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Hantzsch reaction using copper 
nitrate hydroxide‑containing 
mesoporous silica nanoparticle 
with  C3N4 framework as a novel 
powerful and reusable catalyst
Ensiyeh Rahmati  & Zahra Rafiee *

Copper nitrate hydroxide (CNH)‑containing mesoporous silica nanoparticle (MSN) with g‑C3N4 
framework (MSN/C3N4/CNH) was fabricated via a four‑step hydrothermal synthesis method. 
Functionalized MSN‑based  C3N4 was prepared, decorated with CNH, and identified by different 
physicochemical techniques such as FT‑IR, XRD, SEM, EDX, and STA analyses. Then, MSN/C3N4/
CNH composite was utilized as a robust catalyst for the fast fabrication of biologically active 
polyhydroquinoline derivatives with high yields between 88 and 97% via Hantzsch reaction under mild 
reaction conditions and short reaction time (within 15 min) owing to synergistic influence of Lewis 
acid and base sites. Moreover, MSN/C3N4/CNH can be straightforwardly recovered and used up to six 
reaction cycles without a conspicuous decrease in efficiency.

Multicomponent reactions (MCRs) are defined as attractive and powerful synthetic protocols for producing 
highly complex molecules and biological significance molecules owing to the formation of C–C and C–heter-
oatom bonds in a one-pot manner through an easy tandem synthetic method with step-efficiency and atom-
economy1–10. Polyhydroquinoline (PHQ) derivatives as a significant class of nitrogen heterocycle compounds can 
be converted into biological compounds, displaying promising pharmaceutical and biological properties, includ-
ing antitumor, antidiabetic, platelet anti-aggregation, bronchodilator, antibacterial, and  neurotropic11–14. Thus, 
the production of PHQ derivatives is of great importance. The new techniques have been developed to improve 
the reaction efficiency in the preparation of PHQ derivatives in the presence of catalysts including  [CholineCl]
[ZnCl2]3

15, SBA-15@Glycine-Cu16,  Fe3O4@SiO2/ZnCl2
17, ascorbic  acid18, NiAlTi  LDH19, and CNNs-Bu-SO3H20. 

However, some of these synthetic methods suffer from the usage of toxic organic solvents, long reaction time, 
harsh reaction conditions, a great amount of catalyst, and low yields. Consequently, there is further improvement 
toward more sustainable protocol for the fabrication of PHQ derivatives. Lately, remarkable attention has been 
developed to design eco-friendly catalysts and synthetic procedures for the Hantzsch reaction. The environ-
mentally benign processes comprise the use of effective, biodegradable, and economical catalysts and non-toxic 
systems such as solvent-free conditions, water, and supercritical  fluids21–25.

The substantial advance in nanotechnology during the last decades has led to the development of a large 
variety of nanomaterials with outstanding catalysis applications. It is possible to design and construct numerous 
nanomaterials suitable as heterogeneous  catalysts26–37. The support material selection possesses a key role in the 
overall efficiency of the catalyst because these materials impact the catalytic properties of nano-scale  catalysts38,39. 
The materials for catalyst supports indicate the high surface area, capability to disperse the supported metal, and 
chemical stability. Amongst the various support materials, mesoporous silica materials (MSMs) are promising 
materials owing to their thermally and chemically stability, large surface area, easy surface functionalization, good 
biocompatibility, and can be produced with tunable micro/meso  porosity40,41. MSMs are amorphous inorganic 
materials composed of silicon and oxygen elements in their framework with pore diameters ranging from 2 to 
50 nm. The well-defined pore structure of porous silica can function as a molecular sieve at small sizes and may 
ultimately be utilized to control substrate access to the catalyst which is very important in improving/tuning 
the  selectivity42,43. These materials have proved their versatility in  separation44,  sensor45, drug  delivery46, and 
 catalysis47. Carbon nanostructures are especially of attention owing to their promising properties including high 
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specific surface area, excellent mechanical strength, high conductivity, and fascinating physicochemical features. 
Among these, graphitic carbon nitride (g-C3N4) as a free metals material is especially of attention, owing to its 
unique crystal structure, nontoxic, cost-effectiveness, high thermal and chemical stability, and resistance to 
acidic and basic  conditions48.  C3N4 has a stacked two-dimensional structure and can be synthesized easily from 
low-cost precursors such as urea, thiourea, melamine, and cyanamide via pyrolysis. Owing to its promising fea-
tures, g-C3N4 and its composites are applied in a variety of photocatalytic  applications49. So far, g-C3N4 has been 
utilized as a catalyst or catalyst support in various organic  reactions50–55. However, the practical application of 
g-C3N4 is limited by its low surface area, insufficient light absorption, reduction potential, inappropriate rapid 
recombination, and large diffusion resistance of charges. The g-C3N4 can enhance the surface area, promote 
charge transfer and mass diffusion through nanostructure materials design.

Copper hydroxide nitrate,  [Cu2(OH)3NO3], is a basic copper(II) salt with a layered structure, that have appli-
cations in vehicle airbags, catalyst, and ion  exchangers56–60.  [Cu2(OH)3NO3] exists as two structurally related 
dimorphs, a synthetic metastable monoclinic phase and a natural orthorhombic phase occurring in the mineral 
gerhardtite. The structure can be observed as layers of copper octahedra stacked with each other. The Cu octa-
hedral form layers of stoichiometry  [Cu2(OH)3]+, and  NO3

− ions stand in between the positive layers for charge 
balance, which are linked to the hydroxyl groups via hydrogen bonding belonging to the copper octahedra layers.

In this study, g-C3N4/MSN was fabricated and utilized as a support to load copper nitrate hydroxide (CNH) 
 (Cu2(OH)3NO3) and emerged as a competent heterogeneous nanocatalyst for the Hantzsch reaction.

Experimental
Preparation of MSN. 0.2 g of glucose was dissolved in 90 mL of ethanol. Then, 4 mL of TEOS (as the silica 
source) and 6 mL of distilled water were added to the above solution and subsequently stirred at room tempera-
ture for 12 h. The solid was separated by centrifuge and washed with distilled water and ethanol, respectively. The 
obtained white solid calcined at 550 °C for 6 to the production of porous silica hollow sphere.

Synthesis of MSN/C3N4. 1.0 g of MSN, 5.0 g of urea, and 3 wt% of KBr were placed in a porcelain dish and 
the mixture was ground completely. Subsequently, the reaction was performed at 550 °C for 2 h in a crucible for 
calcination.

Synthesis of MSN/C3N4/CNH. 0.25 g of MSN/C3N4 and 0.15 g of Cu(NO3)2·3H2O were mixed in 40 mL of 
ethanol and heated under reflux conditions and argon atmosphere for 24 h. The resultant precipitate was washed 
(ethanol) and dried at 80 °C under vacuum for 10 h.

The Hantzsch reaction using MSN/C3N4/CNH catalyst. General procedure. A mixture of MSN/
C3N4/CNH (15 mg), ammonium acetate (1.4 mmol), dimedone (1 mmol), ethyl acetoacetate (1 mmol), and 
aldehyde (1 mmol) was stirred at 50 °C, as monitored via TLC (ethyl acetate/n-hexane 50:50) for a complete 
reaction. Then, 10 mL of solvent (warm ethanol) was added to the mixture and MSN/C3N4/CNH was separated 
via filtration. The underlying solution was heated to boiling temperature and then a piece of ice was added to 
precipitate the desired crystalline product. The solvent was vaporized and ethanol was utilized to crystallize the 
resultant product. Then, the recovered MSN/C3N4/CNH was reused in six runs under similar conditions as the 
first run to represent the recyclability and stability of the prepared catalyst.

Results and discussion
Synthesis of MSN/C3N4/CNH. An adequate amount of TEOS as silica precursor was added to a mixture of 
glucose as sacrificial template and carbon source and ethanol as a solvent. After calcination at elevated tempera-
ture, glucose was removed. MSN/C3N4 was fabricated via calcination technique onto MSN surface using urea 
as a precursor. MSN/C3N4 was applied as support material to anchor CNH to afford MSN/C3N4/CNH (Fig. 1).

Characterization of synthesized compounds. FTIR spectra of silica-glucose sample without calcina-
tion (a), MSN (b), MSN/C3N4 (c), and MSN/C3N4/CNH (d) are revealed in Fig. 2. The spectrum of non-calcined 
sample showed the board peak at 1087  cm−1 (Si–O–Si groups) and the band at 2923  cm−1 (C–H bonds). After 
calcination, the absorption peak of C–H bonds disappeared due to decomposition of templet, while the peaks 
of silanol and siloxane remained. In the spectrum of MSN, the peak appeared at 3429   cm−1 belonged to the 
stretching vibration of O–H; the absorption bands at 1082 and 810  cm−1 assigned the asymmetric and symmet-
ric stretching vibrations of Si–O–Si, respectively. In the spectrum of MSN/C3N4, the broad band in the range 
of 3500–3000  cm−1 indicates the presence of N–H stretching vibration of the terminal amino group in g-C3N4. 
The peak around 1640  cm−1 contributed to the stretching mode of C=N bonds. The intense bands observed at 
1560, 1427, 1320, and 1243  cm−1 were due to the presence of C–N stretching of tri-s-triazine. The band around 
800  cm−1 reveals out-of-plane bending vibration of triazinecycle. In the spectrum of MSN/C3N4/CNH, the peak 
at 3427  cm−1 corresponds to the stretching vibration of the O–H of molecular water, and the band at 1662  cm−1 
is owing to the bending mode of  H2O molecules. The presence of  NO3

− in MSN/C3N4/CNH is evidenced by 
the vibration bands that appeared from middle to lower wavenumbers, confirming the presence of mono- or 
polydentate nitrate ligands. The sharp absorption bands at 1052 and 1393   cm−1 revealing for copper nitrate 
hydroxide. The bands at 1384  cm−1 (strong) and 872  cm−1 are related to  NO3 groups. The absorption band at 
1052  cm−1 was assigned to the bending vibration of Cu–O–H. Besides, the peaks in the range of 700–500  cm−1 
were attributed to the presence of metal–oxygen bonds.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9517  | https://doi.org/10.1038/s41598-023-36059-7

www.nature.com/scientificreports/

The XRD pattern of MSN (a) and simulated CNH, and MSN/C3N4/CNH (b) was described in Fig. 3. The XRD 
pattern of MSN exhibits a broad diffraction peak at approximately 22° which is characteristic of amorphous silica. 
In the XRD pattern of MSN/C3N4/CNH, all diffraction peaks can be well indexed to a pure phase of CNH with 
a monoclinic structure (JCPDS No. 74-1749). The intensive and clear peaks confirmed that MSN/C3N4/CNH 
nanocomposite is well crystallized. No peaks could be appeared for the impurities including Cu, CuO,  Cu2O, 
Cu(OH)2, or Cu(NO3)2, demonstrating the high purity of MSN/C3N4/CNH nanocomposite. Furthermore, the 
peak at 27.5°, which corresponded to the (002) plane, was designated graphitic interlayer stacking structure of 
g-C3N4.

In FE-SEM image of MSN/C3N4/CNH composite, spherical nanoparticles were visible, distributed uniformly 
over the support material with some agglomeration (Fig. 4).

The average particle size was found to be around 22–38 nm. The energy dispersive X-ray (EDS) analysis proves 
the existence of Cu along with Si, N, C, and O elements in MSN/C3N4/CNH composite (Fig. 5).

The thermal stability of MSN/C3N4/CNH nanocomposite was examined by the simultaneous thermal analysis 
(STA) under a nitrogen atmosphere (Fig. 6). The initial mass loss at 125 °C is due to the evaporation of adsorbed 
 H2O molecules. Between 220 and 280 °C, a mass loss is attributed to  Cu2(OH)3NO3 decomposing into CuO 
and the removal of  H2O,  NO2, and  O2. There is a weight loss between 390 and 520 °C, which is assigned to the 
combustion of g-C3N4.

Catalytic activity test. The catalytic application of MSN/C3N4/CNH is tested in the Hantzsch reaction 
under diverse conditions (Table 1). The results illustrated that the reaction progress is highly affected by the 

Figure 1.  Preparation of MSN/C3N4/CNH nanocomposite.
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amount of catalyst, temperature, and solvent. The amount of MSN/C3N4/CNH suitable to catalyze the reaction 
was examined by varying the amount of MSN/C3N4/CNH (5, 10, 15, and 20 mg) in the model reaction (ammo-
nium acetate, dimedone, ethyl acetoacetate, and benzaldehyde). It was observed that the yield of the product 
enhanced with increasing the amount of MSN/C3N4/CNH from 5 to 10 mg (Table 1, entries 1 and 2). The best 
result in an appropriate time was obtained using 10 mg of catalyst (Table 1, entry 2). It is important to note that 
in the presence of 15 and 20 mg of MSN/C3N4/CNH the same result as 10 mg was observed (Table 1, entries 3 
and 4). The efficiency of MSN/C3N4/CNH catalyst was also considerably affected by solvent (Table 1). Among 

Figure 2.  FT-IR spectra of non-calcined silica-glucose sample (a), MSN (b), MSN/C3N4 (c), and MSN/C3N4/
CNH (d).
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the applied solvents including toluene, acetonitrile, ethanol, water, and under solvent-free conditions, the best 
result was obtained after 15 min under solvent-free conditions in excellent yield (Table 1, entries 5–9). Toluene 
delivered a low yield (25%) of the corresponding product (entry 5). Water proved to be a much better solvent 
in terms of yield (entry 8) than the others tested solvents including acetonitrile (entry 6), and ethanol (entry 
7), which afforded the desired product in moderate yields (25–55%). With increasing temperature from room 
temperature to 50 °C, a dominant increase in the yield was observed (Table 1, entries 9–12). With the increasing 
temperature up to 70 °C, no change in product yield was observed (Table 1, entries 13 and 14).

The reactions of various aldehydes possessing either electron-donating or electron-withdrawing substituents 
with ethyl acetoacetate, dimedone, and ammonium acetate in the presence of a catalytic amount (10 mg) of MSN/
C3N4/CNH afforded high yields of the corresponding polyhydroquinoline derivatives (88–97%) in a short time 
under the optimized model reaction conditions (Table 2). The results demonstrate that the type and position of 
the substituent possess no substantial influence on the activity of MSN/C3N4/CNH catalyst. The results confirm 
the outstanding efficiency of MSN/C3N4/CNH for the conversion of an extensive range of aldehydes.

Figure 3.  XRD patterns of MSN (a) and simulated CNH, and MSN/C3N4/CNH (b).
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The proposed mechanism for the synthesis of polyhydroquinoline compounds via the Hantzsch reaction is 
depicted in Fig. 7. As CNH was comprised of copper hydroxide, Cu–OH bonds would exist, and Cu–OH cluster 
has been considered an active site for the construction of polyhydroquinoline. MSN/C3N4/CNH catalyst has 
both Lewis acidic sites (Cu) and basic sites (OH and  C3N4), hence it is an efficient heterogeneous catalyst for 
the Hantzsch reaction. According to literature, Cu–OH would firstly activate the carbonyl group of aldehyde by 
interacting oxygen with Cu metal. The role of MSN/C3N4/CNH comes in steps 1 and 4, in which catalyzes the 
Knoevenagel type coupling of aldehydes with 1,3-dicarbonyl compounds and in steps 3 and 6 where it catalyzes 

Figure 4.  SEM image of MSN/C3N4/CNH.

Figure 5.  EDS of MSN/C3N4/CNH.
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Figure 6.  STA thermogram of MSN/C3N4/CNH.

Table 1.  The effect of catalyst loading, temperature and solvent in the Hantzsch reaction. Significant values 
are in bold. Reaction conditions: benzaldehyde (1 mmol), dimedone (1 mmol), ethyl acetoacetate (1 mmol), 
ammonium acetate (1.4 mmol).

Entry Catalyst (mg) Time (min) T (°C) Solvent Yield (%)

1 5 15 50 – 47

2 10 15 50 – 94

3 15 15 50 – 94

4 20 15 50 – 94

5 10 15 50 Toluene 25

6 10 15 50 Acetonitrile 45

7 10 15 50 Ethanol 55

8 10 15 50 H2O 70

9 10 15 r.t – 45

10 10 15 30 – 65

11 10 15 40 – 84

12 10 15 50 – 94

13 10 15 60 – 94

14 10 15 70 – 94
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the Michael addition of intermediates A, B and C, D to provide the corresponding product. A second important 
intermediate is enamine B, formed via the condensation of ammonia with ethyl acetoacetate.

Reusability of MSN/C3N4/CNH. After demonstrating the activity of MSN/C3N4/CNH catalyst for the var-
ious reactions, its reusability was examined in the model reaction. In each cycle, MSN/C3N4/CNH was straight-
forwardly recovered, washed with ethanol, and dried at 60 °C. The reaction was repeated and the results exhib-
ited that MSN/C3N4/CNH could be reused up to six times with a slight reduction in the catalytic activity (Fig. 8). 
This observation confirms the high recycling efficiency of MSN/C3N4/CNH, which is a noteworthy property 
from economic and environmental points of view.

Comparison of MSN/C3N4/CNH with previously reported catalysts for the Hantzsch reac‑
tion. The performance of the MSN/C3N4/CNH catalyst was compared with that of catalysts reported in lit-
erature for the unsymmetrical Hantzsch reaction (Table 3). It is found that MSN/C3N4/CNH catalyst is superior 
to the majority of the reported catalysts in terms of cost-effectiveness, simplicity, short reaction time, amount of 
catalyst, type of solvent, and mild conditions.

Conclusions
CNH grown on MSN/C3N4 surface was fabricated and utilized as a recoverable and powerful nanocatalyst for the 
one-pot construction of polyhydroquinolines in 15 min with a quantity of catalyst 10 mg at 50 °C under solvent-
free conditions. The exceptional performance of MSN/C3N4/CNH catalyst can be attributed to the acid–base 
sites synergistic catalysis present in the catalyst. MSN/C3N4/CNH was straightforwardly recovered and reused 
six times with a slight reduction in the catalytic activity. The benefits of using MSN/C3N4/CNH catalyst include 
the low amount of catalyst, short reaction time, and solvent-free media (Supplememtary Figures).

Table 2.  Synthesis of polyhydroquinoline derivatives by using MSN/C3N4/CNH catalyst under solvent free 
conditions. Reaction conditions: aldehyde (1 mmol), dimedone (1 mmol), ethyl acetoacetate (1 mmol), 
ammonium acetate (1.4 mmol), catalyst (10 mg) and reaction time (15 min).

Entry R R′ Yield (%)

1 C6H5 Et 94

2 C6H5 Me 94

3 4-NO2C6H5 Et 96

4 4-NO2C6H5 Me 95

5 4-ClC6H5 Et 96

6 2-BrC6H5 Et 97

7 4-MeC6H5 Et 90

8 4-OHC6H5 Et 92

9 3-EtO-4-OHC6H5 Et 88
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Figure 7.  Proposed mechanism of catalytic synthesis of polyhydroquinolines using MSN/C3N4/CNH.

Figure 8.  Reusability of the MSN/C3N4/CNH.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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