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Epigenomic landscape exhibits 
interferon signaling suppression 
in the patient of myocarditis 
after BNT162b2 vaccination
Hyeonhui Kim 1,2,9, Hyo‑Suk Ahn 3,4,9, Nahee Hwang 1,5, Yune Huh 6, Seonghyeon Bu 3,4, 
Kyung Jin Seo 7, Se Hwan Kwon 8, Hae‑Kyung Lee 2, Jae‑woo Kim 5, Bo Kyung Yoon 5* & 
Sungsoon Fang 1,2*

After the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, 
a novel mRNA vaccine (BNT162b2) was developed at an unprecedented speed. Although most 
countries have achieved widespread immunity from vaccines and infections, yet people, even who 
have recovered from SARS-CoV-2 infection, are recommended to receive vaccination due to their 
effectiveness in lowering the risk of recurrent infection. However, the BNT162b2 vaccine has been 
reported to increase the risk of myocarditis. To our knowledge, for the first time in this study, we 
tracked changes in the chromatin dynamics of peripheral blood mononuclear cells (PBMCs) in the 
patient who underwent myocarditis after BNT162b2 vaccination. A longitudinal study of chromatin 
accessibility using concurrent analysis of single-cell assays for transposase-accessible chromatin 
with sequencing and single-cell RNA sequencing showed downregulation of interferon signaling and 
upregulated RUNX2/3 activity in PBMCs. Considering BNT162b2 vaccination increases the level of 
interferon-α/γ in serum, our data highlight the immune responses different from the conventional 
responses to the vaccination, which is possibly the key to understanding the side effects of BNT162b2 
vaccination.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 600 million patients, 
resulting in more than 6 million deaths worldwide. The cumulative number of SARS-CoV-2 vaccines adminis-
tered has surged to almost 130 million1. One of the most administered vaccines is the Pfizer-BioNTech BNT162b2 
mRNA. Despite its effectiveness in protection against SARS-CoV-2 infection, the BNT162b2 vaccine has recently 
been reported to be associated with an increased risk of myocarditis. Its pathogenesis remains unknown2,3.

Recent studies on the immune response to SARS-CoV-2 infection have identified important transcriptomic 
signatures4, which include changes in genes involved in interferon (IFN) signal transduction and natural killer 
(NK) cell maturation5. Along with clinical findings that indicate type I IFN deficiency in the blood of severe 
SARS-CoV-2 patients6,7, recombinant type I IFN, although controversial, has brought attention as a potential 
therapeutic agent for SARS-CoV-2 infection8. Compared with other respiratory viruses, SARS-CoV-2 infection 
leads to weak IFN (type I and III) responses while inducing robust expression of interleukin-6 and chemokines9. 
Low innate antiviral defenses resulting from low levels of IFN have been considered a driving feature of SARS-
CoV-2 infection9.
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However, there are relatively few studies focusing on the characterization of the immune landscape of patients 
showing side effects after BNT162b2 administration despite the surging number of shots. To our knowledge, 
currently, there are no studies identifying the epigenomic landscape of immune cells of BNT162b2-induced 
myocarditis patients in single-cell resolution, which may provide deep insight regarding the pathogenesis of 
vaccine-induced myocarditis. Here, we applied a single-cell sequencing assay for transposase-accessible chro-
matin (scATAC-seq) with single-cell RNA sequencing (scRNA-seq) in a patient with BNT162b2-induced myo-
carditis at the acute inflammatory stage and after remission. A comprehensive understanding of changes in the 
immune landscape accompanied by BNT162b2-induced myocarditis showed global upregulation of RUNX and 
downregulation of IFN.

Results
Overview of longitudinal analysis in single‑cell resolution from peripheral blood mononuclear 
cell (PBMCs) of a patient with myocarditis after BNT162B2 vaccination.  Previously, we had 
reported the peripheral immune landscape of a 59-year-old male patient who had developed severe myocarditis 
after BNT162b2 vaccination10. Blood was collected at two time points: immediately after the onset of myocarditis 
and after the patient completely recovered from myocarditis. The immune response of patients with myocarditis 
after BNT162b2 vaccination was analyzed in more detail by comparing vaccinated individuals without side 
effects, Coronavirus disease 2019 (COVID-19) patients and Kawasaki disease patients at the single-cell level11. 
To further analyze the dynamic changes in the epigenomic landscape associated with myocarditis resulting from 
BNT162b2 vaccination, we performed a parallel single-cell sequencing assay for transposase-accessible chro-
matin (scATAC-seq), in addition to transcriptomic analysis, on two PBMC samples collected at different time 
points (Fig. 1A). We obtained scATAC-seq datasets from 20,519 PBMCs collected at two time points after qual-
ity control.

We evaluated batch correction through dimensionality reduction uniform manifold approximation and pro-
jection (UMAP) and performed graph-based clustering on scRNA-seq and scATAC-seq, which identified 25 
and 16 clusters, respectively (Fig. S1A-C). Each scRNA-seq cluster was annotated based on the transcriptional 
profiles of canonical immune cell markers (Fig. S1D, and S1E). The scATAC-seq clusters were initially identified 
using the label transfer function of Signac TransferData and further identified by gene activity and computed by 
counting the number of sequenced fragments overlapping with the gene body and a 2 kb upstream region from 
transcription start sites (TSS) for each gene (Figs. 1B,C, S1F, and S1G). Next, we verified cell annotations using 
chromVAR motif activities of the regions important in lineage-specific differentiation and activation. The motifs 
used for annotation verification were as follows: SPI1 (PU.1) for myeloid and B cells12, CEBPB for monocytes13, 
TCF12 for B cells14, TCF7 for T cells15, and TBX21 (t-bet) for CD4 T cells, CD8 T cells, NK cells, and B cells16 
(Fig. 1D). Co-embedding scRNA-seq and scATAC-seq data into a single UMAP visualization validated cluster 
annotations with a high overlap rate (Fig. S2A–E).

Next, we analyzed the distribution of immune cell populations at different time points. The fraction of each 
cluster presented minimal change between myocarditis and recovery states, except for plasmacytoid dendritic 
cell (pDC), which is the cluster with the smallest cell number (Figs. 1E, and S3A). Thus, the cell fractions of 
most immune cells were similar between the two time points, indicating that immune cell composition is not 
a key contributing factor for the development of myocarditis. We computed the differentially accessible region 
(DAR) of each cluster (Fig. 1F). In contrast to the differentially expressed genes (DEGs) in scRNA-seq, chromatin 
accessibility was most dynamically changed in cytotoxic NK and CD8 effector T cells in scATAC-seq (Fig. S3B). 
The location of the DAR was annotated with clusterProfiler (Fig. S3C and S3D). We performed single-cell TCR 
sequencing (scTCR-seq) analysis to investigate T-cell immunity. However, the most abundant complementarity-
determining region 3 (CDR3) sequence showed minimal changes (Fig. S3E). In contrast, we observed increased 
gene activities of immune activation marker genes17 in the CD8 effector and cytotoxic NK cluster at myocarditis 
state (Fig. S4A–C). Furthermore, the up-regulation of motif activity and gene activity in fatty acid metabolism 
related genes at acute myocarditis validated the scATAC-seq data by demonstrating consistency with the results 
of the scRNA-seq analysis11 (Fig. S5A–D).

Upregulation of RUNX transcriptional activity at the acute myocarditis stage.  Changes in 
chromatin openness can modulate the availability of binding sites for TFs and control gene expression18. To 
assess the binding affinity of TFs, we used chromVAR, which calculates the bias-corrected TF accessibility devia-
tion for each motif across genome-wide signals19. According to chromVAR analysis, RUNX2 and RUNX3 motifs 
are globally upregulated across most cell types during acute myocarditis in terms of motif activity (Fig. 2A and 
B). The RUNX family is a key regulator of development and differentiation, especially of blood cells20. Further-
more, recent evidence suggests the importance of RUNX in the immune response against pathogens, including 
viruses, such as the Epstein-Barr virus and Influenza A21,22.

The RUNX family has a highly conserved DNA-binding domain and shares a consensus-binding motif 
sequence23 (Fig. 2C). To find the major RUNX gene important in myocarditis pathogenesis, we compared the 
expression levels of RUNX2 and RUNX3 (Fig. 2D). Although RUNX2 and RUNX3 showed upregulation of their 
motif activities in myocarditis, their mRNA expression levels indicated minimal changes between the two time 
points, highlighting the importance of ATAC-seq for understanding the gene-modulatory network. Since RUNX3 
exhibits higher expression levels across all cell subpopulations than RUNX2, we propose RUNX3 as the primary 
TF upregulated during acute myocarditis. Notably, the accessibility of the chromatin regions overlapping with 
the ENCODE ChIP-seq peak of RUNX3 increased in the myocarditis state (Fig. S6).

RUNX3 is involved in the interleukin-15-dependent activation of NK cells24 and the proliferation and cyto-
toxicity of CD8 T cells25. RUNX3 was also highly enriched in NK and T cells during myocarditis in terms of 
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Figure 1.   Overview of Integrated analysis of transcriptomic and epigenomic signatures of peripheral immune cells in the patient of 
myocarditis after BNT162b2 vaccination. (A) Overview of the experiment. Single-cell sequencing assay for transposase-accessible 
chromatin (scATAC-seq), scRNA-seq, and single-cell VDJ analysis were performed using peripheral blood mononuclear cells 
peripheral blood mononuclear cells (PBMCs) from patients with acute myocarditis (day 16) after BNT162b2 vaccination and recovery 
conditions (day 93). (B) Uniform manifold approximation and projection (UMAP) plot representing cluster annotation of single-
cell sequencing assay for transposase-accessible chromatin (scATAC-seq). (C) Dot plot showing canonical immune cell marker gene 
activity of the single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) datasets. Gene activity was calculated 
as chromatin accessibility of the promoter and gene body. The diameter corresponds to the population percentage of cells calculated 
gene activity in the subtype. The average gene activity level of the cell subtype appears as a color gradation. (D) Single-cell sequencing 
assay for transposase-accessible chromatin (scATAC-seq) uniform manifold approximation and projection (UMAP) plot representing 
chromVAR motif activity of transcription factors involved in immune cell activation and differentiation. The color gradient represents 
the chromVAR TF motif bias-corrected deviations. (E) The fraction of cell clusters was calculated using 10x-based single-cell 
sequencing assay for transposase-accessible chromatin (scATAC-seq). (F) The number of differentially accessible regions (DARs) of 
myocarditis versus recovery in each immune cell subtype was counted (logFC > 0.25, adjusted P value < 0.05, minimum percentage of 
expressing cells > 10%).
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motif activity (Fig. 2E), and increased accessibility of RUNX3 was confirmed across the whole genome (Fig. 2F). 
Thus, the TF RUNX3 showed the highest increase in activity during myocarditis.

Suppression of type 1 IFN signaling at the acute myocarditis stage.  Next, we investigated TFs 
whose activities were downregulated at the time of acute myocarditis in the cell subpopulations with the highest 
number of DEGs. In NK cells and CD8 effector cells, IFN regulatory factors (IRFs) showed the highest degree of 
downregulation in the myocarditis state (Fig. 3A). IRF family consists of nine members (IRF1–IRF9) and plays 
a crucial role in IFN production and response against viral infection and inflammation26. IFN, a pleiotropic 

Figure 2.   RUNX transcriptional activity is upregulated in the diverse immune cells at the acute myocarditis 
stage. (A) The table shows the top five enriched motifs in CD8 effector and cytotoxic NK cells. We performed 
chromVAR motif analysis using differentially accessible regions (DARs) of each cluster. (B) Uniform manifold 
approximation and projection (UMAP) plot of single-cell sequencing assay for transposase-accessible 
chromatin (scATAC-seq) with chromVAR motif activity of RUNX2 and RUNX3. The color gradient represents 
the chromVAR TF motif bias-corrected deviations. (C) Plot of the position weight matrices for the motifs of 
RUNX2 and RUNX3. (D) Uniform manifold approximation and projection (UMAP) plot of scRNA-seq with 
the RNA expression of RUNX2 and RUNX3. Color gradient represents log normalized gene expression. (E) The 
box plot shows RUNX3 chromVAR motif activity of the immune cell subtype. (F) TF footprints of RUNX3 in 
the cytotoxic NK and CD8 effector subtypes. The Tn5 insertion bias track is also shown.
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Figure 3.   Type 1 interferon (IFN) signaling is downregulated at the acute myocarditis stage. (A) Volcano plot shows the differential 
motif activities using the mean motif activity. The x-axis represents the difference in mean motif accessibility calculated using the 
chromVAR TF bias-corrected deviation in CD8 effector and cytotoxic NK cell clusters. (B) Uniform manifold approximation and 
projection (UMAP) plot of single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) with chromVAR motif 
activity of IRF3 and IRF7. The color gradient represents the chromVAR TF motif bias-corrected deviations. (C, D) Box plot showing 
the IRF3 and IRF7 chromVAR motif activity of the immune cell subtype. (E) Position weight matrices for the motifs of the STAT1 
and STAT2 heterodimers (STAT1::STAT2) and IRF9. (F) Uniform manifold approximation and projection (UMAP) plot of single-cell 
sequencing assay for transposase-accessible chromatin (scATAC-seq) overlaid chromVAR motif activity of STAT1::STAT2 and IRF9. 
The color gradient represents the chromVAR TF motif bias-corrected deviations. (G) Box plot representing the GSVA score performed 
to calculate enrichment with GO pathway “GO:0035455_RESPONSE_TO_INTERFERON_ALPHA” and “GO:0035456_RESPONSE_
TO_INTERFERON_BETA” from MSigDB v7.4.
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cytokine that regulates the immune response, has two major families: type I IFN (IFNα and IFNβ) and type II 
IFN (IFNγ). During viral infection, viral DNA and RNA activate IRF3/IRF7, which activates IFNA/IFNB gene 
transcription27,28. Secreted IFNα or IFNβ binds to the IFN-α/β receptor on the surface of almost all cell types, 
leading to the formation of the STAT1/STAT2/IRF9 complex, known as the ISGF3 complex. This complex initi-
ates the transcription of IFN-stimulated genes to stimulate an immune response to eliminate the viral infection.

Previous studies have reported a decrease in the level of type I IFNs in the blood and the amount of type 1 
IFN production from blood immune cells in patients with severe symptoms of COVID-196,29. In our datasets, 
although the gene activity and RNA expression level of IRF3 showed minimal changes (Figs. S7A, and B), the 
motif activity of IRF3 and IRF7 was decreased at myocarditis state across all cell subpopulations except for pDCs 
and memory B cells (Figs. 3B–D, and S7C). When we compared the openness of genomic regions predicted to 
be the sites of IRF3/7 binding, chromatin accessibility was reduced in myocarditis CD8 effector and cytotoxic 
NK cells (Fig. S8A, and B).

In addition to IFNα/β production, we investigated changes in motif activity in IFNα/β receivers. IFNα/β 
induced the transcription of IFNα/β response genes by the activation of the ISGF3 complex, which consists of a 
heterodimer of STAT1 and STAT2 (STAT1::STAT2) and IRF9 (Fig. 3E). Consistent with the downregulation of 
motif activities of IRF3 and IRF7, peripheral immune cells showed a reduced motif activity level of STAT1::STAT2 
and IRF9 at the time of myocarditis (Fig. 3F). In addition, we performed Gene Set Variation Analysis (GSVA), 
which calculates gene set enrichment scores for a sample to validate changes in RNA expression profile in 
response to Type I IFN30. A decrease in IFNα/β-related gene expression was primarily observed in T cells. IFNβ 
had a more profound influence on the immune cell response in myocarditis (Fig. 3G).

Suppression of type 2 IFN signaling at the acute myocarditis stage.  The only member of the type 
II IFN family, IFNγ, is essential for the inflammatory response triggered by viral infections. Adaptive immune 
cells, including CD4 T helper type 1 cells, γδT cells, activated NK cells, and cytotoxic CD8 T cells, secrete IFNγ 
upon viral infection. Secreted IFNγ induces nuclear entry of the STAT1 homodimer into immune cells and initi-
ates the transcription of primary response genes, such as IRF1.

We first investigated the mRNA expression levels and distribution patterns of IFN-γ. Cytotoxic NK and CD8 
T cells showed abundant expression and decreased expression levels at the time of myocarditis, respectively 
(Figs. 4A, S9A). In addition, there was a mild decrease in chromatin accessibility with a reduction in mRNA 
expression level at the region, which Cicero predicts as a cis-regulatory DNA region for IFNG transcription 
(Fig. S9B).

Considering IFNγ signaling-recipient cells, decreased motif activity in STAT1 across multiple cell types in 
myocarditis suggests that the response to IFNγ secreted from cytotoxic NK and CD8 effector cells was down-
regulated (Fig. 4B, S9C, and D). IRF1, a target gene of the IFNγ signaling pathway, was also downregulated at 
the myocarditis state (Figs. 4C, and S9E). The GSVA score analyzed from mRNA expression levels advocates 
blunted response to IFNγ in CD14 monocyte, cytotoxic NK, CD8 T, Treg, CD4 memory, and CD4 naïve cells 
(Fig.4D and E). Therefore, the immune system of a patient with acute myocarditis after BNT162b2 vaccination 
exhibited impaired IFN signaling, although aggregated peaks in the regulatory element of pro-inflammatory 
cytokine were increased (Fig. S10). Considering that BNT162b2 vaccination induces the upregulation of serum 
IFN levels, the patient with the side effect of vaccination is likely to develop immune responses different from 
what has been known31.

Discussion
Inferring molecular dynamics during disease progression is challenging, particularly when there are large time 
gaps between sampling points32 Analysis based only on the expression levels is not sufficient to map the major 
driving force, such as key TFs, in the longitudinal analysis of the patient. Investigation of chromatin accessibility 
is an effective tool for studying active regulatory DNA33.

Gene expression levels can typically be assessed by measuring the amount of mRNA transcripts and the bind-
ing efficiency of gene modulators to the promoter region. However, the role of regulatory elements in controlling 
target gene expression has recently been highlighted in various biological processes33. Thus, TF activities can 
be comprehensively estimated by changes in chromatin accessibility of the regions across promoters and cis-
regulatory elements that affect the binding of TFs to motifs19. Here, we found that gene expression modulators 
were differentially regulated at the time of myocarditis (Fig. 5). In addition, the activity of genes that could not be 
identified in the sparse RNA matrix can be predicted through the successful analysis of chromatin accessibility 
in the gene body, promoter, and cis-elements33,34.

Integrated analysis of scRNA-seq and scATAC-seq from our results revealed a downregulated IFN signaling 
pathway and upregulated gene activities of IL-1, IL-6, IL-17, and IL-21. Thus, patients with myocarditis after 
BNT162b2 vaccination displayed a hallmark of decreased IFN (type I and type III) signaling and increased IL-6 
production, which resembles the characteristics of bronchial epithelial cells. Peripheral immunity facilitates the 
landscape of patients with severe SARS-coV-2 infection6,9. Recently, the use of recombinant type I IFN as a treat-
ment for COVID-19 was reported in a clinical trial8,35. After booster vaccination in healthy adults, IFNγ secretion 
increases in CD8 and CD4 T cells36. Meta-analysis in COVID-19 patients with or without severe symptoms also 
reported that patients with severe COVID-19 have a high IL-6/IFNγ ratio37. Therefore, IFN signaling in patients 
with myocarditis after vaccination appears to be similar to that in patients with severe COVID-19.

Viral myocarditis is a combination of direct cardiomyocyte damage and immune-mediated cell death38. In 
particular, NK cells play a crucial role in defense against acute viral pathogens, such as coxsackievirus B and 
murine cytomegalovirus39. In patients with severe COVID-19, the activity of NK cells in peripheral blood and 
bronchoalveolar lavage (BAL) increased, although the IFN response was blunted because the NK population was 
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redistributed to BAL as a result of increased chemokines in BAL in patients with severe COVID-1940,41. High 
chemokine levels are also present in the plasma of patients with myocarditis by COVID-19, and NK cells can 
potentially be attracted to cardiomyocytes42. However, the number of NK cells in COVID-19 patients with severe 
symptoms is negatively correlated with IFNγ concentration41. In this study, we verified decreased IFN signaling 
in the NK cells of patients with severe side effects of BNT162b2 vaccination by analyzing epigenomic profiles. 
In future studies, more attention should be paid to IFN signaling in NK cells in myocarditis.

Methods
Ethics statement.  The study was conducted following the Declaration of Helsinki and approved by the 
Institutional Review Board of Uijeongbu St. Mary’s Hospital (UC19TIDE0142). Written informed consent was 
obtained from all participants.

Sample preparation.  Blood was collected in ethylenediaminetetraacetic acid-coated tubes and mixed with 
the same amount of phosphate-buffered saline (PBS). Blood with PBS was then transferred to a leucosep tube. 
After centrifugation at 1,000 × g for 15 min at room temperature, the supernatant originating from the blood was 
collected in a 50 ml conical tube. The cells from the supernatant were washed twice by centrifugation at 400 × g 
for 10 min at room temperature. The supernatant was removed. Cells were counted and resuspended in a solu-
tion (1:9 DMSO: Fetal bovine serum). After 24 h in a cell container in a –80 °C deep freezer, the stock was stored 
in a liquid nitrogen tank.

scATAC‑seq (macrogen).  LUNA-FL Automated Fluorescence Cell Counter (Logos Biosystems) was used 
to consult the 10 × Genomics Single Cell Protocols Cell Preparation Guide and the Guidelines for Optimal 
Sample Preparation Flowchart (Documents CG00053 and CG000126, respectively) for more information on 
the cell preparation. The prepared cells were used for nuclei isolation according to the guidelines (Documents 
CG000169). Nuclei suspensions were incubated in a Transposition Mix that included transposase. Libraries were 

Figure 4.   Type 2 interferon (IFN) signaling is downregulated at the acute myocarditis stage. (A) The uniform 
manifold approximation and projection (UMAP) plot of scRNA-seq overlaid the RNA expression of IFNG. 
Color gradient represents log normalized gene expression. (B) Box plot showing the STAT1 chromVAR motif 
activity of the immune cell subtype. (C) Uniform manifold approximation and projection (UMAP) plot of 
scRNA-seq overlaying the RNA expression of IRF1. Color gradient represents log normalized gene expression. 
(D, E) Box plot representing Gene Set Variation Analysis (GSVA) score performed to calculate enrichment 
with the GO pathway “GO:0060333_INTERFERON_GAMMA_MEDIATED_SIGNALING_PATHWAY” and 
“GO:0034341_ GOBP_RESPONSE_TO_INTERFERON_GAMMA” from MSigDB v7.4.
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prepared using a chromium controller according to the 10 × Chromium Single Cell ATAC protocol (CG000209). 
Transposed nuclei were mixed with master mix and loaded with single-cell ATAC gel beads and partitioning 
oil into a chromium chip H. Transposed DNA fragments from single cells were uniquely barcoded within each 
droplet during thermal incubation. The barcoded DNA fragments were pooled in one tube and subjected to 
sample-index PCR. The purified libraries were quantified using qPCR according to the qPCR Quantification 
Protocol. Guide (KAPA) and qualified using an Agilent Technologies 4200 TapeStation (Agilent Technologies). 
The libraries were then sequenced using the HiSeq platform (Illumina) according to the read length in the user 
guide.

scRNA‑seq processing.  The scRNA-seq dataset, SRR18209602 and SRR18209603, was obtained from 
a previous study. Datasets were counted with the cellranger v6.143 pipeline using a human reference dataset 
(GRCh38) of 10X Genomics43. Subsequently, datasets were preprocessed with Seurat v4.2.044 to remove low-
quality cells using the following options: 200 < nFeatures < 4000, nCount < 15,000, percent.mt < 5. The filtered 
counts were normalized using the SCTransform45 function, with regression of the mitochondrial and ribosomal 
gene percentages. We used the FindIntegrationAnchors and IntegrateData commands for canonical correlation 
analysis (CCA) of Seurat to correct the batch effect. After integration, counts were log-normalized with the 
NoramlizeData function in Seurat and scaled with the ScaleData function with the default setting. The RunU-
MAP function was used with the first 30 PCs identified in the elbow plot to analyze the dimensional reduction. 
Clustering was performed using FindNeighbors and FindClusters functions, with a resolution of 0.6. Differential 
expression between cell types and samples was assessed with the Seurat FindMarkers function for genes detected 
in at least 10% of cells, higher than 0.25 logFC and lower than 0.05 FDR. The cluster annotation was performed 
in two steps. Annotation was performed by mapping to the azimuth human PBMC reference dataset using 
the FindVariableFeatures and FindTransferAnchors functions of Seurat. The initial annotation was corrected 
according to marker gene expression. Because the scRNA-seq expression matrix is ​​sparse, the imputation of 
missing values was performed for visualization using the expression recovery algorithm ALRA46.

Figure 5.   The proposed model of how chromatin structure differs at the acute BNT162b2-induced myocarditis 
stage.
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scATAC‑seq processing.  scATAC-seq datasets were counted with the cellranger-atac 2.1.047 pipeline 
using a human reference dataset (GRCh38) from 10X Genomics. Subsequently, datasets were preprocessed with 
Signac v1.8.048 to remove low-quality cells with the following options: 3000 < peak region fragments < 30,000, 
15 < pct reads in peaks, 2 < TSS enrichment, nucleosome signal < 4. The filtered counts were normalized using 
the RunTFIDF function, in which frequency-inverse document frequency (TF-IDF) normalizes across cells to 
correct for differences in cellular sequencing depth and across peaks to give higher values to more rare peaks. 
Before integration, we created a common peak set across datasets using the reduce function of the Genomi-
cRanges package and quantified peaks in each dataset using the Signac FeatureMatrix. Dimensional analysis 
was performed using singular value decomposition of the TF-IDF matrix after merging the data. To correct the 
batch effect among datasets, the Harmony v0.1.049 package was used with 2–50 latent semantic indexing (LSI). 
The first LSI component was confirmed to be a technical variation through the DeptCor of Signac. To analyze 
dimensional reduction, the RunUMAP function was used with 2–20 LSIs identified in the elbow plot. Clustering 
was performed using FindNeighbors and FindClusters functions, with a resolution of 0.6. To quantify the acces-
sibility of chromatin associated with each gene, a gene activity matrix was produced by counting the number of 
fragments intersecting the gene body and promoter region using protein-coding genes annotated in the Ensembl 
database (EnsDb.Hsapiens.v86). Gene activity was log-normalized and scaled before annotation. Differential 
chromatin accessibility between cell types and samples was assessed with the Signac FindMarkers function for 
gene activities detected in at least 10% of cells and higher than 0.25 logFC and lower than 0.05 FDR. The gene 
closest to each of the differentially accessible peaks was defined using the ClosestFeature function of Signac. 
Cluster annotation was performed in two steps. Label transfer was conducted using an existing scRNA-seq 
dataset as a reference using the FindTransferAnchors and TransferData functions of Seurat. The initial annota-
tion was corrected according to the marker gene activity and lineage-specific motif activity. Genomic regions 
containing scATAC-seq peaks were annotated, except for clusters without significant DAR, with ChIPSeeker 
1.32.150 and clusterProfiler 4.4.451 using the UCSC database on hg38.

Motif analysis (chromVAR).  We performed Motif analysis using choromVAR v 3.3.219. Motif information 
was added to the peak matrix by Signac AddMotifs using motif position frequency matrices from the JASPAR 
2020 database. ChromVAR activities were calculated using the RunChromVAR wrapper in Signac after match-
ing the set of background peaks. The differential activity was computed using the FindMarker function. We 
performed TF footprinting using the Footprint of Signac48 and visualized the PlotFootprint to predict the bind-
ing location of a TF.

Cis‑element co‑accessibility.  We constructed cis-co-accessible networks (CCANs) with Cicero v 1.3.033 
from the scATAC-seq peak. The Seurat object was converted to the CellDataSet (CDS) format of Monocle3 using 
the as.cell_data_set function of the SeuratWrappers package. CCAN, calculated using the run_cicero function of 
monole3, utilized a k-nearest-neighbors approach, which creates overlapping sets of cells.

Data availability
scATAC seq data and single-cell VDJ analysis relevant to the manuscript have been uploaded to the Sequence 
Read Archive (SRA) BioProjectID PRJNA910983 (Reviewer link: https://​datav​iew.​ncbi.​nlm.​nih.​gov/​object/​
PRJNA​910983?​revie​wer=​banqj​kfk0s​lvf5o​ojvl5​vro65g).
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