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Predicting health outcomes in dogs 
using insurance claims data
Christian Debes 1*, Johannes Wowra 1, Sarosh Manzoor 1 & Audrey Ruple 2

In this paper we propose a machine learning-based approach to predict a multitude of insurance 
claim categories related to canine diseases. We introduce several machine learning approaches that 
are evaluated on a pet insurance dataset consisting of 785,565 dogs from the US and Canada whose 
insurance claims have been recorded over 17 years. 270,203 dogs with a long insurance tenure were 
used to train a model while the inference is applicable to all dogs in the dataset. Through this analysis 
we demonstrate that with this richness of data, supported by the right feature engineering, and 
machine learning approaches, 45 disease categories can be predicted with high accuracy.

Topic motivation and significance. The global pet care market was estimated at 179.4 billion dollars in 
2020 and expected to grow to 241.1 billion dollars by  20261. The pet insurance market alone is forecasted to grow 
from 4.5 billion to 16.8 billion by  20302. These numbers reflect not only the growth in pet ownership (currently 
at 84.5 million households in the  US3 and 88 million households in  Europe4), but also the increased needs of pet 
owners to invest in the health of their  companions5–7. Data shows that more families decide to adopt  pets8 and 
the pet’s role is increasingly changing from being considered property to being regarded as a family  member9–11. 
As part of this development, there is a rising need for and willingness to invest in premium healthcare and well-
ness products.

Pet health prediction aims at understanding the impact of factors surrounding a pet’s life (such as age, 
breed, pre-existing health conditions, environment, lifestyle, etc.) on its future health. Examples of these factors 
include:Pre-existing condition-based

Pre-existing condition-based: Dogs diagnosed with developmental disorders have a higher risk of gait abnor-
malities in the  future12,13.
Breed-based: English and French bulldogs have a higher risk of dermatological diseases when compared to 
other breeds of  dogs14,15.
Environment-based (1): Dogs living in a warmer climate have a higher risk of developing  arthritis16.
Environment-based (2): Dogs living in urban areas have a higher risk of skin  diseases17,18.
Sex-based: Female dogs have a higher risk of developing urinary tract infections than do male  dogs19,20.
Age-based: Older dogs have an increased risk of developing cancer than younger  dogs21,22.

Some of these associations between predictive variables and health outcomes have previously been reported 
in the veterinary literature. However, risk analyses have historically been conducted in populations of limited 
individuals, leading to use of small sample sizes, and often investigated only a single health outcome at a  time23–25. 
The power of health prediction using machine learning-based approaches, is that data associated with a large 
number of dogs can be analyzed simultaneously and quantitative results obtained, which link the aforementioned 
factors. This allows for a much deeper and more refined understanding of the contribution that each factor has 
upon the future health of dogs.

As such, health prediction is a crucial piece of technology that can be used to help achieve longer and healthier 
lives for dogs. As a base technology, it allows for multiple analyses, applications, and products to be combined, 
including: 

Recommendations: Predicted disease outcomes can be paired with health and lifestyle recommendations, 
which enables proactive decision-making that reduces the risk of disease outcomes in the future. These actions 
include (but are not limited to): changes in nutrition, activity types and level of intensity, alerts to early signs 
of health diagnoses, addition of appropriate medication or preventives and reminders for medical checkups.
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Actuarial/Pricing: An understanding of individual disease likelihood allows for a more discrete and fair 
approach to pricing of insurance policies.
Research studies: The impact of other external factors e.g., COVID-19 pandemic, seasonal effects, or the 
availability of new treatment forms, can be studied in near-real time.

In this paper we describe the methods used to create a machine learning-based approach to pet health 
prediction and evaluate its performance through a series of experiments. Using 2.4 million insurance claims 
from 785,565 dogs insured under Fetch, Inc. plans were taken as a proxy to model disease outcomes. The paper 
is structured as follows: This Section "Introduction" includes the motivation and reviews the state of the art in 
machine learning approaches for pet health prediction and positions this contribution with respect to existing 
work. As far as the authors are aware, this rich dataset is applied within a scientific context for the first time. 
Section "Methods" describes the dataset in detail including individual data regarding health conditions, breed, 
age, sex, geographic and environmental factors such as average temperature and precipitation values, and human 
population density of dog’s locality. A set of preprocessing steps are necessary as described in Section "Preproc-
essing", before the machine learning approaches can be employed, which are covered in Section "Proposed 
approach". The series of conducted experiments and the detailed results are then presented in Section "Results 
and discussion". We conclude with a summary and outlook in Section "Conclusion".

State of the art: machine learning approaches for pet health. In the field of pet health predic-
tion, narrow prediction approaches using physical parameters such as blood samples or radiographic imagery 
have been used to predict specific disease outcomes. Examples include the prediction of canine chronic kid-
ney disease using blood count and  urinalysis26, and Cushing’s syndrome prediction in dogs using a variety of 
laboratory  measurements27. To date, there is no consistent approach aiming to predict multiple disease catego-
ries from pet insurance claims. Previous work with pet insurance datasets have resulted in several publications 
that report associations between particular dog breeds and health  outcomes28–30 and age-related changes in 
dog  populations31–33. However, to the authors’ knowledge, predictive models for multiple disease outcomes in a 
diverse population of dogs constructed with insurance data have not been previously reported.

Methods
Dataset description. The data used in this project includes breed, age, sex and home location information 
for 785,565 dogs together with diagnosed diseases and treatments employed. These data were collected over 17 
years by the pet insurance company Fetch, Inc. and has been fully de-identified. The unique IDs assigned to dogs 
are generated through a hash function and no personally identifiable information on the pet owners is included 
in the dataset.

Breeds. The original dataset contains more than 500 individual breeds which were grouped into 20 breed groups 
as described in this section. Some of the individual breeds contained in the dataset, such as Golden retrievers, are 
well represented in terms of proportion of the total population size, but many of the breeds are less numerous in 
overall population size. This can become problematic in terms of having a small sample size because it can intro-
duce large variances in the results, especially when moving towards a statistical or machine learning approach in 
which stratification based on a combination of breed, age, sex, etc., is performed. Thus, individual breeds with 
small sample sizes were combined using the results of allele-sharing phylograms, haplotype-sharing cladograms, 
and neighbor-joining trees representing the genetic relationships between various  breeds34,35. Table 1 shows the 
distribution of these 20 breed groups. Subgroups for some of these breed categories were created using specific 
features of breeds contained in the primary breed groups, for instance the ”Terriers” breed group is subdivided 
into ”Small Terriers” and ”Large Terriers.” Individual breeds combined within each breed grouping as well as 
subgroupings can be found in Supplemental Table S1.

For this work, mixed breed dogs were classified in one of three ways: (1) when the breeds of both parents 
were known, the cross breed was included as a first filial generation of hybrid (e.g. when the dog was reported 
as Labrador retriever crossed with a Poodle, the breed was reported as Labradoodle); (2) when the breed of only 
one parent was known, the dog was listed as a cross of the predominant breed (e.g. when the dog was reported as 
Labrador retriever cross, the breed was reported as Labrador mix); (3) when no information was available about 
the lineage of a mixed breed dog, its breed was reported as mixed and then differentiated by size categories (up 
to 22.9 pounds = small, 23–70.9 pounds = medium, or 71 pounds or more = large).

Conditions. Table 2 provides the 20 (out of 1043) most common health conditions that are available in the 
data set. Similar to the breed distribution, we observed that a large number of conditions requires aggregation 
so that after stratification with respect to breed, age, sex, etc., a significant number of samples are available per 
dependent variable. This problem will be addressed via a disease grouping strategy in Section "Preprocessing".

Age. The dataset is collected over 17 years of claims data at Fetch, Inc. Two aspects are important to consider:

• Age at inception: the age at which dogs were first insured
• Latest age: for active policies this reflects the dog’s current age. For deceased dogs and/or for dogs no longer 

covered by a policy this reflects their age at the end of their policy coverage period
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Figures 1 and 2 represent the distribution of each of those age groupings. We note that 52.5% of dogs were insured 
within the first year of their life. From a statistical and machine learning perspective, it is worth noting that dogs 
with a higher age at inception, bring a greater uncertainty with regards to previous disease occurrences. Thus, 
for all downstream analyses, we consider dogs with an age at inception ≤ 1 year.

Also, as can be seen in Fig. 2, young dogs are over-represented in the dataset. This is mainly due to the growth 
of Fetch, Inc.’s business in the recent years as most dogs are a young age when they are initially insured.

Table 1.  Distribution of breed groups.

Breed group Population (percentage)

Mixed medium 130,677 (16.63%)

Mixed small 91,803 (11.69%)

Mastiff-like group 1 70,171 (8.93%)

Toy—other 69,761 (8.88%)

Terriers 57,469 (7.32%)

Labs 39,327 (5.01%)

Mixed other 34,192 (4.35%)

Chihuahua 32,811 (4.18%)

Ancient and Spitz 31,837 (4.05%)

Australian-like 31,684 (4.03%)

Shepherd 31,212 (3.97%)

Spaniels 28,714 (3.66%)

Mixed lab and golden 25,535 (3.25%)

Mixed large 23,335 (2.97%)

Golden 23,234 (2.96%)

Dachshund 15,684 (2.00%)

Working dogs—Non-sport 14,042 (1.79%)

Hound 13,343 (1.7%)

Herding dogs—other 11,975 (1.52%)

Mastiff-like group 2 8759 (1.11%)

Table 2.  Distribution of conditions.

Conditions Number of claims (percentage)

Unspecified allergies 100,458 (4.09%)

Routine treatment 91,138 (3.71%)

Lameness 79,624 (3.24%)

Cruciate ligament tear/rupture 66,834 (2.72%)

Atopy/atopic dermatitis 62,894 (2.56%)

Mass 61,827 (2.52%)

Diarrhea 54,154 (2.21%)

Otitis externa 51,699 (2.11%)

Seizures 47,747 (1.94%)

Urinary tract infection 46,542 (1.90%)

Arthritis/DJD 43,838 (1.79%)

Hepatopathy 43,283 (1.76%)

Gastrointestinal/digestive system disorder 39,575 (1.61%)

ear infection 37,269 (1.52%)

Periodontal disease 37,044 (1.51%)

Vomiting 36,557 (1.49%)

Vomiting and diarrhea 33,363 (1.36%)

Diabetes mellitus 32,479 (1.32%)

Heart murmur 29,031 (1.18%)

Back pain 28,822 (1.17%)

Other 14,31,664 (58.30%)
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Location. Fetch, Inc. offers insurance within the United States (US) and Canada where location information 
is collected via zip codes or Forward Station Areas (FSA), respectively. Whilst this information is not directly 
applicable to the machine learning model, it is processed in the pre-processing steps. Environmental features, 
such as human population density, median household  income36,37, total annual precipitation, and average annual 
 temperatures38 were mapped to zip code or FSA. Through this mapping step, the model profits from correlations 
between the occurrence of diseases and environmental parameters.

Preprocessing. As mentioned in the previous section, for two of the variables (breed as one independent 
variable and conditions as both dependent and independent variable) we first had to ensure the availability of 
significant sample sizes. The machine learning algorithms that will be described in the later sections predict on a 
yearly basis meaning that a sample is defined as one year history of an individual dog. A dog that was insured for 
10 years would thus generate 10 samples. We found empirically that 5000 disease claims represent a large enough 
sample size per disease group to be predicted. Disease groups that are reflected as target variables with less than 
5000 claims can lead to large variations in the later cross-validation and are therefore excluded. It is expected that 
as the dataset increases in the coming years the list of predictable diseases will grow.

Any predictive algorithm will only work well if enough representative samples from which it can learn are 
present in the dataset. Similarly to how breed categories were created as described in the previous section, group-
ing of disease-related claims was also necessary as is described in the following.

Disease grouping. Disease-related claims were organized hierarchically based predominantly on the VeNom 
standard set of clinical veterinary  terms39 so that similar disease outcomes that were classified using different 
terms could be grouped together in the analyses. For instance, the outcomes coded as intervertebral disc disease, 
herniated disc, ruptured intervertebral disc, and prolapsed intervertebral disc were combined into a single group 

Figure 1.  Distribution of Age at inception.

Figure 2.  Distribution of latest age.
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called "disc diseases". Each outcome was mapped to only one disease group. As a result of this arrangement, 45 
disease groups are considered for predictions in the model. These disease groups consist of 710 specific diseases 
and they represent 82.5% of the submitted claims (Table 3). We note that the remaining 17.5% of the submitted 
claims were distributed over 44 distinct disease groups. Three of these disease groups include claims related to 
routine treatments and surgeries which are used to improve the performance of the model but are not predicted 
themselves. This is further discussed in Section "Proposed approach". The remaining 41 disease groups had sam-
ple sizes too small to be considered for prediction. We refer to Supplementary Material S2 for the full mapping 
between claim conditions and disease groups.

Table 3.  Frequencies of disease groups/target variables.

Disease group Claims (%)

Vomiting and diarrhea 170,401 (6.83%)

Dermatologic immune diseases 117,586 (4.71%)

Unspecified allergies 100,458 (4.03%)

Mass lesion or swelling 100,068 (4.01%)

Ear inflammation and infections 89,762 (3.60%)

Injuries 89,215 (3.58%)

Gastroenteritis and other gi disorders 82,346 (3.30%)

Urinary tract disorders 77,965 (3.12%)

Gait abnormalities 71,323 (2.86%)

Cruciate ligament injuries 69,451 (2.78%)

Arthritis 67,123 (2.69%)

Pain disorders 64,644 (2.59%)

Mass lesion or swelling malignant 57,757 (2.31%)

Seizures 57,605 (2.31%)

Infectious disorders 54,335 (2.18%)

Respiratory infections 49,922 (2.00%)

Liver disorders 48,359 (1.94%)

Skin infections 43,699 (1.75%)

Adrenal gland disorders 41,080 (1.65%)

Oral inflammation 40,969 (1.64%)

Heart diseases 37,700 (1.51%)

Heart murmurs or arrythmias 32,720 (1.31%)

Diabetes 32,479 (1.30%)

Inflammation 31,004 (1.24%)

Eye inflammation 30,529 (1.22%)

Foreign body 28,510 (1.14%)

Leg injuries 27,626 (1.11%)

Mass lesion or swelling hematopoietic 27,614 (1.11%)

Kidney disorders 27,538 (1.10%)

Skeletal conformation disorders 27,325 (1.10%)

Thyroid disorders 24,703 (0.99%)

Internal parasites 23,601 (0.95%)

Intoxication 22,802 (0.91%)

Disc diseases 22,302 (0.89%)

Itching 19,319 (0.77%)

Dental conditions 19,111 (0.77%)

Lethargy 17,639 (0.71%)

Anxiety or phobia 17,361 (0.70%)

Eye diseases 14,620 (0.59%)

Behavioral disorders 14,344 (0.57%)

Anal gland disorders 14,035 (0.56%)

Immune disorders 13,712 (0.55%)

Urinary incontinence 12,566 (0.50%)

Digestive disorders 12,456 (0.50%)

Gastrointestinal nervous system disorders 11,907 (0.48%)
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Breed characteristic mapping. It is well known that specific dog breeds can have predispositions to certain 
 diseases28,40. This predisposition can be captured by the breed variable as a machine learning algorithm learns. 
However, some factors which are correlated with the occurrence of a health condition could be the same across 
many breeds e.g. size, coat length or behavior. It is known, for example, that large dogs share similar disease 
profiles, e.g. when it comes to diseases such as arthritis or cruciate ligament  injuries41,42.

Based on this observation, we can hypothesize that some characteristic features of breeds, such as size, can 
help the predictive model generalize better and also improve the prediction accuracy for rare breeds. Many 
breed characteristics have been described by Kennel Clubs and these attributes were added to the dataset as 
supplemental breed-related  variables43,44. Table 4 lists a few examples of how some characteristics (coat length, 
shedding, size, and trainability) vary across different breeds. Other characteristics imputed into the model include 
demeanor and amount of exercise required to maintain a healthy physique.

Environmental mapping. Besides characteristics of the breed, it is known that environmental factors can have 
both direct and indirect effect on the health of dogs. For instance, rates of intestinal parasitism have been shown 
to differ in dogs located in rural and urban  environments45 and living in areas with extreme heat can result in 
heat-related illnesses in  dogs46.

To fully leverage the knowledge of zip-codes or FSAs for each dog in the dataset, the primary data set is further 
enriched with the residential and climate information, such as the population density and average temperature 
of the corresponding area. This information is summarized in the features described in Table 5. We refer to Sup-
plementary Material S3 for examples of residential and climate features for zip-codes or FSAs.

Proposed approach. In this section, we present the mathematical problem formulation of disease predic-
tion, the proposed solutions, and an evaluation framework that allows us to objectively compare different feature 
engineering, machine learning, and ensemble strategies.

Problem formulation. It is our aim to devise a system of likelihood estimation of a dog contracting a set of M 
diseases. Let y represent the binary vector of disease contractions over the next year with ym being its m-th ele-
ment. ym ∈ {0, 1} where ym = 0 denotes the absence of the m-th disease and ym = 1 denotes its presence.

Further, let f ∈ R
D denote the D-dimensional feature vector containing the individual, breed and environ-

mental features as detailed out in the previous section.
The problem formulation is a multi-class classification problem, where a set of functions:

(1)φm : f �→ ym

Table 4.  Breed characteristics: examples.

Breed name Coat length Sheds Size Trainability

Affenpinscher Easy training Medium Yes Small

Afghan hound May be stubborn Long Yes Large

Bichon frise Agreeable Medium No Small

Chihuahua Independent Medium Yes Small

Golden retriever Eager to please Medium Yes Large

Great dane Agreeable Short Yes Large

Mexican hairless Dog Agreeable Short No Small

Pharaoh Hound Independent Short Yes Medium

Poodle Eager to please Medium No Medium

Siberian husky Independent Short Yes Medium

Table 5.  Residential and Climate Features.

MHHI Median household income

POPD Population density

TAVG Average annual temperature (in ◦C)

PRCP Total annual precipitation

DP01 Number of days with precipitation ≥ 0.01 inches (0.254 mm)

DP10 Number of days with precipitation ≥ 1.00 inch (2.54 mm)

DT32 Number of days with minimum temperature ≤ 32◦ F (0 ◦C)

DX70 Number of days with maximum temperature ≥ 70◦ F (21.1 ◦C)

DX90 Number of days with maximum temperature ≥ 90◦ F (32.2 ◦C)
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mapping the feature vector to the binary label of the mth disease, needs to be established.
As we are mostly interested in disease probabilities and not binary outcomes we estimate the likelihood of 

the m-th disease label being equal to 1 as,

System approach. Our proposed approach consists of three steps as depicted in Fig. 3. 

Feature engineering: Based on all data points of a dog, a feature vector f  is generated that is a numerical rep-
resentation of all breed, residential, environmental and disease information of a dog.
Machine learning: From the feature vector described above, a set of supervised machine learning approaches 
including Gradient Boosting and Logistic Regression is presented which are used for prediction.
Ensembling: An ensembling framework is used to combine the advantages offered by the individual machine 
learning approaches.

Feature engineering. The health prediction system aims at estimating the disease likelihood over one year. This 
is realized by producing binary target variables, indicating the occurrence of a disease (more precisely, the filing 
of at least one claim related to said disease), over the course of a year.

The raw data is transformed/re-sampled in a way that each data sample represents the disease history of a 
single dog over a span of one year, while capturing the essence of the entire recorded disease history until the 
end of the corresponding year. This is done by creating two features for each disease group: 

(1) Last: binary value indicating whether at least one claim related to the disease was filed in the last year
(2) Average: total number of filed claims divided by the insurance duration

In addition to the claims from the 45 disease groups which are predicted, the aforementioned sets of disease 
features are also produced for three disease groups (”Preventive”, ”Treatment” and ”Surgical”) covering claims 
related to routine treatments and surgeries. This results in a total of (45+ 3) · 2 = 96 disease related features.

Table 6 lists the type of all other variables which are used to build the full feature vector. All categorical features 
are one-hot-encoded. To capture breed information three different groupings (breed group, sub breed, breed 
type) in addition to the most common 50 breeds are considered. Details on these are provided in supplementary 
material S1. Area type includes "urban" vs. "suburban" vs. "rural". "Not recorded" categories are also introduced 

(2)P(ym = 1 | f) , ∀m = 0, 1, 2 . . .M − 1

Feature Engineering

Learner 1 Learner 2

Ensembling

Breed Group
Mapping

Disease Group
Mapping

Claim series Breed Postal code SexAge

Environmental
Mapping

Breed
Characteristics

Disease
series

3 Breed
groups

8 Breed
features

Country,
4 residential +

7 climate
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Feature vector Feature vector

Final model

. . .
Model 1 Model 2

Figure 3.  Proposed approach for disease prediction.
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for categorical variables with missing data e.g. for variable "sex", the categories are "Male", "Female" and when 
the sex information is not available; "Not recorded".

Finally, equally spaced numbers between 0 and 1 are assigned to the values of ordinal variables e.g. for Coat 
Length, the values are mapped as {"Short": 0, "Medium": 0.5, "Long": 1}. The number of features extracted from 
each variable or variable group is listed in Table 7.

Machine learning. We present 6 supervised learning methods as a solution to the classification problem posed 
in Section "Proposed approach". A brief summary of these methods is as follows:

• Naive Bayes makes a simplistic assumption on features being independent and minimizes the cost of mis-
classification. Despite its naive design this algorithm can sometimes outperform more complex models as 
it relies on much fewer samples to be available, actually avoiding the curse of  dimensionality47 through the 
assumption of independent features. We note however that “Naive Bayes” is included as a very common 
baseline model, knowing that its assumption on independent features and potential occurrence of the zero-
frequency problem will not make it an appropriate choice for this  application48.

• Support vector machine determines an optimal hyperplane for segregating the classes in the feature space. 
This is done by maximizing the distance to the support vectors i.e. points in the features space, closest to 
hyper-plane. As only the support vectors are used for optimization, the risk of over-fitting is relatively  small49.

• Logistic regression models the likelihood P(f | ym) as a logistic function, whose coefficients can be determined 
by maximum likelihood  estimation50.

• Multilayer perceptron is a universal function approximator. The feature vector acts as the input to a multi-
layered neural network with 2 (soft-maxed) outputs (1 for each binary label)51.

• Gradient tree boosting builds a decision tree in an iterative fashion. At each iteration, higher weights are 
assigned to the data samples with a higher prediction loss in the previous iteration, resulting in a tree with 
reduced bias but a higher variance and prone to over-fitting52.

• Extreme gradient boosting (XGBoost) builds on the same idea as gradient tree boosting being more efficient 
and scalable through various approximations, e.g. in approximating the loss  function53.

Ensembling. Machine learning models have varying strengths and weaknesses. For example, one model may 
perform well for a subset of classes in a classification problem and another model might perform well for a dif-
ferent subset of classes. It would be natural to ask whether these two models could be combined into a model 
which outperforms these individual models. Ensemble learning focuses on combining the strengths of machine 
learning models by combining them into a stronger  model54,55.

An ensemble can be formed from models of the same kind or from models of different kind e.g. training a 
logistic regression and a gradient boosting model for a classification problem and averaging the probabilities 
predicted by both models.

Experimental Setup. From the full dataset of 785,565 dogs, we first generated a subset of samples that can 
be used in the training phase of the classifier. From each year of disease history, we generate samples for target 

Table 6.  Types of variables.

Categorical Breed Group, Sub Breed, Breed Type, Breed, Sheds, Trainability, Exercise, Demeanor, Country, Area type, Sex

Numerical Age, Total population, MHI, POPD, TAVG PRCP, DT32, DP01, DP10, DX70, DX90

Ordinal Energy level, Coat length, Size

Table 7.  Number of features.

Variable Feature count

Disease 96

Breed 51

Breed group 20

Sub breed 30

Breed type 10

Age 1

Environmental 10

Sex 3

Breed characteristics 22

Country 2

Area type 4

Total 249
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variables and use the preceding disease history to generate the corresponding features. Therefore for a dog with 
n-years of disease history, there will be n training samples. This concept is illustrated in Fig. 4.

We note that while most dogs in the database were initially insured within the first few weeks after birth, 
several were insured at a much later age. For such dogs, there is less reliable and incomplete information on 
their disease history, which is why we excluded dogs with an insurance policy that was initiated at the age of one 
year or older from the training phase. Also, as the machine learning algorithm predicts one year in the future 
we can only consider dogs with at least 1 year of history for the training. We note that this is only a restriction 
in the training phase whereas in the inference all dogs are considered. After this cleaning phase, 270,203 dogs 
with 1,025,099 claims remained in the final dataset.

The dataset is split using a 5-fold cross-validation with 80% of the data in training and 20% in  validation48. 
During each split it is ensured that the sets are representative in terms of the distribution of breeds, age, sex and 
disease groups. As this is an unbalanced classification  problem56,57, we considered the average area under curve 
(AUC)58 as a metric to summarize the classifiers performance when it comes to predicting all 45 disease groups. 
The AUC is defined as the area under the "probability of detection" versus "probability of false alarm" curve. An 
AUC of 50% represents the so called chance line, i.e. a classifier that performs as good as flipping a coin. The AUC 
can reach a theoretical value of 100% which would correspond to a scenario in which the classifier has 100% prob-
ability of detection at 0% false alarms. A set of experiments was conducted which are described in the following.

Experiments 1: richness of features. The first set of experiments is aimed at understanding the richness of input 
factors. The idea is to understand the joint and partial contribution of each of the factors such as disease history, 
breed or the environment a dog is living in, to the disease prediction. We consider two experiments as the (naive) 
baseline experiments: 

EXP 1-1, in which the machine learning model only has information on the disease history, thus constructing 
a model for the average dog that ignores the fact that many diseases are more prominent for certain breeds, 
for male or female dogs or in warmer or more populated regions.
EXP 1-2, in which the machine learning model only has information on the breed and age, thus constructing 
an average dog per breed, ignoring important factors such as an individual disease history.

 The following Table 8 summarizes the resulting 11 experiments that are considered as part of this experiment 
set and that have an increased richness and complexity of features.

We note that for this set of experiments the actual machine learning method is kept constant and gradient 
tree boosting was chosen here exemplary—the results are qualitatively however similar for all other classifiers.

Figure 4.  A diagram illustrating how the training samples are generated from the disease history. The colored 
bars represent examples of different disease claims on the age axis.

Table 8.  Experiment set 1 to evaluate the feature relevance.

Experiment Diseases Individual breed Breed group Age Sex Residential Climate Breed characteristics

EXP 1-1 X

EXP 1-2 X

EXP 1-3 X X

EXP 1-4 X X

EXP 1-5 X X X

EXP 1-6 X X X X X

EXP 1-7 X X X X X

EXP 1-8 X X X X X X

EXP 1-9 X X X X X X

EXP 1-10 X X X X X X

EXP 1-11 X X X X X X X X
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Experiments 2: model choice. EXP 1-11, i.e. the model with the richest set of features is considered as a baseline 
for this set of experiments. Fixing the feature set we aimed at understanding the performance of a variety of 
machine learning algorithms. The specific algorithms tested are in Table 9.

Experiments 3: ensembling. The final set consists of a single experiment 3-1 designed to understand the impact 
of ensembling on top of the best two performing classifiers from experiment group 2. The final classifier is 
obtained through averaging the class probabilities of the individual classifiers.

Results and discussion
Results and discussion. In this section we present the results from the experiments described in Section 
"Experimental Setup". Section "Feature richness" focuses on the richness of features provided to the model, while 
Section "Machine learning models" and "Ensembling" discusses the pros and cons of different machine learning 
algorithms. A deep dive into feature importances and discussion of the predictive power for individual diseases 
is then provided in Section "Discussion".

Feature richness. The following Table 10 shows the training and crossvalidation AUC’s for the 11 experiments 
described in Section "Experiments 1: richness of features". The reported numbers show the average AUC over all 
45 disease classes. As expected, the lowest performance is achieved by EXP 1-2 which as its only feature has the 
individual dog breed. We still note, that even this model has predictive power with an AUC well above 50% as it 
is able to model breed predispositions. Examples include increased risk for dermatological immune diseases for 
English bulldogs, increased risk for disc diseases for dachshunds and increased risk for skeletal conformation 
disorders for German shepherds.

The second ’naive’ model, EXP 1-1, which is unaware of breed and age, but captures the individual disease 
history, already performs significantly higher, reaching a test AUC of 75%. This clearly shows that on its own, 
breed information is somewhat useful for disease prediction, but it is much more informative when combined 
with the disease history. Examples include increased risk for various dental conditions after diagnosis of oral 
inflammation, increased risk for behavioral disorders after diagnosis of anxiety and phobia, and increased risk 
for arthritis after cruciate ligament (knee) injuries.

We observe the power of combining the individual disease history with breed information in EXP 1-4 which 
gives an increase of 10-15 percent in overall AUC compared to the breed-only model EXP 1-2 and the disease-
only model EXP 1-1.

EXP 1-5 which adds the breed group as an additional feature further increases the performance . We note that 
this feature is less relevant for breeds with a high population such as golden retrievers or German shepherds, but 

Table 9.  Experiment set 2 to evaluate different machine learning algorithms.

Experiment Algorithm

EXP 2-1 Naive Bayes

EXP 2-2 Support vector machine

EXP 2-3 Gradient tree boosting

EXP 2-4 Logistic regression

EXP 2-5 Multi layer perceptron

EXP 2-6 Extreme gradient boosting

Table 10.  Area under the ROC-Curve for Experiment Set 1.

Train AUC Crossval AUC 

EXP 1-1 75.24% 68.69 ± 1.85%

EXP 1-2 61.43% 60.43 ± 0.82%

EXP 1-3 75.64% 67.81 ± 0.81%

EXP 1-4 77.79% 71.09 ± 1.44%

EXP 1-5 78.61% 71.10 ± 1.31%

EXP 1-6 81.75% 73.75 ± 1.43%

EXP 1-7 81.68% 73.58 ± 1.69%

EXP 1-8 82.24% 74.66 ± 1.67%

EXP 1-9 83.04% 74.85 ± 1.46%

EXP 1-10 84.08% 75.02 ± 1.49%

EXP 1-11 84.14% 75.51 ± 1.58%
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it strongly increases performance for less numerous breeds that by themselves do not have enough samples to 
build a strong independent model but can profit from similar breeds that are in the same breed group.

For all further experiments 1-6 to 1-11 we observe a slight increase in performance with the full-feature 
model EXP 1-11 having the highest performance. It is notable that the addition of breed characteristics in EXP 
1-11 adds a small performance boost due to the same reason as for the breed grouping feature; breeds with small 
population sizes can profit from training samples from dogs of different breeds that share similar characteristics 
such as size, coat length, etc.

Machine learning models. Table 11 shows both the training as well as cross-validation AUCs obtained when 
testing all six machine learning approaches on the full-feature dataset. As in the previous section, the AUCs 
reported show the mean of the 45 AUCs for all 45 predicted diseases. We can observe that Naive Bayes shows the 
lowest performance, clearly a sign of the independence assumption of features since for example disease history 
and age are naturally dependent.

All other models that are able to capture the dependence of features perform significantly higher with extreme 
gradient boosting showing the highest overall AUC. We further observe that the multilayer perceptron has a 
tendency to overfitting with a cross-validation AUC that is almost 20% below the training AUC.

When investigating the individual AUCs for all 45 disease categories we observe that different algorithms 
perform better for different diseases. This difference is visually shown in Fig. 5 where the cross-validation of 
five selected diseases (Immune disorders, Kidney disorders, Heart diseases, Eye inflammation, and Urinal tract 
disorders) are shown for both the Extreme Gradient Boosting as well as Logistic Regression algorithm. While for 
the first three diseases logistic regression outperforms Extreme Gradient Boosting we observe the opposite for 
the latter two diseases. Generally it seems that Logistic Regression has advantages on classes with lower sample 
sizes while Extreme Gradient Boosting performs better for classes with high sample sizes.

These results clearly show the benefit of using ensembling techniques such as combining multiple models as 
will be discussed in the following section.

Ensembling. In order to benefit from ensembling it is of importance to combine models that show good per-
formance individually, but also have good performance in different settings. This is achieved as demonstrated 
in the previous section for example for Logistic Regression and Extreme Gradient Boosting that both have a 
high individual performance (significantly above the chance line of 50%) while having individual strengths and 
weaknesses.

The following Table 12 shows the experimental result of combining these two algorithms. Ensembling here 
is achieved through soft voting. Mean cross validation scores for each disease are used to calculate the weights 
of the models for that disease and the weighted sum of the predicted probabilities is used as the final probability 

Table 11.  Area under the ROC-Curve for Experiment Set 2.

Train AUC Crossval AUC 

Naive Bayes EXP 2-1 73.77% 72.62 ± 0.92%

Support vector machine EXP 2-2 77.59% 77.51 ± 0.77%

Gradient rree boosting EXP 2-3 84.14% 75.51 ± 1.58%

Logistic regression EXP 2-4 79.55% 77.97 ± 0.79%

Multilayer perceptron EXP 2-5 92.90% 73.64 ± 1.11%

Extreme gradient boosting EXP 2-6 90.34% 80.60 ± 0.72%

Figure 5.  Comparison of the test AUC scores for Extreme Gradient Boosting and Logistic Regression on 
different disease categories.
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of the occurrence of the disease. An increase in the cross-validation AUC of 0.6% is achieved as compared to 
Extreme Gradient Boosting alone.

When comparing the individual AUC scores of the five diseases shown in the previous section we observe, 
as per Fig. 6 that the ensemble model tends to converge to the higher score of the individual models.

Discussion. This work shows that in terms of overall training and crossvalidation, it is of importance to exam-
ine individual diseases or disease groupings and understand both their predictability as well as the respective 
feature importances. Regarding the individual predictability of diseases we determined the AUCs for all 45 
disease groups, both in training as well as on a 10% test dataset (Table 13). Our experiments also show that some 
disease categories have a very high predictability. These include arthritis, disc diseases, diabetes, hematopoietic 
cancers, thyroid disorders, and adrenal gland disorders. These are conditions that are either chronic (i.e. the 
model learned that the presence of previous claims is a strong indicator for future claims of the same kind) or for 
which certain constellations of age and breed allow for high prediction performance.

Other disease categories such as vomiting and diarrhea, foreign body ingestion and soft tissue injuries all have 
significantly lower AUCs as they are inherently more difficult to predict. There are certain breeds and age groups 
for which these conditions happen more often, which is reflected in AUCs that are significantly above the 50% 
chance line but overall these types of incidents would naturally occur in a less predictable fashion. We also note 
that for some conditions, such as dental conditions or immune disorders, we still observe a larger discrepancy 
between train and test AUC which might indicate a certain degree of overfitting.

Clearly, on a topic such as health prediction, one would aim for explainable  AI59,60, as in models that can not 
only provide predictions, but also explain in an understandable way how it came to those predictions, such as a 
high risk for arthritis or malignant tumors. This is extremely important for use in veterinary research in order 
to understand which combinations of breed, previous disease history, and environmental factors yield increased 
risks for which disease outcomes. It is also highly important for use in creating recommendations for individual 
dogs as the understanding of which features are driving the increased risk can have an immediate impact on the 
preventive methods that can be employed to reduce the risk and avoid the disease occurrence.

As a first indicator for model explainability, we consider feature importance  plots48. For an individual disease 
category these indicate the relative importance of individual features such as age, breed or previous diseases. In 
Figs. 7 and 8 feature importance plots for diabetes and arthritis are shown using the XGBoost model as an exam-
ple. The suffix _last and _avg in these plots represent the disease-related features that are described in Section 
"Proposed approach"—_last representing a binary value on whether a respective claim was filed in the last year 
and _avg representing the average number of filed claims per year. One can observe that for diabetes prediction 
the model learned that the strongest predictor is the presence of previous diabetes claims and only very minor 
contributions come from e.g. previous claims on kidney disorders or age. For arthritis prediction as shown in 
Fig. 8 we observe a different scenario: Still, the disease category itself (here: represented via Arthritis_avg and 
Arthritis_last) are the two strongest indicators, but we have a much larger group of features that are indicative 
for Arthritis prediction. These naturally include age, but also the presence of cruciate ligament injuries or gait 
abnormalities. These are confirmed by existing veterinary  research42,61.

Feature importance plots are only a first indicator and don’t show the direction of the importance. As an 
example, the feature importance plot for arthritis shows that the model learned that age is an important feature 
with high predictive power but it doesn’t show whether e.g. a higher or lower age correlates with an increase in 

Table 12.  Area under the ROC-Curve for Experiment Set 3.

Train AUC Crossval AUC 

Ensemble of XGBoost and linear regression EXP 3-1 88.56% 81.23 ± 0.73%

Figure 6.  Comparison of the test AUC scores for Extreme Gradient Boosting, Logistic Regression and 
Ensemble on different diseases.
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arthritis claims. As a next level indicator we used partial dependence plots (PDPs)62 in order to analyze predic-
tions. PDPs show the dependence between the target response (in our case the presence of a certain disease) 
and an input feature (e.g. age). The following (Fig. 9) shows an example of such PDPs for the case of arthritis 
prediction. In Fig. 9a the dependence of age on arthritis prediction is shown. As expected we see the PDP plot 
being close to zero in the puppy age and constantly increasing with age, reaching its maximum in the oldest age 
category. Figure 9b shows the dependence of the average number of previous arthritis diagnoses per year on the 
prediction of future claims related to arthritis diagnoses. This ”self-prediction,” where once a disease has occurred 
there is a higher likelihood of claims related to it in the future, is observable over all disease group categories and 

Table 13.  Area under the ROC-Curve for individual disease groups (XGBoost).

Disease group Train AUC (%) Crossval AUC (%)

Diabetes 99.90 94.66 ± 1.28

Mass lesion or swelling hematopoietic 99.63 88.97 ± 0.91

Adrenal gland disorders 98.99 90.68 ± 0.88

Eye diseases 98.92 89.59 ± 0.97

Immune disorders 98.00 80.66 ± 2.15

Thyroid disorders 97.96 90.86 ± 0.09

Disc diseases 97.63 88.41 ± 0.50

Kidney disorders 96.85 81.07 ± 2.15

Mass lesion or swelling malignant 96.51 89.49 ± 0.47

Arthritis 96.36 89.94 ± 0.51

Urinary incontinence 96.31 85.53 ± 1.03

Heart diseases 95.89 83.29 ± 1.45

Skeletal conformation disorders 95.70 89.00 ± 0.76

Heart murmurs or arrythmias 95.36 85.25 ± 0.56

Behavioral disorders 94.67 83.61 ± 0.91

Liver disorders 94.28 85.10 ± 1.11

Digestive disorders 93.69 76.93 ± 0.90

Seizures 92.79 80.30 ± 1.07

Anxiety or phobia 92.45 81.11 ± 0.69

Internal parasites 92.37 82.28 ± 0.76

Gastrointestinal nervous system disorders 91.87 72.16 ± 0.80

Oral inflammation 91.63 86.75 ± 0.39

Anal gland disorders 91.45 77.88 ± 0.95

Itching 90.54 79.69 ± 0.65

Cruciate ligament injuries 90.50 84.47 ± 0.10

Unspecified allergies 89.87 84.97 ± 0.33

Lethargy 88.30 69.30 ± 1.00

Inflammation 87.81 75.07 ± 0.86

Dermatologic immune diseases 87.15 83.15 ± 0.34

Eye inflammation 87.00 79.16 ± 0.42

Dental conditions 86.59 72.53 ± 0.98

Skin infections 85.89 77.89 ± 0.75

Pain disorders 85.72 75.73 ± 0.44

Leg injuries 84.97 73.98 ± 0.69

Respiratory infections 84.65 74.02 ± 0.59

Urinary tract disorders 84.31 76.91 ± 0.35

Mass lesion or swelling 83.88 78.66 ± 0.40

Foreign body 83.83 74.62 ± 0.42

Gastroenteritis and other gi disorders 83.32 75.48 ± 0.40

Intoxication 83.13 71.04 ± 0.43

Ear inflammation and infections 82.19 77.51 ± 0.33

Gait abnormalities 81.92 73.81 ± 0.57

Infectious disorders 81.39 73.47 ± 0.52

Injuries 76.84 69.75 ± 0.51

Vomiting and diarrhea 76.18 72.06 ± 0.12

Mean 90.34 80.60 ± 0.10
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is typically one of the strongest predictive features. In the PDP plot we observe an increasing trend meaning a 
high number of previous arthritis claims is indicative for having more arthritis claims.

Figure 9c and d then show the dependence of the average number of cruciate ligaments and gait abnormali-
ties claims per year on arthritis prediction. Both plots show that these previous conditions have a clear impact 
on arthritis prediction.

Limitations. In addition to the limitations included in the discussion above, it is important to remember that 
the outcome data used for predictive modeling were compiled exclusively by an insurance provider and thus are 
considered a secondary data  source63. Though some data was robustly reported for all individual dogs included 
in the dataset, like address information, other information about the total population may have been reported 
with lesser accuracy. For instance, some locations in the United States enforce breed-restrictions and thus dog 
owners may have inaccurately reported their dog’s breed to the insurance provider.

Another possible limitation is the use of breed groups to overcome small sample sizes in the dataset. This 
could result in breeds with higher population numbers within the dataset influencing the results of predictions 
of breeds that are less well represented. Further, the inclusion of breed characteristics developed by Kennel Club 
organizations may be oversimplified as there is no indication as to the degree to which specialists would agree on 
the categorizations (e.g. how trainable a particular breed of dog may be) attributed monolithically to each breed.

Conclusion
In this paper we demonstrated how machine learning models can be trained on insurance claims data to predict 
pet health. Several machine learning models were trained to predict 45 disease group categories and evaluated in 
terms of their predictive power. Models with rich features ranging from breed characteristics, individual disease 
history, sex, as well as environmental features derived from the dogs geographic location showed the highest 

Figure 7.  Feature importance plot for diabetes prediction.

Figure 8.  Feature importance plot for arthritis prediction.
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performance. It was also shown that the combination of machine learning models in an ensemble learning 
framework improves the model prediction accuracy even further.

Besides the raw AUC numbers, we demonstrated that the concept of explainable AI, specifically the use of 
feature importances and partial dependence plots, help to understand how the predictive model came to certain 
conclusions about increased or decreased risks for specific diseases. The developed machine learning models 
have a high enough predictive power to be used for a multitude of applications. These include applications for pet 
insurance companies, including building adaptive recommendation generating systems which can provide dog 
owners with specific preventive health recommendations with the aim of reducing disease occurrences which 
benefits the health of the animal and the financial outlay for the insurance provider. Other applications may 
include creating health reports for insured dogs, applications for veterinarians to raise awareness of individual 
dog risks in their clinical setting and a strong supporting dataset for research studies in veterinary medicine.

Future work on this topic will include the addition of new features, specifically additional transformations of 
the claim time-series as well as prescription-based features (e.g. vaccination and flea and tick treatment usage). 
Work on the model itself will include neural networks beyond the multilayer perceptron and parallelizable models 
to cope with the expected increase in sample size. Also, work in the area of ensemble learning will follow. The 
results reported here are promising and we expect that more potential will be found in combining additional 
models and applying different combination strategies. Finally, as shown in the experimental results section, we 
still observe a certain discrepancy between performances on the train vs test sets for individual diseases which 
will be addressed via more sophisticated ensembling approaches.

Data availability
The data that support the findings of this study are available from Fetch, Inc. but restrictions apply to the avail-
ability of these data, which were used under license for the current study, and so are not publicly available. Data 
are however available from Christian Debes upon reasonable request and with permission of Fetch, Inc.

Figure 9.  Partial dependence plots for arthritis prediction.
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