Acidobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verru-
comicrobia regardless of the bioinformatics pipeline used (Fig. 4). Filtering had no effect on the phyla detected 
as differentially abundant between platforms (data not shown). Differential abundance between sites was also 
tested using the non-parametric Wilcoxon test at all taxonomic levels from Kingdom to Family (Figs. S2–S4). 
Similar patterns were observed to the phyla level DESeq2 in which Actinobacteia, Gemmatimonadetes, and 
Chloroflexi were all enriched with the MiSeq platform. However, at finer taxonomic levels this phyla-level bias 
was not always consistent. For example, when comparing the MinION full to the MiSeq V34 DADA2 method, 
six sub-taxa of the Actinobacteria were lower with the MiSeq platform; consistent trends were also not seen with 
the taxa of the α, δ, and γ-Proteobacteria (Fig. S2).

At the plot level, all methods detected significant site and plot differences (Table 2). All p-values were less than 
0.002 for all tests. Interestingly some of the patterns within a site differed; for example, at Pendleton, plot AW-2 
is the most different for the MinION Full pipeline, whereas AW-3 is the most different for the MiSeq platform 
(Fig. 5). However, very little variation is explained by the second axis (2.9–4.7%).

Ideally, differential abundances of Phyla between the two soils should show the same magnitude and direction 
of change for all methods. However, this was not always the case within this study (Fig. 6). For instance, DESeq 
with unfiltered MinION Full data indicated that Acidobacteria was significantly more abundant in ARDEC, 
whereas MiSeq V34 DADA indicated Acidobacteria was higher in Pendleton, but both MinION V34 and MiSeq 
V34 showed no significant difference between sites (Fig. 6A). After removing species with less than 0.07% rela-
tive abundance, the differential abundance of Acidobacteria was similar between MiSeq V34 and MinION Full, 
but MinION V34 still indicated no significant difference (Fig. 6B). With some exceptions (e.g., Acidobacteria, 
Firmicutes, Planctomycetes, and Proteobacteria), all methods agreed on the direction of significant differences 
of phyla between sites. A more detailed analysis of differential abundance at all taxonomic levels was performed 
using the non-parametric Wilcoxon test of log2 median fold-changes, and results for the Kingdom through Fam-
ily taxonomic levels were visualized with the metacodeR package (Figs. S5–S8). At all taxonomic levels, the full 
MinION method had the greatest agreement with the short MiSeq method with DADA2 correction compared 
to the other methods (Fig. 7). The two methods showed similar patterns in taxa between the two sites at the 
phyla (73.2%), class 69.3%), order (74.1%), family (79.3%), genus (79.4%), and species (82.3%) levels. Only a 
small fraction of taxa exhibited a mismatch between the two methods (i.e., significantly higher at opposite sites 
for each method).

Discussion
Illumina MiSeq and the Oxford Nanopore Technologies MinION sequencing platforms have unique molecular 
methods for determining the sequence of DNA. Although MinION sequencing is a third-generation method with 
strong application in assessing microbial communities, it lacks the well-established bioinformatic methodology 
associated with second-generation MiSeq  sequencing13,16. A previous comparison of dust microbial communities 

Figure 2.  Species richness at two sites for all four sequencing methods and bioinformatics methods (MinION 
Full, MinION V34, MiSeq V34, and MiSeq V34 DADA2) for unfiltered (A), filtered at 0.07% relative abundance 
threshold (B) filtered by permutation using all samples (C), and filtered by permutation using only soil samples 
(D). Data were rarefied to 50,000 reads per sample and asterisks indicate a significant difference between sites 
(p ≤ 0.05). In all panels, the MinION V34 DADA2 method was calculated using unfiltered data only.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9323  | https://doi.org/10.1038/s41598-023-36101-8

www.nature.com/scientificreports/

Figure 3.  PCoA biplot of all four sequencing and bioinformatics methods (MinION Full, MinION V34, MiSeq 
V34, and MiSeq V34 DADA2) for unfiltered (A), filtered at 0.07% relative abundance threshold (B) filtered 
by permutation using all samples (C), and filtered by permutation using only soil samples (D). In all panels, 
the MinION V34 DADA2 method used unfiltered data only. Vectors indicate a significant correlation (r2 > 0.5, 
p < 0.01) between phyla relative abundance and ordination axes. CAP is a constrained axis.

Figure 4.  Relative abundance of the 10 most abundant phyla for all four sequencing bioinformatics methods 
(MinION Full, MinION V34, MiSeq V34, and MiSeq V34 DADA2). Bars with different letters are significant at 
an adjusted p ≤ 0.05 based on DESeq2 analysis with Benjamini–Hochberg correction. All data was unfiltered.
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using these two sequencers suggested that there was generally good agreement between the two methods, with 
differences visible mainly at the genus and species taxonomic  levels3. Up until now, comparisons of these two 
methods have not included mock communities along with complex agricultural soils, nor have they examined 
primer biases and different  bioinformatics3,4. Our study adds to the previous studies by including a mock com-
munity, using similar primers on both platforms (V34 primers), and similar bioinformatics pipelines. Since 
the MiSeq platform with DADA2 error-correction is considered to be the current gold standard for estimating 
microbial community  diversity13, we similarly used this method as our standard for comparison of MinION-
generated data with full length and V3–V4 16S rDNA as well as MiSeq data analyzed with Emu.

Species richness. The two platforms produce similar results with the low diversity, eight bacterial species 
mock community despite differences in the library preparation which were previously optimized for each plat-
form. The MiSeq DADA2 pipeline resulted in no extraneous species; however, the MinION full-length method 
resulted in the closest similarity to the expected mock community composition. However, soil ecosystems have a 
much higher complexity of bacterial community composition with more than 40 phyla represented in a commu-
nity versus the two phyla in the mock community. This complexity was captured to different degrees by the vari-
ous methods tested here and some biases between methods were observed. In general, regardless of the platform, 
sequencing error-corrections algorithms or filtering methods appear to be necessary to remove extraneous DNA 
sequences and correct for over-estimates of alpha-diversity. The MiSeq with DADA2 correction consistently 
resulted in the lowest estimates of richness in soils compared to all other methods in this study.

Because sequencing methods produce experimental artifacts and inflate richness, we evaluated various filter-
ing methods to remove potentially spurious  taxa13,15. We tested both user-defined (relative abundance threshold) 

Figure 5.  PCoA ordinations for each of the four sequencing and bioinformatics methods (MinION Full, 
MinION V34, MiSeq v34, and MiSeq DADA2). Shapes indicate different sites (ARDEC, Colorado and 
Pendleton, Oregon), while colors indicate separate plots within each site. Vectors indicate a significant 
correlation (r2 > 0.8, p < 0.01) between phyla relative abundance and ordination axes. The plot numbers in the 
legend are for internal reference and represent independent plot replicates under similar management at each 
site. CAP is a constrained axis and MDS is unconstrained.
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and permutation filtering methods to remove sequencing errors from soil samples. Assuming that the MiSeq 
DADA2 is the best estimate of soil bacteria richness, as it was for the mock community, only the relative abun-
dance threshold method could result in similar species richness estimates for the other three methods. However, 
the required threshold appears to be dependent upon sample complexity (i.e., different thresholds for the soil 
and mock communities) and requires a user-defined threshold. In this study we were able to iteratively define the 
relative abundance threshold (0.07%) that resulted in similar estimates between methods; however, this will not 
always be possible because it is not feasible to sequence on both platforms for all future studies. This threshold 
will likely be dependent upon sequencing depth and in our case represents a much greater filtering threshold 
than just singletons or doubletons. For example, the 0.07% threshold requires a minimum read count of 47, 68, 
and 58 sequence reads per sample for the MinION full-length (66,843 average reads per sample), MinION V34 
(96,730 average reads per sample), and MiSeq V34 (83,345 average reads per sample) methods. The impact of the 
permutation-based PERFect filtering method varied by method and complexity of the samples in the sequencing 
library. For example, permutation filtering in the MinION full-length was closest to the MiSeq DADA2 pipeline 
only when the controls (ZymoBIOMICS mock community and  H2O controls) were included in the permuta-
tion filtering, whereas, the opposite was true for the MinION V34 pipeline. Diversity estimates for the MinION 
V34 and MiSeq V34 methods were more than three- and two-fold greater than the MiSeq V34 DADA2 pipeline 
regardless of the samples used in the permutation-based method.

Relative abundance. One of the main goals of microbial community sequencing efforts is to also deter-
mine estimates of the abundance of specific taxa in the community. These abundances are frequently used as a 
proxy of microbial processes and soil  functions27. Due to limitations in soil sample size and sequencing depths, 

Figure 6.  Log2 fold-change results from differential abundance (DESeq2) for each of the four sequencing and 
bioinformatics methods (MinION Full, MinION V34, MiSeq V34, and MiSeq DADA2). Each panel is a different 
filtering method: unfiltered (A), filtered at 0.07% relative abundance threshold (B), filtered by permutation using 
all samples (C), and filtered by permutation using only soil samples (D). Teal colors indicate significantly higher 
relative abundances in Pendleton, Oregon, while red indicates significantly higher abundances in ARDEC, 
Colorado. The lack of a point indicates that the test was not significant (false-discovery rate > 0.05).
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comparisons are most frequently made using relative abundances or with normalized abundances. The relative 
abundance of phyla resulting from our various methods reveal that there are inherent biases in the sequencing 
platforms that can be seen at all taxonomic levels. For instance, MiSeq, regardless of bioinformatics method, 
tends to have a higher estimation of Actinobacteria and  Bacteroidetes28. Both high and low GC contents can 
have a negative bias in the MiSeq  platform28; however, as they suggest this is usually a problem in metagenomic 
sequencing and not rRNA sequencing where rRNA GC contents tends to fall within the optimal range (~ 50%). 
A quick analysis of the GC contents in the full-length rRNA reference  database5 used here reveals an overall 
Phylum-specific mean of 55% with a minimum of 48% (Tenericutes) and maximum of 62% (Candidatus Bipo-
laricaulota). Early PCR termination is possible during amplification of GC-rich regions of the rRNA gene during 
library  preparation8. However, all methods used here are reliant upon PCR amplification for library preparation 
and unless new biases are introduced during the MiSeq sequencing step (i.e., sequencing by synthesis) we sug-
gest GC-biases are not likely to be the main driver of the platform differences. Furthermore, we did not see any 
systematic negative biases related to the GC content of ZymoBIOMICS mock community which was specifically 
designed to have a range of GC contents. For example, three of the species with > 50% GC content (Salmonella 
enterica, Limosilactobacillus fermentum, and Pseudomonas aeruginosa) all had higher, not lower, than expected 
frequencies with the MiSeq V34 DADA2 pipeline.

Differential abundance. Another frequent use of microbial community data is to compare differences 
between locations and/or treatments for indicator taxa or changes in relative abundance. Ideally even if taxo-
nomic abundances are biased, these biases would not interfere with the ability to identify relative differences 
between the treatments. Our results indicate that trends in differential abundance between soil sites were mostly 
consistent across sequencing methods with and without filtering; however, exceptions were observed at all tax-
onomic levels. Agreement between the site-level statistical difference was observed for over 70% of all taxa 
regardless of the method used. In previous studies it has been shown that differential abundance analyses are 
sensitive to sparsity (i.e., prevalence of samples with zero abundance)29 and do not always limit the detection of 
false-positives30. Furthermore, relative abundance differences are dependent upon microbial load or the total 
population present in a  sample31. In this study, we compared sequencing analyses obtained from the same DNA 
extracts, so the different results should not arise due to different microbial loads.

Conclusion
The MiSeq and MinION sequencing platforms both appear adequate for the assessment of microbial community 
composition. However, there are trade-offs worth considering which platform to use for a study: MiSeq offers 
a more established bioinformatics pipeline, while the MinION is capable of producing longer reads which may 

Figure 7.  Percent of taxa significantly different between the two sites based on a Wilcoxon test of relative 
abundances. All methods are compared to the MiSeq V34 DADA2 pipeline where dark green bars (Both Sig.) 
are significantly different (FDR < 0.05) for both methods, light green bars (Both N.S.) are both not significantly 
different (FDR ≥ 0.05), grey bars (Mis-match) are significantly different (FDR < 0.05) but tests differ in enriched 
site, light red bars (Test Sig. only) are significantly different (FDR < 0.05) for only the test (i.e., listed) method, 
and dark red bars (DADA2 Sig. only) are significantly different (FDR < 0.05) for only the MiSeq V34 DADA2 
pipeline. The numbers represent the total number of corresponding statistical tests of differential abundance 
between sites, in other words, taxonomic richness for each category.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9323  | https://doi.org/10.1038/s41598-023-36101-8

www.nature.com/scientificreports/

offer better assessments for fungal communities. While the cost per sample to sequence with each platform in 
our study was not much different, the barrier-to-entry for new labs may be an incentive for procuring a Min-
ION sequencer. Also, depending upon the diversity of the sample being studied, conflicting results for relative 
abundances and alpha- and beta-diversity may arise. Without denoising algorithms like DADA2, estimates of 
richness from MinION sequencing will be inflated. Large differences in relative abundances of taxa between the 
sequencing and bioinformatics methods indicate we may need to be skeptical about relative abundance differ-
ences between studies, especially those with small trends. Overall, however, all methods were highly successful 
in identifying statistical differences of relative abundance between sites and more than 70% of the taxa showed 
agreement with the industry standard MiSeq DADA2, with full-length MinION sequencing resulting in the 
highest agreement. Additional studies are needed to identify if this variability is different than what would arise 
in multiple libraries generated within a single laboratory using consistent methods or between laboratories. As 
demonstrated here, the use of mock communities is critical for assessments but differences in the complexity limit 
our ability to make inferences about soil communities. Although more complex microbial reference standards 
are emerging, soil reference material is greatly needed and crucial in our ability to conduct meta-analyses in a 
field where technological changes occur at a rapid pace.

Data availability
All raw sequence data in this study are available in NCBI under the Sequence Read Archive (SRA) BioProject 
ID PRJNA862376 (https:// www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 862376/).
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