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Modeling the  CO2 
separation capability 
of poly(4‑methyl‑1‑pentane) 
membrane modified with different 
nanoparticles by artificial neural 
networks
Seyyed Amirreza Abdollahi * & Seyyed Faramarz Ranjbar 

Membranes are a potential technology to reduce energy consumption as well as environmental 
challenges considering the separation processes. A new class of this technology, namely mixed 
matrix membrane (MMM) can be fabricated by dispersing solid substances in a polymeric medium. 
In this way, the poly(4‑methyl‑1‑pentene)‑based MMMs have attracted great attention to capturing 
carbon dioxide  (CO2), which is an environmental pollutant with a greenhouse effect. The  CO2 
permeability in different MMMs constituted of poly(4‑methyl‑1‑pentene) (PMP) and nanoparticles 
was comprehensively analyzed from the experimental point of view. In addition, a straightforward 
mathematical model is necessary to compute the  CO2 permeability before constructing the related 
PMP‑based separation process. Hence, the current study employs multilayer perceptron artificial 
neural networks (MLP‑ANN) to relate the  CO2 permeability in PMP/nanoparticle MMMs to the 
membrane composition (additive type and dose) and pressure. Accordingly, the effect of these 
independent variables on  CO2 permeability in PMP‑based membranes is explored using multiple 
linear regression analysis. It was figured out that the  CO2 permeability has a direct relationship with 
all independent variables, while the nanoparticle dose is the strongest one. The MLP‑ANN structural 
features have efficiently demonstrated an appealing potential to achieve the highest accurate 
prediction for  CO2 permeability. A two‑layer MLP‑ANN with the 3‑8‑1 topology trained by the 
Bayesian regulation algorithm is identified as the best model for the considered problem. This model 
simulates 112 experimentally measured  CO2 permeability in PMP/ZnO, PMP/Al2O3, PMP/TiO2, and 
PMP/TiO2‑NT with an excellent absolute average relative deviation (AARD) of lower than 5.5%, mean 
absolute error (MAE) of 6.87 and correlation coefficient (R) of higher than 0.99470. It was found that 
the mixed matrix membrane constituted of PMP and  TiO2‑NT (functionalized nanotube with titanium 
dioxide) is the best medium for  CO2 separation.

Recently, the capture and sequestration of  CO2 (carbon dioxide)1,2 as a practical tool against global warming 
and climate change have received significant interest. According to the literature, the  CO2 concentration in 
the atmosphere since the pre-industrial era till now has dramatically increased from 280 to 420 ppm, while its 
maximum allowable value is 350  ppm3,4. On the other hand, it has been estimated that the  CO2 concentration 
in the atmosphere will reach 570 ppm by the current rising level at the end of 21  century5. On this ground, 
several agreements are established to reduce  CO2 emissions by 2050 by focusing on deploying carbon capture 
and storage (CCS)  strategies6. To this end, different technologies, such as  absorption7,  adsorption8,9,  cryogenic10, 
and  membranes11 have been proposed. However, absorption as the most mature technology owns some serious 
drawbacks, including corrosion of  equipment12, environmental side-effects13, and  cost14. Cryogenic as another 
mature technology consumes high  energy15. Moreover, introducing a water-stable adsorbent with high selectivity 
and loading capacity as well as proper heat of adsorption and reasonable cost for the large-scale application is 
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still a serious  challenge7,16,17. Hence, membrane technology regarding being environmentally friendly, efficient, 
flexible, cost, maturity, and simple is considered one of the interesting strategies for gas  separation18 and pollution 
 monitoring19.  CO2 capture and sequestration not only is crucial for post-combustion applications related to flue 
gas for  CO2/N2 separation but also is required for pre-combustion processes for developing renewable sources 
of energy, including biogas  upgrading20 and natural gas sweetening for  CO2/CH4  separation21. The recovered 
carbon dioxide is also possible to use as feedstock to synthesize value-added  chemicals22.

Routinely, membranes are developed in natural or synthetic  ways23, and the last one is categorized as organic 
and  inorganic24. To improve the gas separation performance of conventional membranes the focus is concentrated 
on polymeric  media25. To this end, different polymers, including  siloxanes26, poly  acetylenes27,  polyimides28, 
 polysulfone29, and basic silicon  polymers30 are employed for different separation purposes. However, polymeric 
membranes still have some concerns related to their  permeability31,  selectivity32, and stability at high  pressures33. 
Accordingly, nanocomposite membranes are fabricated by adding  starch34,  ceramic35, metal–organic  framework36, 
carbon  nanotube37, and  nanoparticle38–40, to the membrane body.

On these grounds, Ahn et al. added silica nano samples as fillers to the polysulfone membrane to boost the 
performance of the developed mixed matrix  membrane41. They reported inclusion of nano silica samples into 
the polymer structure improves the permeability. Also, Pechaf et al. applied polyimide membrane and zeolite as 
the MMM and assessed the permeability of He,  CH4,  CO2,  N2, and  O2

42. They claimed the fabricated membrane 
increases the permeability of  CO2 and  CH4, while some reduction was observed for  N2 and  O2 permeability. 
Further, Ismail et al. synthesized a mixed matrix membrane using poly-ether-sulfone and Matrimid 5218 by 
employing Zeolite  4A43. The study showed adding the zeolite can improve the permeability of the membrane.

Recently, machine learning (ML) models due to their flexibility, robustness, precision, and adaptability have 
received significant interest in a broad range of applications from engineering to  medicine44–47. Pattern design, 
model recognition, fault detection, data mining, and function estimation are some of the main applications of 
 ML48,49. Recently, artificial neural network (ANN)50, adaptive neuro-fuzzy inference system (ANFIS)51, support 
vector machine (SVM)52, and genetic programming (GP)53 have been used in the field of membrane technol-
ogy. On these grounds, Rezakazemi et al. employed the ANFIS model for molecular separation in microporous 
 membranes54. In another study, Vural et al. employed ANFIS topology for estimating the performance of a proton 
exchange membrane fuel  cell55. In addition, Zhao et al. employed the ANN paradigm to predict the interfacial 
interactions and fouling in a membrane  bioreactor56. They declared that the radial basis function has excellent 
ability to predict interfacial interactions. Further, Gasós et al. trusted on the artificial neural networks to create 
the maps of membrane-based  CO2 separation  technology18. Additionally, Kazemian et al. employed the benefits 
of SVM and genetic algorithm (GA) methodology to develop an algorithm for the membrane helices in amino 
acid  sequences57.

Despite conducting many experiments on measuring  CO2 permeability in pure poly(4-methyl-1-pentane) 
(PMP) and PMP-containing mixed membranes, no correlation has already been suggested in this field. Since 
permeability is a crucial factor in efficient  CO2 separation by the PMP-based membranes, a reliable model is also 
required for its estimation. Hence, this study applies the MLP-ANN to correlate  CO2 permeability in pure PMP 
and PMP/nanoparticle mixed matrix membranes to the filler type, nanoparticle dose, and pressure. Also, the 
performed relevancy analysis by the MLR (i.e., multiple linear regression) clarifies the effect of these variables on 
the potential level of  CO2 permeability. To the best of the authors’ knowledge, this is the first attempt to predict 
 CO2 permeability in PMP-containing membranes from some easily and always available parameters. Also, the 
designed MLP-ANN can help engineers fabricate a PMP-based membrane and adjust the working pressure to 
achieve maximum  CO2 separation in various industries including gas processing, petroleum, petrochemical, as 
well as biogas upgrading.

Gathered data from the literature
As already discussed, permeability is one of the key specifications of membrane technology for gas separation, 
which is often experimentally measured. On the other hand, several other studies have investigated the impact 
of employing different nanoparticles to improve the performance of polymetric membranes to this end. Accord-
ingly, this study has developed a robust theoretical topology to estimate the  CO2 permeability in the pure PMP 
and PMP/nanoparticle mixed matrix membranes, which to the best of the authors’ knowledge is the first one 
in this area. In this way, the nanoparticle types, their weight percentage (wt%) in the fabricated membrane, and 
operating pressure are the independent variables to estimate the  CO2 permeability in a specific membrane. Table 1 
presents the main statistical features of the gathered experimental data from the  literature58–61.

It is noteworthy that the literature has added up to 40 wt% of four nanoparticles (i.e.,  TiO2, ZnO,  Al2O3, and 
 TiO2-NT) to the PMP structure to fabricate different mixed matrix membranes. Also, 112  CO2 permeability 
tests have been conducted in a pressure range of 2–25 bar. The  CO2 permeability of 18.01-570.90 barrer was 

Table 1.  Literature data for the  CO2 separation by the PMP-nanoparticle  membranes58–61.

Variable Minimum Maximum Average Std. deviation Tests

Additive type Nothing, ZnO,  Al2O3,  TiO2, and  TiO2-NT 112

Nanoparticle dose (wt%) 0 40 10.11 9.96 112

Pressure (bar) 2 25 5.86 3.49 112

CO2 permeability (barrer) 18.01 570.90 199.36 120.57 112
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reported in the literature for the pure PMP and PMP/ZnO, PMP/Al2O3, PMP/TiO2, and PMP/TiO2-NT mixed 
matrix  membranes58–61.

Since this study includes both qualitative (additive type) and quantitative (nanoparticle dose and pressure) 
independent variables, it is also necessary to represent the earlier quantitatively. Table 2 introduces the numeri-
cal codes used in this regard.

Histograms of all independent (additive type, nanoparticle dose, and pressure) and dependent  (CO2 perme-
ability) variables are depicted in Fig. 1.

Artificial neural networks
Artificial neural networks (ANNs) as a biologically inspired computational approach is a non-linear topology, 
which has a high capacity for data processing in the engineering  area62. Actually, the ANNs are a reduced set of 
concepts derived from biological neural systems based on the simulation of data processing of the human brain 
and nervous  systems63. The ANNs have already proved a robust potential for statistical analysis in the area without 
a broad range of experimental values regarding their flexibility and  capability62,63. In the way of deriving an ANN 
paradigm, it is required to specify the main independent variables that affect the output of the process. It is worth 
noting that the ANNs have the potential to correlate the dependent variables with the independent ones with any 
degree of  complexity64. To this end, providing a proper dataset is necessary to design a black box for the estima-
tion of dependent factors considering defined  criteria62. Accordingly, the obtained approach develops a signal 
among the input and output factors, which specifies the details in different layers related to neuron interactions.

Up to date, several ANN approaches have been developed, including multi-layer perceptron (MLP-ANN)65, 
radial basis function (RBF-ANN)66, cascade feedforward (CFF-ANN)67, general regression (GR-ANN)68, which 
the MLP-ANN is the most commonly used one. Generally, the MLP-ANN is an online learning supervised 
procedure that employs partial fit order together with tunable synaptic  weights69. On these grounds, this topol-
ogy was applied in this work to estimate the permeability of  CH4 and  N2 in PMPs. Routinely, an MLP-ANN is 
developed by defining three main layers, including the input layer, the hidden layer, and the output one. In this 
way, the input layer is derived from the raw independent (input) values after some data processing, which has 

Table 2.  The numerical codes used to quantitatively presentation of the filler type.

Additive name Nothing ZnO TiO2 TiO2-NT Al2O3

Additive code 0 1 2 3 4

2 6 10 14 18 22 26 30 34 38
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Figure 1.  Histogram of the involved variables (additive type, nanoparticle dose, and pressure) in the modeling 
of  CO2 permeability in PMP-nanoparticle  membranes58–61.
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already proven their high impact on the process. Then, the outcome of this layer is introduced to the hidden 
layer to employ statistical analysis and mathematical treatment on the data. Afterward, the outcomes of this layer 
are transferred to the output layer that specifies the main results of the model. It should be considered that the 
major mathematical processing employed on the neurons is determined by Eq. (1)70:

here b specifies the bias of the model, which indicates the activation thresholds for input values ( xr ), and ωjr is 
the weight coefficients of the model. Also, the net output of neurons ( Oj ) is received by a transfer function ( tf  ) 
to calculate the neuron’s  output70. In this work, the hyperbolic tangent sigmoid (Eq. 2) and logarithmic sigmoid 
(Eq. 3), which are among the most popular transfer functions, have been incorporated in the hidden and output 
layers,  respectively63,68:

Figure 2a,b show the general shapes of the hyperbolic tangent sigmoid and logarithmic sigmoid transfer 
functions, respectively. This figure indicates that the earlier provides a value between − 1 and + 1, while the latter 
produces a value ranging from 0 to + 1.

To this end, it is necessary to normalize both the independent (IV) and dependent variables (DV) into the 
[0 1] range using Eqs. (4) and (5), respectively.

NoD designates the number of datasets.  X1,  X2, and  X3 indicate the normalized value of the additive type, 
nanoparticle dose, and pressure. Moreover, Y stands for the normalized  CO2 permeability.
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Figure 2.  The hyperbolic tangent sigmoid (a) and logarithm sigmoid (b) transfer functions.
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Evaluation of the model’s accuracy
It is often mandatory to measure the deviation between experimental and predicted values of the dependent 
variable using statistical criteria. This study applies correlation coefficient (R), coefficient of determination  (R2), 
summation of absolute error (SAE), mean absolute error (MAE), absolute average relative deviation (AARD), 
and mean squared error (MSE). Accordingly, Eqs. (6) to (11) present the formula of R,  R2, SAE, MAE, AARD, 
and MSE,  correspondingly71.

The above equations need experimental ( DV exp ) and calculated ( DVcal ) dependent variables as well as the 
average value of the DV exp . Equation (12) calculates this average value, i.e., DV exp.

Results and discussions
This section introduces the results of relevancy analysis by MLR, MLP-ANN development, and statistical and 
graphical investigations of the proposed model.

Relevancy analysis by the multiple linear regression. Before constructing the MLP-ANN to estimate 
the  CO2 permeability in PMP/nanoparticle membranes, the relevancy between dependent and dependent vari-
ables must be explored. The MLR is a well-known method in this  field72. Equation (13) is a simple MLR model 
that correlates the normalized  CO2 permeability ( Ycal ) to the normalized values of the independent variables 
based on 112 experimental datasets.

The positive sign of the  X1,  X2, and  X3 coefficients suggests the direct dependency of  CO2 permeability on the 
involved independent variables. Also, the coefficient magnitude shows the strength of the relationship between 
the dependent and independent variables. As Fig. 3 illustrates the  CO2 permeability in PMP/nanoparticle mem-
branes has the strongest dependency on the nanoparticle dose and the weakest dependency on the additive type.

The observed AARD = 88.24%,  R2 = 0.40145, and SAE = 7634.84 barrer between experimental  CO2 perme-
abilities and MLR predictions show that the considered problem is mainly governed by a nonlinear model.

The accuracy of indices is calculated after de-normalizing the MLR prediction for the normalized  CO2 per-
meability using Eq. (14).

Nonlinear modeling by the MLP‑ANN. The general topology of the MLP-ANN to relate the  CO2 per-
meability in PMP/nanoparticle MMMs has been shown in Fig. 4.

This stage constructs 90 MLP-ANN approaches with different numbers of hidden neurons. Indeed, these 
MLP-ANN models may have one to nine neurons in their hidden layers. In addition, the MLP-ANN with a 
specific number of hidden neurons is trained and tested 10 different times.
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Figure 5 shows the results of ranking the 90 constructed MLP-ANN models. Generally, the MLP-ANN 
accuracy increases (rank decreases) by increasing the number of hidden neurons. This observation is related to 
the increasing MLP-ANN size as well as the number of their weights and biases. The figure indicates that the 
second-developed MLP-ANN with eight hidden neurons (rank = 1) is the best model for estimating the  CO2 
permeability in PMP/nanoparticle MMMs. In addition, the 9th-built MLP-ANN with only one hidden layer is 
the lowest accurate model (rank = 90) for the considered task.

The best MLP-ANN is applied to accomplish all subsequent analyses and the remaining 89 models are ignored.
Figure 6 presents the general shape of the MLP-ANN approach constructed to estimate the  CO2 permeability 

in MMMs. It can be seen that the MLP-ANN has only one hidden layer with eight neurons, i.e., 3-8-1 topol-
ogy. The hyperbolic tangent sigmoid and logarithmic sigmoid transfer functions can also be seen in the hidden 
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Figure 3.  Relevancy between  CO2 permeability in MMMs and additive type, nanoparticle dose, and pressure.

Figure 4.  The MLP-ANN structure to simulate  CO2 permeability in PMP/nanoparticle MMMs.
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and output layers. It should be noted that the modeling phase of the  CO2 permeability in both PMP and PMP/
nanoparticle membranes is done in the MATLAB environment (Version: 2019a)73.

Table 3 reports the achieved accuracy of the proposed MLP-ANN in the training and testing stages. This 
table also shows the accuracy of the built MLP-ANN model for predicting the  CO2 permeability of the overall 
datasets. Five statistical criteria (i.e., R, MAE, AARD, MSE, and SAE) have been used in this regard. All these 
accuracies are acceptable enough from the modeling point of view.

Performance checking. The cross-plot which graphically inspects the linear correlation between experi-
mental and predicted values of a dependent variable is a practical method to evaluate the reliability of data-
driven models. Figure 7a–c illustrate the linear correlation between experimental  CO2 permeabilities and their 
associated calculated values by the MLP-ANN approach. Since both training and testing datasets are mainly 
located around the diagonal lines, the MLP-ANN reliability is approved by the visual inspection. Moreover, the 
closeness of the correlation coefficients of the training, testing, and all datasets to R ~ 1 (i.e., 0.99658, 0.98433, 
and 0.99477) is another indication of the MLP-ANN model.

The actual and predicted  CO2 permeabilities in the pure PMP membranes and PMP/nanoparticles MMMs in 
the training, as well as testing stages are depicted in Fig. 8. This analysis justifies the outstanding performance of 
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Figure 5.  Overall ranking of the 90 constructed MLP-ANNs with 1–9 hidden neurons (10 models per each 
hidden neuron).

Figure 6.  Topology of the best MLP-ANN73 for predicting  CO2 permeability in PMP/nanoparticle membranes.

Table 3.  Accuracy of the best MLP-ANN for estimating the  CO2 permeability in MMMs.

Data group R MAE AARD MSE SAE

Training group 0.99658 5.28 5.20% 100.54 501.84

Testing group 0.98433 15.76 6.88% 444.52 267.84

Overall data 0.99477 6.87 5.46% 152.75 769.68
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the MLP-ANN to model both training and testing datasets. In addition, the MLP-ANN accuracy for predicting 
the training (MAE = 5.28, AARD = 5.20%, MSE = 100.54, and SAE = 501.84) and testing group (MAE = 15.76, 
AARD = 6.88%, MSE = 444.52, and SAE = 267.84) is approved by the statistical investigation. In addition, the 
overall values of the MAE, AARD, MSE, and SAE are 6.87, 5.46%, 152.75, and 769.68, correspondingly.

Trend analysis. Figure 9 explains the effect of alumina concentration on  CO2 permeability in the PMP/
Al2O3 membrane from the modeling and experimental point of view. The outstanding agreement between actual 
and estimated  CO2 permeabilities in the PMP/Al2O3 MMMs can be easily found in this figure. The MLP-ANN 
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also accurately learns the increasing effect of the filler dose on  CO2 separation by the membrane-based process. 
Increasing the  CO2 permeability in membranes by increasing the filler dose was also previously forecasted by 
the MLR relevancy investigation.

The literature has related this permeability improvement to the alumina-polymer interactions and pore 
volume increment due to the  Al2O3 presence within the polymer  chain61.

The effect of working pressure on  CO2 separation by the PMP/ZnO membranes with five nanoparticle con-
centration levels (2.5, 5, 8, 10, and 15 wt%) has been presented in Fig. 10. This figure displays both laboratory-
measured  CO2 permeabilities and their related MLP-ANN predictions. An excellent agreement between the 
experimental and modeling permeability-pressure profiles is easily observable through this investigation. The 
MLP-ANN also correctly identifies the pressure as well as the filler effect on  CO2 permeability in PMP/ZnO 
mixed matrix membranes.

As expected, the  CO2 permeability in the mixed matrix membranes rises by increasing the working pressure. 
This observation is in a direct relationship with the driving force improvement due to the pressure enhancement.

The effect of filler type (ZnO,  Al2O3,  TiO2, and  TiO2-NT) on the  CO2 separation ability of PMP-based mem-
branes in the same working pressure is illustrated in Fig. 11. It can be seen that different fillers represent various 
roles in  CO2-MMM interaction. Indeed, the PMP/TiO2 and PMP-TiO2-NT provide the  CO2 molecule with 
minimum and maximum permeabilities within the membrane structure. The literature justified the higher  CO2 
permeability in PMP-TiO2-NT to the free volume expansion and porosity increase due to the functionalized 
nanoparticle presence in the membrane  body60.
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Conclusions
This study uses a two-step methodology, i.e., multiple linear regression and multilayer perceptron artificial neural 
networks to simulate carbon dioxide permeability in mixed matrix membranes. The carbon dioxide permeabil-
ity in pure poly(4-methyl-1-pentene) and PMP/nanoparticle membranes (i.e., PMP/ZnO, PMP/Al2O3, PMP/
TiO2, and PMP/TiO2-NT) has been studied based on 112 experimental datasets collected from the literature. 
The multiple linear regression method applies to anticipate the dependency of the carbon dioxide permeabil-
ity on the membrane composition (additive type and dose) and pressure. This method shows that the carbon 
dioxide permeability is directly related to all independent variables and it has the strongest correlation with the 
nanoparticle dose in membrane structure. The MLP-ANN is then utilized to construct a non-linear approach 
to estimate the carbon dioxide permeability as a function of additive type, nanoparticle dose, and pressure. This 
MLP-ANN with the 3-8-1 topology predicted 112 experimental carbon dioxide permeabilities in the involved 
MMMs with excellent accuracy (i.e., R = 0.99477, MAE = 6.87, AARD = 5.46%, MSE = 152.75, and SAE = 769.68). 
The modeling results clarify that the PMP/TiO2-NT has a better carbon dioxide separation than the PMP/ZnO, 
PMP/Al2O3, and PMP/TiO2 mixed matrix membranes. Finally, the obtained results in this work demonstrated 
the excellent potential of the ANN for estimating the separation factors of mixed matrix membranes for carbon 
capture and sequestration applications.

Data availability
All the literature datasets analyzed in this study are available at a reasonable request from the corresponding 
author (S.A. Abdollahi).
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