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Inferring pseudogene–MiRNA 
associations based on an ensemble 
learning framework with similarity 
kernel fusion
Chunyan Fan 1* & Mingchao Ding 2

Accumulating evidence shows that pseudogenes can function as microRNAs (miRNAs) sponges 
and regulate gene expression. Mining potential interactions between pseudogenes and miRNAs 
will facilitate the clinical diagnosis and treatment of complex diseases. However, identifying their 
interactions through biological experiments is time-consuming and labor intensive. In this study, an 
ensemble learning framework with similarity kernel fusion is proposed to predict pseudogene–miRNA 
associations, named ELPMA. First, four pseudogene similarity profiles and five miRNA similarity 
profiles are measured based on the biological and topology properties. Subsequently, similarity 
kernel fusion method is used to integrate the similarity profiles. Then, the feature representation 
for pseudogenes and miRNAs is obtained by combining the pseudogene–pseudogene similarities, 
miRNA–miRNA similarities. Lastly, individual learners are performed on each training subset, and 
the soft voting is used to yield final decision based on the prediction results of individual learners. 
The k-fold cross validation is implemented to evaluate the prediction performance of ELPMA 
method. Besides, case studies are conducted on three investigated pseudogenes to validate the 
predict performance of ELPMA method for predicting pseudogene–miRNA interactions. Therefore, 
all experiment results show that ELPMA model is a feasible and effective tool to predict interactions 
between pseudogenes and miRNAs.

Non-coding RNAs (ncRNAs) refer to the RNA molecules that could not translate into proteins, which composed 
up to about 98% of the human genome. These ncRNAs play an essential role in epigenetic regulation of gene 
expression at transcriptional and post-transcriptional levels. Pseudogenes are defined as incomplete copies of 
genes that code for proteins, but lack of coding function. However, pseudogenes could be transcribed into ncR-
NAs and be considered as regulators in organisms. MicroRNAs (miRNAs) are a class of small, single stranded, 
non-coding RNAs, which are involved gene expression at post-transcriptional level1. By binding to targeting 
mRNAs, miRNAs cause degradation and translation repression of mRNAs2. The fine-tuning of gene regulation 
by pseudogenes and miRNAs has attracted attentions in many biological processes.

Pseudogenes and miRNA are essential components of competing endogenous RNAs (ceRNAs) network. 
ceRNA hypothesis is proposed to describe the interactions among ceRNAs members and miRNAs3. The ceR-
NAs members include pseudogenes, long noncoding RNAs (lncRNAs), circular RNA (circRNAs), and protein-
coding RNAs, etc. The ceRNAs could form a ceRNA network modulate mRNA expression and regulate protein 
levels. Recent experimental results show that abnormal expression and dysregulations of both pseudogenes and 
miRNAs are related to complex diseases. For example, pseudogene GBAP1 contributes to the development and 
progression of gastric cancer by sequestering the miR-212-3p from binding to GBA4. Therefore, pseudogenes 
and miRNAs can interact with each other, which jointly associated the occurrence of human diseases. However, 
it is very laborious and time-consuming to verify the associations between pseudogenes and miRNAs through 
biological experiments. So reasonable and effective computational methods is urgently need to mine the associa-
tions between pseudogenes and miRNAs.

Identifying pseudogene–miRNA associations contribute to discover more biological mechanisms in biologi-
cal process and disease states. Compared with biological methods, the computational approaches are less time 
consumption. In the area of miRNA research, mining the potential miRNA-disease associations is a high hop 
topic5–8. For example, RWRMMDA model is proposed to predict the miRNA-disease associations by integrating 
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multiple similarities, which also used improved extended random walk with restart algorithm based on miRNA 
similarity-based and disease similarity-based heterogeneous networks9. Zhou et al.10 proposed GBDT-LR method 
to prioritize miRNA candidates for diseases by combining gradient boosting decision tree with logistic regres-
sion. Besides, a large number of computational models are also developed to forecast other ncRNA associations 
and disease-biomolecule associations, for example, predicting the lncRNA–miRNA11,12, circRNA–miRNA13,14, 
lncRNA–disease15,16, circRNA–disease17–19, drug–disease20 interactions. Motived by these ncRNA interaction 
prediction, Zhou et al.21 incorporates feature fusion and graph auto-encoder to predict pseudogene–miRNA 
associations. In the model, various perspective attribute information for pseudogenes and miRNAs is obtained 
as their similarity features, and graph auto-encoder is used to obtain the low-dimensional representation of 
nodes. Then, the low-dimensional vector is fed into Extreme Gradient Boosting (XGBoost) to predict the pseu-
dogene–miRNA associations. Compared with these ncRNA-miRNA and ncRNA-disease association prediction, 
only one computational model is developed to predict pseudogene–miRNA associations. Therefore, it still exists 
some limitations for further improvement. Especially, there is an urgent need to develop more accurate and 
efficient computational methods to infer associations between pseudogenes and miRNAs.

In this study, an ensemble learning framework with similarity kernel fusion (SKF) method is developed to 
mine the pseudogene–miRNA associations, named ELPMA. First, GIP kernel similarity, hamming profile simi-
larity, cosine similarity for pseudogenes and miRNAs is calculated based on the known pseudogene–miRNA 
associations. Then, pseudogene expression similarity and miRNA function similarity are computed based on the 
pseudogene expression profiles and miRNA–target information, respectively. Besides, the pseudogene similarities 
and miRNA similarities are fused using SKF method. Then, the feature representation of pseudogene–miRNA 
interactions is constructed by combing the pseudogene–pseudogene similarity, miRNA–miRNA similarity, and 
experimentally validated pseudogene–miRNA associations. Next, resampling method is used to build multiple 
different balanced pseudogene–miRNA association training subsets, which could reduce the bias of small-
scale samples. Finally, individual learners are performed on each subset to obtain the primitive outcomes, and 
the soft voting is used to yield final decision based on the prediction results of individual learners. To assess 
the effectiveness of ELPMA model, five-fold cross validation is implemented applied to assess the prediction 
performance of our proposed method. As a result, the mean area under the ROC curve (AUC) and mean area 
under the precision-recall curve (AUPR) of ELPMA method achieved 0.9896 and 0.9913, respectively. Accord-
ing to comparison with other four methods, assessment results shown that ELPMA method obtain comparable 
performance. In the case studies, the predicted miRNAs for the three investigated pseudogenes are also used to 
validate the prediction performance of ELPMA method. All the results shown that our proposed model could 
serve as a recommendable tool for predicting pseudogene–miRNA associations.

Materials and methods
Gold standard data set.  The pseudogene–miRNA associations are obtained from starBase v2.0, in which 
very high stringency of pseudogene symbol is selected22. After screening and removing redundancy, 1570 experi-
mentally supported pseudogene–miRNA associations is sorted out, covering 318 pseudogenes and 260 miRNAs. 
In this study, a pseudogene–miRNA adjacency matrix PM(i, j) is constructed based on the validated associations 
between pseudogenes and miRNAs. If there is an association between pseudogenes p(i) and miRNAs m(j), PM(i, 
j) is assigned as 1, otherwise 0.

Expression similarity for pseudogenes.  The expression level of pseudogenes in various cancers and 
normal tissues is obtained from dreamBase database23. In dreamBase database, expression information of pseu-
dogenes is selected as the characteristic information of pseudogenes. When two pseudogenes have a higher cor-
relation score tend to be more similarity expressed. The pseudogene expression profiles are measures as follows:

where N is the number of properties of the expression profiles, xk and yk denote the expression values in different 
cancers and normal tissues.

Function similarity for miRNAs.  Given that miRNAs targeting more of the same genes tend to be involved 
in similar biological function. The interactions between miRNA and target gene information are obtained from 
miRTarBase24. The miRNA–target interactions are employed to measure the miRNA function similarity for each 
pair of miRNAs. If two sets of target genes (say Gi and Gj) respectively have relationship with miRNA Mi and 
miRNA Mj, the miRNA function similarity is calculated as follows:

where Gi and Gj represent the sets of target gene that related with miRNAs.

GIP kernel similarity for pseudogenes and miRNAs.  The GIP kernel similarity is applied to calculate 
the similarity between pseudogenes and miRNAs based on the known pseudogene–miRNA association adja-
cency matrix25. The GIP kernel similarity for pseudogenes can be calculated as follows:

(1)SP_EP(mi ,mj) =
∑N

k=1 (xk − x)(yk − y)
√

∑N
k=1 (xk − x)2

∑N
k=1 (yk − y)2

(2)SM_FS(mi ,mj) =
card(Gi ∩ Gj)√

card(Gi) ·
√

card(Gj)
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where p(i) represents the pseudogene interaction profiles, which is a binary vector that encode the interaction 
between pseudogene i and all miRNAs, i.e., the i-th row of the gold standard pseudogenes-miRNA adjacency 
matrix PM. The parameter γp controls the kernel bandwidth. np is the number of pseudogenes.

Similar to pseudogenes, the GIP kernel similarity for miRNAs is defined as:

where m(i) represents the miRNA interaction profiles, which is a binary vector that encode the interaction 
between miRNA i and each pseudogene, i.e., the i-th column of adjacency matrix PM. The parameter γm is also 
used to control the kernel bandwidth. nm is the number of miRNAs.

Hamming profile similarity for pseudogenes and miRNAs.  Given the length for a pair of vectors are 
same, hamming profile is the number of elements of which corresponding values are different. The higher Ham-
ming profile value represents the two vector has lower similarity. Hamming profile similarity for pseudogenes 
is calculated as follows:

where IP(pi) is the i-th row of the pseudogene–miRNA adjacency matrix PM.
Similarly, the hamming profile similarity for miRNA is defined as follows:

where IP(mi) is the i-th column of the pseudogene–miRNA adjacency matrix PM.

Cosine similarity for pseudogenes and miRNAs.  Cosine similarity algorithm has been widely used in 
the collaborative filtering recommendation algorithm. Here, based on known pseudogene–miRNA associations, 
the similarity of pseudogenes pi and pj is defined as follows:

where r represents the number of pseudogenes. The binary vector PM(pi) indicates whether exist an association 
between pseudogene pi and each miRNA (the row i of the PM matrix, if pi is related to miRNA, otherwise 0). 
Meanwhile, SP_cos(pi, pj) represents the cosine similarity between pseudogene pi and pj. SP_cos is the pseudogene 
cosine similarity matrix.

Similarly, the cosine similarity of miRNA mi and miRNA mj is computed as follows:

where MP(mi) denotes whether there is an association between miRNA mi and each pseudogene (the column of 
MP matrix, if mj is related to pseudogene, otherwise 0). SM_cos(mi, mj) is the cosine similarity between miRNA 
mi and miRNA mj. The SM_cos is the miRNA cosine similarity matrix. n is the number of miRNAs.

Integrated similarity by similarity kernel fusion method.  In this study, four kinds of pseudogene 
similarities and five miRNA similarities are calculated. The integrated pseudogene similarity is measured by 
combining pseudogene expression similarity, pseudogene GIP kernel similarity, pseudogene hamming profile 
similarity, pseudogene cosine similarity. The integrated miRNA similarity is calculated by combining miRNA 
function similarity, miRNA GIP kernel similarity, miRNA hamming profile similarity and cosine similarity. Here, 
similarity kernel fusion method is used to fuse the four pseudogene similarities and five miRNA similarities26. 
Let Sp,r (r = 1,2,…,4) represents the four pseudogene similarities and Sm,n (n = 1,2,…,5) represents the five miRNA 
similarities, respectively.

Firstly, each original kernel for pseudogenes is normalized by Eq. (9).

(3)
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where when NSp,r satisfies 
∑

ck∈C NSc,m(ck , cj) = 1 , NSp,r is the normalized pseudogene similarity.
Then, a sparse kernel for each pseudogene similarity is computed by Eq. (10).

where Fc,m is a sparse kernel and it satisfies 
∑

cj∈C Fc,m(ck , cj) = 1. Ni is a set of pi’s neighbors including ci itself.
Therefore, four pseudogene similarities could be computed as Eq. (11).

where SPt+1
p,r  is the status matrix of r-th pseudogene similarity kernel after t + 1 iterations.SP0p,k denotes the initial 

status of Sp,k.
After t + 1 steps, the overall kernel for pseudogenes is calculated as Eq. (12).

Finally, a weight matrix wp is used to remove the noise in the matrix Sp.

The fused pseudogene similarity is computed as Eq. (14).

Similarly, the integrated miRNA similarity as Sm
* is computed, in which involved five miRNA similarities to 

be fused.

Ensemble learning framework with resampling method.  To predict the potential pseudogene–
miRNA associations, an ensemble learning framework with similarity kernel fusion method is proposed. 
Inspired by the previous research27,28, ELPMA model is proposed through the following steps: (1) using the resa-
mpling method to obtain multiple different training subsets, and the diversity of individual learners is increased; 
(2) to integrate the prediction results of individual learners, soft voting is employed to obtain the final prediction. 
The process of constructing the ensemble learning framework is shown in Fig. 1.

Resampling strategy.  There are 1570 experimentally confirmed pseudogene–miRNA associations as posi-
tive samples, and 81,110 unconfirmed pseudogene–miRNA pairs as unlabeled samples. So only a small part of 
experimentally confirmed pseudogene–miRNA associations. To settle the problem caused by the imbalanced 
dataset, the resample strategy is employed to build multiple different balanced training subsets. The negative 
samples are guaranteed to have the same number with positive samples. When construct a subset, all positive 
samples are sort out, and same unlabeled samples are randomly selected as negative samples. Then, the negative 
samples and positive training sample are combined to balance the positive and negative samples. The training set 
of positive sample P and the unlabeled sample set U are defined as follows:

(9)NSp,r(pi , pj) =
Sp,r(pi , pj)

∑

pk∈P Sp,r(pk , pj)

(10)Fp,r(pi , pj) =
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pk∈Ni Sp,r (pi ,pk)
pj ∈ Ni

0 pj /∈ Ni
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∑
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t
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2
× FTp,r)+ (1− α)(

∑

k �=1 SP
0
p,k

2
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4
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Figure 1.   Ensemble learning framework for the pseudogene–miRNA association prediction.
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where P represents the positive samples, and U denotes the unknown pseudogene–miRNA association samples.
In each training subset, the number of unlabeled pseudogene–miRNA associations is the same as the number 

of positive samples. The set N (N ∈ U) represents the negative samples selected from U, and the number of N is 
same as the number of P. The set of T = P ⋃ N is the training set in base learning.

Sample representation.  To learn the pseudogenes and miRNAs potential feature representation, multiple 
data source is incorporated to obtain the integrated similarities for pseudogenes and miRNAs. Here, a pseudo-
gene–miRNA pair was taken as a sample. The feature vector of i-th pseudogene, FP(p(i)), is defined as follows:

where Np represents the number of pseudogenes. Similarly, the feature vector of jth miRNA, FM(m(j)), is defined 
as follows:

where Nm represents the number of miRNAs. Then, the feature vector of each pseudogene–miRNA pair (p(i),m(j)) 
is defined by combining the FP(p(i)) and FM(m(j)) as follows:

Soft voting for pseudogene–miRNA association prediction.  Ensemble learning combines multiple 
individual learners to increase the prediction performance compared to individual models. Owing to the train-
ing subsets are different and the feature spaces of the subsets are heterogenous, the trained individual learners 
are also different from each other. In this study, an ensemble learning framework is developed by using the 
XGBoost as individual learner on the multiple sample subsets. XGBoost is a machine learning algorithm in 
which regression trees is used as functions in gradient boosting to optimize trees29.

Set the output of a tree as shown below:

where xi is the input vector, q represents the structure of each tree and wq represents the score of the leaf node 
q. The output of the set of K trees is:

where K is the number of regression functions, the objective function for learning the set of fk is shown as follows:

where l represents the loss function between the observed value yi and predict value ŷi . Ω(fk) is the regularization 
term to avoid overfitting. γ is the pseudo-regularization hyperparameter. λ is the L2 norm for leaf weights. T is 
the total number of leaf nodes.

The optimal objective function value could be written as:

where I is the set of leaf nodes, gi is the first derivative of l and hi is the second derivative of l.
Here, the outputs of XGBoost are taken as primitive results. Then, the soft voting is used to make the final 

decision. The prediction scores of individual learners are averaged, and confirmed whether the pseudogene is 
associated with each other. Take an unknown pseudogene–miRNA association as sample input, n individual 
learners could produce n prediction results, and then the n prediction results are integrated by using the soft 
voting strategy30. Specifically, the output of the i-th sample by soft voting is defined as follows:

where O(i,j) is the prediction scores of the j-th individual learners for the i-th sample. n represents the number 
of training subsets. O(i) > 0.5 represents the pseudogene–miRNA pair is associated; otherwise, it is considered 
to be not associated with each other.

(16)U = {p(i),m(j)||PM(p(i),m(j)) = 0}

(17)FP(p(i)) = (SP(p(i), p(1)), SP(p(i), p(2)), . . . , SP(p(i), p(Np)))
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(21)ŷi =
∑K

k=1
fk(xi)

(22)
L(ϕ) =

n
∑

i=1

l(yi , ŷi)+
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Results
Performance evaluation.  In this work, k-fold cross validation is employed to evaluate the performance of 
the ELPMA model. The validated pseudogene–miRNA associations are regarded as the positive set, and equal 
number of samples are randomly selected from the negative sample set as negative samples. For each cross vali-
dation, (k-1) positive subsets and the same number of negative subsets took from k subsets to train the models; 
the remaining one positive subset and one negative subset are used for testing to evaluate the prediction per-
formance. Specifically, fivefold and tenfold cross validation are used to evaluate the prediction performance of 
ELPMA model. Moreover, several metrics are used to measure the prediction performance of ELPMA method, 
including precision (Pre), sensitivity (Sen), accuracy (Acc), F1-score, AUC (Area under the receiver operating 
characteristic curve), AUPR (Area under the precision-recall curve), and MCC (Matthews’s correlation coef-
ficient). The calculation formulas of these metrics are shown as follows:

where TP and TN represent the number of true positives and true negatives, respectively. FP and FN represent 
the number of positives and negatives, respectively, that are wrongly predicted.

Performance analysis of ELPMA method with different individual learners.  To assess the ability 
of the ELPMA method to predict the associations between pseudogenes and miRNAs, fivefold cross validation 
is implemented on the gold standard data set. In the ensemble framework, different individual learners could 
affect the prediction performance. Here, AdaBoost, Random Forest (RF), Extreme Gradient Boosting (XGB) 
and Extremely Randomized Trees (ERT) are used as the individual learners, respectively. The individual learners 
are represented as ELPMA-AB, ELPMA-RF, ELPMA-XGB and ELPMA-ERT, respectively. In the ELPMA model, 
parameter selection are important factors, and the hyper-parameters of each model are tuned. For example, the 
number of individual learners of ELPMA is range from 2 to 20 with steps of 1. Furthermore, the range of hyper-
parameter turning of ELPMA-XGB is as that n_estimators are selected from [50, 100, 200, 300, 400, 500], the 
learning rate is set from 0.1 to 0.9 with an interval of 0.1. The range of hyper-parameter turning of ELPMA-ERT 
is as that the value of max_depth is selected from [10, 20, 30, 40, 50] and the n_estimators are selected from 
[50, 100, 200, 300, 400, 500]. In addition, different hyper-parameters of ELPMA-AB and ELPMA-RF model are 
selected to obtain optimal performance. Finally, the prediction performance of the ELPMA model that using 
different individual learners is listed in Table 1. When the number of individual learners, n_estimators, learn-
ing rate are respectively set as 10, 400, 0.2, ELPMA-XGB yields the Precision of 0.9716, the Recall of 0.9369, the 
F1-score of 0.9540, the Acc of 0.9548, the AUC of 0.9897, the AUPR of 0.9914. As shown in Table 1, ELPMA-
XGB is higher than other models in these seven metrics.

In addition, the ROC curves of the k-fold cross validation are plotted by the proposed ELPMA-XGB method, 
respectively. The experimental results show that ELPMA-XGB achieves mean AUC values of 0.9897 and 0.9906 
for the fivefold and tenfold cross validation (Fig. 2). Therefore, ELPMA-XGB model is appropriate as the indi-
vidual learners of ELPMA method for the prediction of pseudogene–miRNA associations.

Influence of training data on model performance.  In the task, experimentally validated pseudogene-
miRNA associations are selected as the only information source for model construction. The number of known 

(25)Pre = TP

TP + FP

(26)Sen = TP

TP + FN

(27)Acc = TP + TN

TP + TN + FP + FN

(28)F1− score = 2× Sen× Pre

Sen+ Pre

(29)MCC = TP ∗ TN − FP ∗ FN√
(TP + FN) ∗ (TP + FP) ∗ (TN + FN) ∗ (TN + FP)

Table 1.   The prediction performance of ELPMA model using different individual learners. Significant values 
are in bold.

Model Precision Sensitivity F1-score Acc AUC​ AUPR MCC

ELPMA-AB 0.7118 0.7153 0.7128 0.7124 0.7822 0.8000 0.4257

ELPMA-RF 0.9362 0.8592 0.8959 0.9003 0.9568 0.9664 0.8035

ELPMA-ERT 0.9650 0.8962 0.9292 0.9318 0.9793 0.9832 0.8660

ELPMA-XGB 0.9716 0.9369 0.9540 0.9548 0.9897 0.9914 0.9102
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pseudogene-miRNA associations may influence the prediction of our method ELPMA. To evaluate the impact of 
the number of training data on the performance, we used different proportions of training data to implement the 
ELPMA model. The fivefold and tenfold cross-validation results obtained by ELPMA is shown in Table S1. The 
results shown that the performance of ELPMA model getting better with the training data increasing. Therefore, 
the size of the training data has a great influence on the prediction performance of ELPMA model. With the 
number of training data increasing, the prediction performance of is also increased.

Effectiveness of soft voting for the ensemble learning framework.  To demonstrate the effective-
ness of the soft voting for the ensemble learning method, the soft voting performance is compared with indi-
vidual learners on ELPMA model. Detailed results of the comparison are shown in Fig. 3. In the figures, the 
horizontal axis represents the index number of individual learners, and the vertical axis are the AUC values and 
AUPR values. From the Fig. 3, we also seen that the AUC of individual learners is between 0.9823 and 0.9849, 
and the AUPR of individual learners is between 0.9849 and 0.9873 under fivefold cross validation. The results 
indicate that soft voting in the proposed method could improve the prediction performance of ELPMA model. 
It also indicates that ELPMA is an effective framework to predict the pseudogene–miRNA interactions.

Comparison with other existing methods.  To comparatively illustrate the superiority of ELPMA 
method, GBDT-LR10, ABMDA31, CD_LNLP17, and LAGCN20 are compared with ELPMA method to predict the 
pseudogene–miRNA interactions. These five methods are individual evaluated based on gold standard data set 
with k-fold cross validation and recommended hyperparameters. As show in Fig. 4, ELPMA shows the best per-
formance in term of the average AUC values under fivefold and tenfold cross validation. It shows that the ROC 
curves of ELPMA model is above those of GBDT-LR, ABMDA, CD_LNLP and LAGCN method in most cases. 
The average AUC scores of ELPMA method are up to 0.9897 and 0.9906 for the fivefold and tenfold cross valida-
tion, respectively, which is superior to the other four methods (Fig. 4). In addition, the results of performance 
evaluation indicators such as F1-score, Acc, MCC are shown in Table 2 for fivefold and tenfold cross validation. 
Although the Precision of ELPMA is inferior to ABMDA and Acc of ELPMA is inferior to CD_LNLP and 
LAGCN, the evaluation metrics of ELPMA are higher than others (Table 2). Furthermore, we used the paired 

Figure 2.   ROC curves under k-fold cross validation performed by the ELPMA-XGB framework. (a) ROC 
curves under fivefold cross validation; (b) ROC curves under tenfold cross validation.

Figure 3.   Performance comparison of ELPMA method and individual learners.
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t-test based on 10 runs of fivefold and tenfold cross-validation to test the performance of the ELPMA method 
and the comparison methods. Table 3 shows that ELPMA is significantly preferred to other computational meth-
ods in terms of Sensitivity, F1-score, AUC, AUPR and MCC (Table 3). Therefore, all the above results show that 
ELPMA method provides a great improvement in predict the pseudogene–miRNA interactions.

Figure 4.   ROC curves of different methods under k-fold cross validation. (a) ROC curves under fivefold cross 
validation; (b) ROC curves under tenfold cross validation.

Table 2.   Comparison with multiple evaluation metrics under fivefold and tenfold cross-validation. Significant 
values are in bold.

Model Precision Sensitivity F1-score Acc AUC​ AUPR MCC

Fivefold cross-validation

GBDT-LR 0.8200 0.8166 0.8179 0.8176 0.9044 0.9144 0.6358

ABMDA 0.9832 0.2834 0.4381 0.6411 0.9550 0.9519 0.3966

CD_LNLP 0.7780 0.4822 0.5954 0.9876 0.6953 0.5216 0.6069

LAGCN 0.1632 0.8076 0.2712 0.9832 0.9481 0.4847 0.3582

ELPMA 0.9716 0.9369 0.9540 0.9548 0.9897 0.9914 0.9102

Tenfold cross-validation

GBDT-LR 0.8278 0.8306 0.8287 0.8275 0.9078 0.9145 0.6558

ABMDA 0.9848 0.3478 0.5078 0.6728 0.9592 0.9551 0.4487

CD_LNLP 0.8594 0.5605 0.6785 0.9899 0.7854 0.6264 0.6895

LAGCN 0.1007 0.8261 0.1794 0.9853 0.9544 0.4633 0.2852

ELPMA 0.9727 0.9414 0.9565 0.9573 0.9906 0.9922 0.9155

Table 3.   The statistical results by paired t-test for ELPMA and other comparison methods.

ELPMA versus GBDT-LR ABMDA CD_LNLP LAGCN

Fivefold cross-validation

p-value of Precision 3.1222e−19 3.7527e−04 1.0708e−13 1.8361e−34

p-value of Sensitivity 2.4777e−19 9.1047e−22 6.9457e−27 4.0794e−19

p-value of F1-score 4.7760e−21 1.8721e−18 1.9262e−26 6.8365e−32

p-value of Acc 8.4523e−21 2.0776e−21 1.6029e−19 2.0969e−18

p-value of AUC​ 8.7304e−19 3.7505e−18 1.3119e−29 2.3623e−17

p-value of AUPR 5.4014e−19 6.0815e−18 3.2105e−30 3.8908e−34

p-value of MCC 9.5274e−21 6.4989e−21 3.2757e−23 1.8933e−30

Tenfold cross-validation

p-value of Precision 2.7171e−19 0.0018 3.1185e−10 3.7167e−38

p-value of Sensitivity 4.5501e−20 2.907e−27 1.0613e−26 1.1716e−20

p-value of F1-score 1.3765e−23 1.7704e−23 2.7238e−26 2.1321e−36

p-value of Acc 8.2969e−23 1.9452e−26 3.0679e−19 1.0305e−17

p-value of AUC​ 1.8574e−20 2.5035e−16 1.1239e−30 2.7548e−23

p-value of AUPR 7.2994e−18 8.1945e−14 1.8536e−33 4.9185e−38

p-value of MCC 8.1499e−23 2.0395e−25 3.2985e−22 2.4717e−33
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Case studies.  To illustration the prediction performance of ELPMA method in screening pseudogene–
miRNA interactions, case studies of three pseudogene related miRNA are conduct for further validation. Given 
the investigated pseudogene–miRNA interaction to be unknown in all known associations. In this section, the 
pseudogene MSTO2P, MTND4P12 related miRNAs are removed in the known associations, and then use other 
associations to train the model and predict the probability of all miRNAs associated with the investigated pseu-
dogenes. Through the calculation of ELPMA method, the candidate associations between pseudogene and miR-
NAs are sorted in descending order. Then, the top 10 rank results are selected with high probability scores for the 
three investigated pseudogenes, and the predicted associations are verified with the starBase database.

Pseudogene MSTO2P is found to be implicated in several diseases including lung cancer32, colorectal cancer33, 
etc. MSTO2P could function as a miR-128-3p sponge in non-small cell lung cancer cells (NSCLC), and MSTO2P/
miR-128-3p to regulate coptisine sensitivity of NSCLC cells via TGF-β pathway. In addition, MSTO2P related 
top 10 miRNAs, in which 9 of the top10 is proved by starBase (Table 4).

MTND4P12 is considered as an oncogenic pseudogene upregulated in skin cutaneous melanoma, and it can 
upregulate the expression of oncogene AURKB by serving as ceRNA34. Hsa-let-7e-5p is also identified as candi-
date miRNA that regulated by MTND4P12, hsa-let-7e-5p and MTND4P12 is co-expression in skin cutaneous 
melanoma. As shown in Table 4, the MTND4P12 related top 10 miRNAs is supported by starBase.

Conclusion
Increasing evidences show that both pseudogenes and miRNAs play oncogenic or tumor-suppressive roles in 
disease progression. Predicting pseudogene–miRNA associations will contribute to understanding the patho-
logical mechanisms, diagnosis, and treatment of diseases. In this work, a computational method is proposed to 
infer the associations between pseudogenes and miRNAs, which employed an ensemble learning framework with 
similarity kernel fusion, named ELPMA. By comparing with other four models, the prediction performance of 
our proposed method is powerful to predict the pseudogene–miRNA interactions. The case study of investigated 
MSTO2P and MTND4P12 related miRNAs also proved the ELPMA method is reliable and effective.

The good performance of ELPMA method is attributed to three main factors: (1) ELPMA integrates the 
biological information including pseudogene expression profiles and miRNA–targets interactions. (2) ELPMA 
introduces the resampling method to settle the problem caused by the imbalanced pseudogene–miRNA dataset. 
(3) The application of XGBoost as individual learner of the ensemble learning framework guarantees the effec-
tiveness of learning the meaning of combinations of features from feature representation.

There are also some limitations in the ELPMA method. First, the gold standard pseudogene-miRNA associa-
tions may have nosy, and the negative samples are randomly selected from the unconfirmed associations, limiting 
the prediction performance. In addition, the ELPMA method relies on the known pseudogene–miRNA interac-
tion network, and it could not predict novel pseudogene-miRNA interactions without any known associations. 
Therefore, developing more effective framework is essential to infer the associations between pseudogenes and 
miRNAs.

Table 4.   The top 10 associated miRNAs for pseudogene MSTO2P, MTND4P12.

Pseudogene Rank miRNA Evidence

MSTO2P

1 hsa-miR-20a-5p starBase

2 hsa-miR-106b-5p starBase

3 hsa-miR-93-5p starBase

4 hsa-miR-519d-3p starBase

5 hsa-miR-20b-5p starBase

6 hsa-miR-17-5p starBase

7 hsa-miR-106a-5p starBase

8 hsa-miR-128-3p starBase

9 hsa-miR-448 starBase

10 hsa-miR-373-3p Unconfirmed

MTND4P12

1 hsa-let-7b-5p starBase

2 hsa-miR-98-5p starBase

3 hsa-let-7e-5p starBase

4 hsa-let-7d-5p starBase

5 hsa-let-7a-5p starBase

6 hsa-let-7c-5p starBase

7 hsa-miR-4500 starBase

8 hsa-miR-4458 starBase

9 hsa-let-7g-5p starBase

10 hsa-let-7f-5p starBase



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8833  | https://doi.org/10.1038/s41598-023-36054-y

www.nature.com/scientificreports/

Data availability
The data will be made available on request from the corresponding author.

Received: 29 March 2023; Accepted: 28 May 2023

References
	 1.	 Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297. https://​doi.​org/​10.​1016/​s0092-​

8674(04)​00045-5 (2004).
	 2.	 Bartel, D. P. MicroRNAs: Target recognition and regulatory functions. Cell 136, 215–233. https://​doi.​org/​10.​1016/j.​cell.​2009.​01.​

002 (2009).
	 3.	 Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 

146, 353–358. https://​doi.​org/​10.​1016/j.​cell.​2011.​07.​014 (2011).
	 4.	 Ma, G. et al. A genetic variation in the CpG island of pseudogene GBAP1 promoter is associated with gastric cancer susceptibility. 

Cancer 125, 2465–2473. https://​doi.​org/​10.​1002/​cncr.​32081 (2019).
	 5.	 Huang, L., Zhang, L. & Chen, X. Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and chal-

lenges of computational models. Brief. Bioinform. https://​doi.​org/​10.​1093/​bib/​bbac3​58 (2022).
	 6.	 Huang, L., Zhang, L. & Chen, X. Updated review of advances in microRNAs and complex diseases: Towards systematic evaluation 

of computational models. Brief. Bioinform. https://​doi.​org/​10.​1093/​bib/​bbac4​07 (2022).
	 7.	 Huang, L., Zhang, L. & Chen, X. Updated review of advances in microRNAs and complex diseases: Experimental results, databases, 

webservers and data fusion. Brief. Bioinform. https://​doi.​org/​10.​1093/​bib/​bbac3​97 (2022).
	 8.	 Chen, X., Xie, D., Zhao, Q. & You, Z. H. MicroRNAs and complex diseases: From experimental results to computational models. 

Brief. Bioinform. 20, 515–539. https://​doi.​org/​10.​1093/​bib/​bbx130 (2019).
	 9.	 Nguyen, V. T., Le, T. T. K., Than, K. & Tran, D. H. Predicting miRNA–disease associations using improved random walk with 

restart and integrating multiple similarities. Sci. Rep. 11, 21071. https://​doi.​org/​10.​1038/​s41598-​021-​00677-w (2021).
	10.	 Zhou, S., Wang, S., Wu, Q., Azim, R. & Li, W. Predicting potential miRNA-disease associations by combining gradient boosting 

decision tree with logistic regression. Comput. Biol. Chem. 85, 107200. https://​doi.​org/​10.​1016/j.​compb​iolch​em.​2020.​107200 (2020).
	11.	 Xu, M. et al. SPMLMI: Predicting lncRNA-miRNA interactions in humans using a structural perturbation method. PeerJ 9, e11426. 

https://​doi.​org/​10.​7717/​peerj.​11426 (2021).
	12.	 Wang, M. N., Lei, L. L., He, W. & Ding, D. W. SPCMLMI: A structural perturbation-based matrix completion method to predict 

lncRNA-miRNA interactions. Front. Genet. 13, 1032428. https://​doi.​org/​10.​3389/​fgene.​2022.​10324​28 (2022).
	13.	 Guo, L. X. et al. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding. Brief. 

Bioinform. https://​doi.​org/​10.​1093/​bib/​bbac3​91 (2022).
	14.	 Wang, X. F. et al. KGDCMI: A new approach for predicting circRNA-miRNA interactions from multi-source information extrac-

tion and deep learning. Front. Genet. 13, 958096. https://​doi.​org/​10.​3389/​fgene.​2022.​958096 (2022).
	15.	 Xie, G. B. et al. Predicting lncRNA-disease associations based on combining selective similarity matrix fusion and bidirectional 

linear neighborhood label propagation. Brief. Bioinform. https://​doi.​org/​10.​1093/​bib/​bbac5​95 (2023).
	16.	 Du, X.-X., Liu, Y., Wang, B. & Zhang, J.-F. lncRNA–disease association prediction method based on the nearest neighbor matrix 

completion model. Sci. Rep. 12, 21653. https://​doi.​org/​10.​1038/​s41598-​022-​25730-0 (2022).
	17.	 Zhang, W., Yu, C., Wang, X. & Liu, F. Predicting CircRNA-disease associations through linear neighborhood label propagation 

method. IEEE Access https://​doi.​org/​10.​1109/​ACCESS.​2019.​29209​42 (2019).
	18.	 Lei, X. & Bian, C. Integrating random walk with restart and k-nearest Neighbor to identify novel circRNA-disease association. Sci. 

Rep. 10, 1943. https://​doi.​org/​10.​1038/​s41598-​020-​59040-0 (2020).
	19.	 Deng, L., Zhang, W., Shi, Y. & Tang, Y. Fusion of multiple heterogeneous networks for predicting circRNA-disease associations. 

Sci. Rep. 9, 9605. https://​doi.​org/​10.​1038/​s41598-​019-​45954-x (2019).
	20.	 Yu, Z., Huang, F., Zhao, X., Xiao, W. & Zhang, W. Predicting drug-disease associations through layer attention graph convolutional 

network. Brief. Bioinform. https://​doi.​org/​10.​1093/​bib/​bbaa2​43 (2021).
	21.	 Zhou, S., Sun, W., Zhang, P. & Li, L. Predicting pseudogene-miRNA associations based on feature fusion and graph auto-encoder. 

Front. Genet. 12, 781277. https://​doi.​org/​10.​3389/​fgene.​2021.​781277 (2021).
	22.	 Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA 

interaction networks from large-scale CLIP-Seq data. Nucleic acids Res. 42, D92–D97. https://​doi.​org/​10.​1093/​nar/​gkt12​48 (2014).
	23.	 Zheng, L. L. et al. dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health 

and disease. Nucleic Acids Res. 46, D85-d91. https://​doi.​org/​10.​1093/​nar/​gkx972 (2018).
	24.	 Huang, H. Y. et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. 

Nucleic Acids Res. 50, D222-d230. https://​doi.​org/​10.​1093/​nar/​gkab1​079 (2022).
	25.	 van Laarhoven, T., Nabuurs, S. B. & Marchiori, E. Gaussian interaction profile kernels for predicting drug-target interaction. 

Bioinformatics (Oxford, England) 27, 3036–3043. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btr500 (2011).
	26.	 Jiang, L., Ding, Y., Tang, J. & Guo, F. MDA-SKF: Similarity kernel fusion for accurately discovering miRNA-disease association. 

Front. Genet. 9, 618. https://​doi.​org/​10.​3389/​fgene.​2018.​00618 (2018).
	27.	 Chen, X., Zhu, C. C. & Yin, J. Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Comput. Biol. 15, 

e1007209. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10072​09 (2019).
	28.	 Wei, Z., Yao, D., Zhan, X. & Zhang, S. A clustering-based sampling method for miRNA-disease association prediction. Front. 

Genet. 13, 995535. https://​doi.​org/​10.​3389/​fgene.​2022.​995535 (2022).
	29.	 Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international confer-

ence on knowledge discovery and data mining 785–794. https://​doi.​org/​10.​1145/​29396​72.​29397​85 (2016).
	30.	 Dai, Q. et al. Predicting miRNA-disease associations using an ensemble learning framework with resampling method. Brief. 

Bioinform. https://​doi.​org/​10.​1093/​bib/​bbab5​43 (2022).
	31.	 Zhao, Y., Chen, X. & Yin, J. Adaptive boosting-based computational model for predicting potential miRNA-disease associations. 

Bioinformatics (Oxford, England) 35, 4730–4738. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz297 (2019).
	32.	 Gu, M. & Wang, X. Pseudogene MSTO2P interacts with miR-128-3p to regulate coptisine sensitivity of non-small-cell lung cancer 

(NSCLC) through TGF-β signaling and VEGFC. J. Oncol. 2022, 9864411. https://​doi.​org/​10.​1155/​2022/​98644​11 (2022).
	33.	 Guo, M. & Zhang, X. LncRNA MSTO2P promotes colorectal cancer progression through epigenetically silencing CDKN1A medi-

ated by EZH2. World J. Surg. Oncol. 20, 95. https://​doi.​org/​10.​1186/​s12957-​022-​02567-5 (2022).
	34.	 Guo, Y. et al. Inhibition of AURKB, regulated by pseudogene MTND4P12, confers synthetic lethality to PARP inhibition in skin 

cutaneous melanoma. Am. J. Cancer Res. 10, 3458–3474 (2020).

https://doi.org/10.1016/s0092-8674(04)00045-5
https://doi.org/10.1016/s0092-8674(04)00045-5
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1002/cncr.32081
https://doi.org/10.1093/bib/bbac358
https://doi.org/10.1093/bib/bbac407
https://doi.org/10.1093/bib/bbac397
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.1038/s41598-021-00677-w
https://doi.org/10.1016/j.compbiolchem.2020.107200
https://doi.org/10.7717/peerj.11426
https://doi.org/10.3389/fgene.2022.1032428
https://doi.org/10.1093/bib/bbac391
https://doi.org/10.3389/fgene.2022.958096
https://doi.org/10.1093/bib/bbac595
https://doi.org/10.1038/s41598-022-25730-0
https://doi.org/10.1109/ACCESS.2019.2920942
https://doi.org/10.1038/s41598-020-59040-0
https://doi.org/10.1038/s41598-019-45954-x
https://doi.org/10.1093/bib/bbaa243
https://doi.org/10.3389/fgene.2021.781277
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkx972
https://doi.org/10.1093/nar/gkab1079
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.3389/fgene.2018.00618
https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.3389/fgene.2022.995535
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1093/bib/bbab543
https://doi.org/10.1093/bioinformatics/btz297
https://doi.org/10.1155/2022/9864411
https://doi.org/10.1186/s12957-022-02567-5


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8833  | https://doi.org/10.1038/s41598-023-36054-y

www.nature.com/scientificreports/

Acknowledgements
This research was funded by the Scientific research plan projects of Shaanxi Education Department (Grant No. 
21J K0674).

Author contributions
C.F. conceptualized the study, C.F. and M.D. performed the data collection, designed the method, C.F. drafted 
the manuscript. All authors read and approved the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​36054-y.

Correspondence and requests for materials should be addressed to C.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-36054-y
https://doi.org/10.1038/s41598-023-36054-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Inferring pseudogene–MiRNA associations based on an ensemble learning framework with similarity kernel fusion
	Materials and methods
	Gold standard data set. 
	Expression similarity for pseudogenes. 
	Function similarity for miRNAs. 
	GIP kernel similarity for pseudogenes and miRNAs. 
	Hamming profile similarity for pseudogenes and miRNAs. 
	Cosine similarity for pseudogenes and miRNAs. 
	Integrated similarity by similarity kernel fusion method. 
	Ensemble learning framework with resampling method. 
	Resampling strategy. 
	Sample representation. 
	Soft voting for pseudogene–miRNA association prediction. 

	Results
	Performance evaluation. 
	Performance analysis of ELPMA method with different individual learners. 
	Influence of training data on model performance. 
	Effectiveness of soft voting for the ensemble learning framework. 
	Comparison with other existing methods. 
	Case studies. 

	Conclusion
	References
	Acknowledgements


