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Diagnosis of sudden cardiac arrest 
using principal component analysis 
in automated external defibrillators
Van‑Su Pham 1, Anh Nguyen 1, Hoai Bac Dang 2, Hai‑Chau Le 1 & Minh Tuan Nguyen 1*

Sudden cardiac arrest (SCA) consisting of ventricular fibrillation and ventricular tachycardia considered 
as shockable rhythms is a life‑threatening heart disease, which is treated efficiently by the automated 
external defibrillator (AED). This work proposes a novel design of the SAA, which includes a k‑nearest 
neighbors model and a subset of 8 features extracted from the ECG segments, for the SCA diagnosis 
on the electrocardiogram (ECG) signal. These features are addressed as the most productive subset 
among 31 input features based on the evaluation of the feature correlation. The recursive feature 
elimination algorithm combined with the Boosting model and wise‑patient fivefold cross‑validation 
method is adopted for the calculation of the average feature importance, which shows the degree 
of feature correlation, to construct various input feature subsets. Moreover, component feature 
combinations known as the representatives of the input feature subsets with an enormous level of 
correlation and independence are transformed from the input subsets by the principal component 
analysis method. The wise‑patient fivefold cross‑validation procedure is used for the evaluation 
of these component feature combinations on the validation set. The proposed SAA is certainly 
efficient for SCA detection with a small number of the extracted feature and relatively high diagnosis 
performance such as accuracy of 99.52%, sensitivity of 97.69%, and specificity of 99.91%.

Shockable rhythms including ventricular fibrillation and ventricular tachycardia, known as the abnormal wave-
forms of the electrocardiogram (ECG) signals, are the main cause of Sudden cardiac arrest (SCA), which results 
in the death if the life-support services are not provided immediately for the patients. Until now, automated 
external defibrillator (AED) associated with a shock advice algorithm (SAA) is the most productive device for 
rapid diagnosis of the SCA and countershock delivery to reset the electrical system of the  heart1.

Recently, research on SCA diagnosis using intelligent technologies has focused largely on the improvement 
of the SAA performance. Indeed, incorrect non-shockable or shockable rhythm detection by the SAA leads to 
no curable solution for the patients who are under the SCA or the defibrillation which causes the artificial SCA. 
Moreover, machine learning (ML)1–10 and deep learning (DL)11–16 in combination with advanced signal processing 
techniques have been widely proposed for the SAA design in terms of AED performance improvement. Generally, 
the diagnosis performance of the SAA is better than that of the conventional methods, which use different thresh-
olds for SCA  classification10, and meet the American Heart Association  recommendation17. The DL-based SAA 
designs show various advantages in comparison with the ML-based SAAs such as no feature extraction, feature 
score-based feature ranking, feature selection, and better representative features, which reduces the complexity of 
the process of SAA  designs12. However, the identification of the optimal DL models is a time-consuming procedure 
due to the optimization of different hyper-parameters and  structures12–14,16. Furthermore, the utility of the DL 
models requires massive data, which makes it difficult for data collection. Nevertheless, the ML techniques have 
proven their effectiveness for the SAA designs in terms of model construction with the small amount of data, better 
adaptation to binary classification, and short time consumed for the model  optimization2,3,5,6,10.

To improve the classification performance of the SAA designs using the ML or DL methods, different algo-
rithms have been used for signal processing such as ensemble empirical mode decomposition (EEMD)4, discrete 
wavelet  transform5, variational mode decomposition (VMD)6,8,10,12, Taylor Fourier  transform7, stationary wavelet 
 transforms9, fixed frequency range empirical wavelet transform (FFREWT)13. The rationale behind the use of 
these techniques is the increase in the ECG signal quality, which results in better-extracted features. Indeed, 
subsignals, which are generated from the original ECG signals by the above techniques, contain properly the 
non-shockable and shockable components of the original ECG segments. Therefore, representation for recogniz-
ing the non-shockable and shockable components is better for the input features extracted from the subsignals 
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in comparison with that extracted from the original ECG segments. Moreover, the feature selection methods, 
which are genetic  algorithm1, differential evolution  algorithm2, Gaussian genetic  algorithm3, correlation attribute 
 evaluation4 are also employed to address the most relevant features from the input features. In other words, the 
important responsibility of the feature selection algorithms is the identification of the optimal features, which are 
uncorrelated certainly. The diagnosis performance of the ML- and DL-based SAA designs is negligible using the 
advanced signal processing techniques to improve the quality of the extracted features as shown in Refs.5–10,12,13, 
respectively. We name the application of the advanced signal processing techniques for the achievement of better 
feature quality as the ECG signal transformation with respect to the SAA designs in this paper.

Principal component analysis (PCA) is a well-known method for the extraction of robust features from the 
non-stationary ECG signals, which are associated with the rapid property changes of the waveforms. Indeed, 
the correlation between input features plays an essential role in the selection of the most informative features. It 
is clear that the utility of the PCA offers a robust approach for the feature estimation based on their correlation 
 degrees18. Particularly, the input features are transformed into another space by the PCA, in which the principal 
components corresponding to the correlation degrees are ordered. Consequently, the featured representative 
includes a feature subset selected from the input features, which are highly uncorrelated degrees.

Motivated by that the principal components transformed from the input features by the PCA can be served as the 
alternative input features, which are possibly contributive to the improvement of the proposed SAA design. Moreover, 
the feature transformation, in which the principal components are used as the alternatives for the input of the ML and 
DL algorithms, has not been considered properly in previous works related to the shockable/non-shockable rhythm 
classification. In this paper, a novel SAA design is proposed for the SCA detection from the ECG signals using the 
K-nearest neighbor (KNN) model and a component feature combination (CFC). First, the feature subset is selected 
carefully by the recursive feature elimination (RFE) method from the input features using the feature importance 
computed by the Boosting (BS) model and wise-patient fivefold cross-validation (CV) procedure. Second, the fea-
ture transformation is implemented by the PCA for the construction of the CFCs, which is then used for the model 
optimization on the training set. Last, the ML model using the CFCs is estimated its diagnosis performance by the 
wise-patient fivefold CV method on the validation set. The main contributions of this work are as follows:

• Evaluation of the feature correlation by the use of feature importance in the original feature space and gen-
eration of high feature uncorrelation by the PCA transformation for the construction of the alternative CFC 
in the principal component space.

• The utility of average important values, which are computed repeatedly by the RFE algorithm including a BS 
model in combination with the CV method leading to a reliable estimation for the feature selection.

• Proposal of a simple and effective SAA for the AED, which exposes relatively high performance with respect 
to the SCA detection.

Data and preprocessing
The public databases, which are the Creighton University Ventricular Tachyarrhythmia Database (CUDB) and the 
MIT-BIH Malignant Ventricular Arrhythmia Database (VFDB), are considered for method development and valida-
tion in this  study19. The CUDB and VFDB include 35 single- and 22 double-channel records in which record lengths 
are 8 and 35 min, respectively. The ECG signal annotations of VF, VT, and ventricular flutter are annotated as shockable 
signals, whose bandwidth is ranged from 0 to 10  Hz10, while non-shockable signals contain other types of ECG signals 
such as normal sinus, paced, nodal rhythms, atrial fibrillation, and ventricular ectopic beats. For the achievement of 
a better learning process, only the first channel of the VFDB is employed for this work. A sampling frequency of 250 
Hz is applied for a total of 57 records of the ECG databases, which are then divided into non-overlapping 8s segments. 
The sampling frequency of the databases is 250 Hz. A total of 57 records are then separated into non-overlapping 8-s 
segments of the ECG signals. Due to no contribution to SCA diagnosis, noise, asystole, transition rhythms, slow VT 
rate under 150 beats per minute of intermediate rhythms, and VF rhythms with peak-to-peak amplitude under 200 
µ V are eliminated from the ECG  records12. Removal of the asystole, which is considered as NSH rythm, based on the 
zero amplitude of the ECG signals provides appropriate requirements for the SAA. As a result, 1135 shockable and 5185 
non-shockable segments are further used for this work. Moreover, wise-patient separation, also known as inter-patient 
paradigm, is implemented to divide the records coming from different patients into training and validation sets. Indeed, 
40 and 17 records collected from the individual patients, which account for 70% and 30% of the entire databases cor-
responding to 4303 and 2017 segments, are assigned for training and validation sets, respectively. The records, shock-
able, and non-shockable ECG segments of CUDB and VFDB databases divided into training and validation sets are 
given in Table 1. Figure 1 shows the shockable and non-shockable ECG segments, which are preprocessed as follows: 

 (i) Generation of the smooth ECG signal by five-order moving average filtering.

Table 1.  Number of records, shockable and non-shockable ECG segments in training and validation sets.

Database

Training set Validation set Total

Record Shock Non-shock Total Record Shock Non-shock Total Record Shock Non-shock

CUDB 25 292 1056 1348 10 54 330 384 35 346 1386

VFDB 15 642 2313 2955 7 147 1486 1633 22 789 3799

Total 40 934 3369 4303 17 201 1816 2017 57 1135 5185
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 (ii) Removal of drift suppression and baseline wander by high-pass filtering with 1 Hz cutoff frequency.
 (iii) Elimination of high-frequency interference by second-order 30 Hz low-pass Butter-worth filtering. It is 

noteworthy that the existing AED supports a bandwidth of 1–30 Hz for monitor-type  ECG6.

Method development
The proposed method is shown in Fig. 2 including three main stages. The feature extraction is implemented firstly 
for the collection of the input features in time and frquency domains. Here, the original ECG signals are divided 
into segments, which are then preprocessed by various techniques. Secondly, the recursive feature elimination 
algorithm is performed for the construction of different feature subsets using the importance computed by the 
BS model. Then, above feature subset is transformed into the CFCs in the principal domain, where the model 
selection and the SCA classification are completed. Lastly, the wise-patient fivefold CV procedure is employed 
for the validation of the selected ML and DL models using a number of the CFCs on the validation set. A feature 
subset corresponding to a component feature combination, which is adopted as the input of a classifier producing 
the highest validated diagnosis performance in terms of accuracy, is chosen as the proposed design of the SAA. 
All the principal components of the CFCs corresponding to IFSs are used as the input of ML and DL models. 
In addition, relatively high diagnosis accuracy is essential to ensure the reliability of the proposed algorithm for 
the application in the clinic environment. Therefore, we propose a criteria of accuracy, which is larger than 99%, 
for the selection of the proposed SAA.

We use 6 ML and 2 DL algorithms for this works, which are KNN, Support vector machine (SVM), Boost-
ing (BS), Bagging (BG), Random forest (RF), Logistic regression (LR), Convolutional neural network (CNN), 
Long-short term memory (LSTM)20. It is noteworthy that the tSNE is unconsidered as the classification model 
in this work due to unstable and unlabelled outcomes, which are unfitted for the simulation using CV method.

Feature extraction. The input features are extracted from the preprocessed ECG segments by application 
of various conventional techniques, which are investigated from a large number of the existing publications. 
These features, also known as the threshold algorithms, are the most common used for the shockable/non-

Figure 1.  Non-shockable and shockable 8s-ECG segments.
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shockable rhythm classification. Indeed, each feature is an algorithm for the calculation of a threshold using to 
distinguish shockable from non-shockable ECG segments. However, the thresholds are unnecessary when the 
outputs of the corresponded algorithms are used as the input features of the ML or DL  methods10. Moreover, the 
feature contribution is only witnessed by their correlation within a completed feature combination for practical 
SCA diagnosis. There is a total of 31 features extracted from the 8-s ECG segments including temporal, spectral, 
and complexity  features10 as follows:

• Temporal features: mean absolute value (MAva), bCP, threshold crossing sample count (TCSC), threshold 
crossing interval (TCin), modified exponential algorithm (MEal), standard exponential algorithm (SEal), 
Count1, Count2, and Count3.

• Spectral features: center frequency (CFre), spectral analysis (A1 and A2), power spectral analysis (PSan), 
center power (CPow), Y _Li, bWT, bW, VF-filter leakage measure (VFLM).

• Complexity features: Hilbert transform (HTra), covariance calculation (CCal), phase space reconstruction 
(PSre), area calculation (ACal), frequency calculation (FCal), Kurtosis (Kurt), complexity measure (CMea), 
dispersion entropy (DEnt), sample entropy (SEnt), energy (Ener), Renyi entropy (REnt), fuzzy entropy (FEnt), 
and wavelet entropy (WEnt).

The mean values of features calculated for 50 non-shockable and 50 shockable ECG segments are totally different 
as shown in Table 2. A total of 31 features is possibly categorized into two groups using the differences between 
average feature values computed for shockable and non-shockable ECG segments. These feature groups consist 
of 17 and 14 features, which produce large and small differences between the average values of shockable and 
non-shockable ECG segments. Intuitively, difference between the values is proportional to feature capability of 
the recognition with respect to the shockable/non-shockable ECG segments.

Feature and model construction. Feature construction. In this stage, we use the RFE method for the 
construction of various feature subsets, which are then transformed into component space by the PCA. Firstly, the 
input features are ranked by their importance values, which are computed by the BS model in combination with 
the wise-patient fivefold CV procedure. Here, the features, which have largely average importance values, are con-
sidered as more important than the others. Then, the feature subsets are constructed by the removal of the features 
with the lowest average importance values. It is noteworthy that the BS model combined with the wise-patient 
fivefold CV procedure is implemented repeatedly to calculate the feature importance for every feature subsets until 
no feature for subtraction. Algorithm 1 represents the RFE method for the construction of different feature subsets.

Table 2.  Mean values of features for non-shockable and shockable ECG segments.

Feature

ECG segment

Feature

ECG segment

Feature

ECG segment

Non-shockable Shockable Non-shockable Shockable Non-shockable Shockable

MAva 0.00 0.65 A1 0.01 1.60 PSre 0.00 0.18

bCP 0.00 0.15 A2 0.00 0.45 ACal 3.02 1462.45

TCSC 0.01 55.87 PSan 0.32 3.48 FCal 0.01 3.14

TCin 2.69 298.82 CPow 0.00 0.04 Kurt 0.05 − 0.06

MEal 0.15 199.88 Y_Li 0.00 47.63 CMea 0.00 0.17

SEal 0.26 192.00 bWT 0.00 0.53 DEnt 0.00 1.60

Count1 0.04 42.96 bW 0.02 1.68 SEnt 0.00 0.35

Count2 0.16 102.33 VFLM 0.00 0.48 Ener 0.47 224.07

Count3 0.01 30.97 HTra 0.00 0.19 REnt 0.01 4.67

CFre 0.32 3.48 CCal 0.00 0.20
FEnt 0.00 0.05

WEnt 0.00 0.96
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Feature importance. Given that n features, denoted as Fn , are include in the input data X. A relevant measure-
ment for each feature is computed as  follows21:

where I is the indicator of set v(i). Tr is a single tree, which consists of T − 1 internal nodes. A region associated 
with a node v(i) is partitioned by an input variable Fn(v(i)) into two subregions in which the separated constants 
are fit to the response values. The maximal estimated improvement ŝ2i  in squared error risk is given by the above 
variable, which results in a constant fitting over the entire region. The importance of variable Fn is the sum of 
the improvement over all internal nodes.

For calculation of ŝ2i  , we note that a system contains a random output, known as response, variable y and 
the input or observations x = {x1, x2, ..., xK } . pt(x) = P(yt |x) is the conditional probability of x given y with 
yt ∈ {0, 1} , t ∈ {t1, t2} are the binary classes, and k ∈ {1 : K} . L and P are the numbers of trees and iterations, 
respectively. Each of tree has T − 1 internal nodes corresponding to regions {Zitp}Ll=1

 . L-trees are made at each 
iteration p to predict the corresponding residuals for each class t on the probability scale. The maximal estimated 
improvement ŝ2i  is used to estimate the splits of region {Zitp} into two subregions corresponding to class t1 and 
t2 as follows:

where pseudoresponses yt1 and yt2 are the means of left and right daughter responses. wt1 and wt2 are the cor-
responding sums of weights. These are computed with respect to observation xk as follows:

The importance measure is simply averaged over the tree based on the generalization of the additive tree 
expansions as follows:

For binary classification, two separate models M1(x) and M2(x) are generated in which each model contains 
a sum of trees as follows:

Then, the Eq. (5) is generalized for binary classes as follows:

The final relevance of Fn is computed as the mean of two classes as follows:

Here, the utility of binary classification results in relevances of Fn related to the observations of the individual 
class separated from another. Hence, Rn1 and Rn2 are the relevances of Fn corresponding to two classes.

Obviously, the importance measures are relative and obtained by the respective square roots as shown in 
Eqs. (1) and (5). Therefore, the largest importance value is customary assigned as 100 to scale the other values 
accordingly.

Principal component analysis. Different feature subsets, which are generated by the RFE using the BS model 
and the wise-patient fivefold CV, are transformed into component space by the PCA in which each feature subset 

(1)R2
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corresponds to a CFC. Obviously, high correlation between features in the original feature subset is the main 
reason for the utility of PCA transformation to obtain the component subset in which individuals are uncor-
related significantly.

More precisely, the training set with n features, known as observed variables Fn , is transformed into a dif-
ferent space including n principal components Cn , which are independent and uncorrelated variables. First, the 
features are standardized to make them independent on measurement scale. Then, a feature is given as follows:

Also, the principal components, which are used as the CFC for further model selection and feature estima-
tion, are computed as a linear combination of the original features as follows:

The component Cl are uncorrelated with each other and ordered by the sample variance � , that is, the largest 
sample variance represents for C1 , the second largest sample variance is for C2 , and so on. The sample variances 
corresponding to different components are known as eigenvalues, which show the share proportion in the total 
variance. In details, a component including a larger share of the total variance, which represented by a larger 
eigenvalue, in the original features is more important than the others with smaller eigenvalues. The covariance 
matrix Cov of the original feature F is as follows:

where xij is the correlation of Fi and Fj . The coefficients bml with m = [1 : n] for component Cl contain the eigen-
vector corresponding to the lth largest eigenvalue �l . Due to standardization, the total variance of all features 
equals to the number of features as follows:

Hence, �l/n is the proportion of the total variance for the lth component. It is noteworthy that the similar 
number of features and components remains the entire information during transformation process.

Model selection. All the CFCs are fed into different ML and DL models to search for the optimal learning and 
structure parameters on the training set. Obviously, hyper-parameter tuning is necessary for the identification 
of the optimal models, which contributes significantly to the avoidance of the overfitting problem. Furthermore, 
the selected models corresponding to the CFCs are estimated for their classification performance on the valida-
tion set. In this work, we use the grid search in combination with the wise-patient fivefold CV method to address 
the optimal parameter values for the models using entire CFCs.

Feature estimation. The optimal models, which are the output of the model selection phase, are estimated 
the detection performance on the validation set using the CFCs. In addition, the wise-patient fivefold CV proce-
dure is also implemented to obtain reliable simulation results. There are two steps of the above procedure, which 
are data separation and model validation. For the former, the validation set is separated into 5 subsets of the 
records in which a subset is the testing data while others are used for training the models. Training and testing 
of the models are implemented repeatedly 5 times to make every subset become the testing data in the latter. 
The wise-patient CV procedure is run 30 times to compute the mean and standard deviation of the classification 
performance. A final feature subset corresponding to a CFC used as the input of the model, which produces the 
highest detection accuracy among others, is selected. The SAA design including such a final feature subset and 
the above model is proposed for the practical AED.

Results
Performance measure. A number of measures namely accuracy (Ac), sensitivity (Se), specificity (Sp), 
and balanced error rate (BER) are used for performance estimation of the ML models using the CFCs. The Ac 
measures the number of ECG segments identified correctly. The shockable and non-shockable ECG segments 
addressed correctly are represented by the Se and Sp. BER is computed as 1 − 0.5(Se + Sp).

Feature and model construction. Feature construction. A total of 31 input features, which are extract-
ed from the preprocessed ECG segments, are adopted to construct 31 feature subsets in which the number of 
features is from 1 to 31 using the RFE method. Moreover, the BS model and wise-patient fivefold CV procedure, 
which are included in the RFE algorithm, are applied 30 times to produce 30 tables of the important values of the 
individual feature subsets. Then, the features with the lowest important values in the above tables are removed. 
All the feature subsets are transformed into component space by the PCA for the generation of 31 CFCs. Figure 3 
shows the tSNE visualization of the validation set with a CFC corresponding to an input feature subset (IFS) of 8 
features. The individual input features are ranked by the RFE algorithm as shown in Table 3. The selected times 
of the individual features by the RFE method are represented by the Imp number.

(11)Fm = am1C1 + am2C2 + · · · + amlCl + · · · + amnCn.

(12)Cl = b1lF1 + b2lF2 + · · · + bmlFm + · · · + bnlFn.

(13)Cov =















1 x12 ... x1j ... x1n
x21 1 ... x2j ... x2n
. . ... . ... .

xi1 xi2 ... xij ... xin
. . ... . ... .

xn1 xn2 ... xnj ... 1















,

(14)n = �1 + �2 + · · · + �n.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8768  | https://doi.org/10.1038/s41598-023-36011-9

www.nature.com/scientificreports/

Model selection. A total of 8 ML, DL algorithms, and 31 feature subsets corresponding to 31 CFCs are consid-
ered in this work. Hence, there are a total of 248 models, which are optimal for the individual feature subsets 
using the grid search method in combination with the wise-patient fivefold CV procedure.

Feature estimation. There are 248 models in the total using the CFCs, which are then estimated their 
diagnosis performance on the validation set by the wise-patient fivefold CV procedure. Table 4 shows 8 models, 
which produce the highest detection accuracy and the number of features in the corresponding IFSs. Particu-
larly, each model in Table 4 is chosen by the classification accuracy comparison of 31 models using 31 CFCs, 
which are transformed from 31 IFSs by the PCA.

Proposed SAA. The SAA design, which is proposed for the AED in this work, contains a KNN model (K = 
15) and a subset of 8 features extracted from the ECG signals with a length of 8 s. Here, the KNN model com-
bined with CV procedure is implemented repeatedly with different K values ranging from 5 to 100. The value of 
K for which the KNN model produces the highest detection accuracy is selected as the optimal parameter. The 
proposed SAA is installed on the AED to detect the SCA as follows: 

(i) Collection of an ECG segment with a length of 8s using a slipped window and the electrode pads of the 
AED.

(ii) Implementation of the preprocessing techniques to obtain clean the ECG signal.
(iii) Extraction of an IFS including 8 features from the clean ECG signal.
(iv) Transformation of the above IFS into principal component space by the PCA to obtain the CFC.
(v) Assigning the labels to such ECG segment as 0 for non-shockable ECG signal or 1 for shockable ECG seg-

ment by the trained KNN model using a CFC transformed from an ICF of 8 features.

The average duration of the segmentation, signal preprocessing, feature extraction, feature transformation, and 
classification consumed by the proposed SAA is calculated for 50 consecutive ECG segments as 3.97± 2.28 . 
Certainly, this total time is shorter than the ECG segment length of 8s, which ensures no interruption of the SCA 
diagnosis between the consecutive ECG segments. According to AHA recommendations, a minimal number of 
3 ECG leads, also known as 3-wire lead set, is employed for the ECG acquisition. Two leads are right arm (RA), 
left arm (LA) electrodes placed under right and left clavicles, mid-clavicular line within the rib cage frame. The 
last is left leg (LL) electrode, which is placed on the lower left abdomen within the rib cage frame.

Figure 3.  tSNE visualization of validation set with a CFC transformed from an IFS of 8 features.

Table 3.  Individual feature ranked by RFE method.

Feature bCP VFLM Count2 SEnt Ener FCal bW Y Li MEal bWT

Imp 30 29 28 27 26 25 24 23 22 21

Feature Count1 REnt Kurt FEnt TCSC A2 CMea Count3 PSre TCin DEnt

Imp 20 19 18 17 16 15 14 13 12 11 10

Feature CPow WEnt CCal HTra A1 PSan MAva SEal ACal CFre

Imp 9 8 7 6 5 4 3 2 1 0
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Discussion
Nowadays, the AED, which is convenient, low-cost, and reputable, is the most productive decision-support sys-
tem for SCA treatment. Indeed, the shockable rhythms are diagnosed reliably on the ECG signals by the SAA, 
which is integrated into the AED. Then, rapid defibrillation is delivered to start the electric system of the heart 
over, which improves the chance of survival.

The feature correlation plays a vital role in the estimation of the feature quality for the classification of the 
shockable/non-shockable rhythms on the ECG signals. Indeed, the overlapping degree of the information, which 
is carried by the features, is measured by the feature correlation or feature importance. Hence, the individual 
features should contain the separated information, which can be used to discriminate correctly the shockable 
from non-shockable ECG segments.

Evaluation and generation of the feature correlation are considered for the feature selection, which consoli-
dates the representatives of the selected features in the final CFC. Basically, a feature is removed by the RFE 
method using the important value computed by the BS model in combination with the wise-patient fivefold 
CV method from the input features to construct a new IFS. Here, the mean values of the feature importance 
are calculated repeatedly for every IFS to address a feature with the lowest mean value of the importance for 
the elimination. This procedure aims at the correlation evaluation between features in an IFS when the feature 
number is changed. Consequently, the persistent features, which are preserved after the repetitions of the RFE 
algorithm, are highly uncorrelation with others. Another significant characteristic is that the generation of the 
feature correlation is implemented by the PCA transformation. Indeed, each CFC includes highly uncorrelated 
features, also known as the principal components, which are proven by Eq. (2). According to such formulation, 
each principal component is constructed from different fractions of all input features in a specific IFS. Obviously, 
the information related to shockable/non-shockable rhythms is accumulated to form a new feature namely the 
principal component. The highly validated performance of the ML and DL algorithms in Table 4 shows the 
impressive effectiveness of the proposed feature construction in this work. A CFC corresponding to 8 input 
features, in which individual principal components contain the separated information for the representation of 
the shockable/non-shockable rhythms on the ECG segments, is significantly efficient as the input of the KNN 
model for the SCA detection. Table 5 shows the performance comparisons of the proposed SAA with existing 
algorithms related to the SH/NSH rhythm classification.

Clearly, the selected feature number of the proposed SAA is relatively small in comparison with that of other 
publications, while the highly validated performance is maintained. Compared  to4,8,10,13 using the signal trans-
formation method, the feature transformation used for the proposed SAA is simple and powerful. Definitely, 
the difference between the validated performance of our SAA and that of Ref.10, which is the highest as given 
in Table 4, is negligible, while the proposed SAA design uses only a small number of 8 input features compared 
with 36 features determined in Ref.10.

Furthermore, the clinic physiology meanings of the selected input features provide deep knowledge of the 
shockable/non-shockable rhythms related to SCA diagnosis using the ECG signals. The Count2 feature is defined 
as the sample number, which represents the clear QRS peaks of the ECG signals. The non-shockable and shock-
able ECG segments have clear QRS peaks and no peak, which results in small and large numbers of samples for 
Count2,  respectively22. The differences between auto-correlation and cross-correlation of the ECG waveforms 
are computed as the Y_Li feature using continuous wavelet transform. Here, small differences are associated with 
the clear QRS complexes on the non-shockable ECG segments while no complex is available on the shockable 
ECG signals leading to large difference  values23. An essential characteristic of the ECG signals is the regularity, 
which is measured by the SEnt feature. Large differences in the samples are frequently shown on the shockable 
ECG segments due to no QRS complex, which leads to a great SEnt value. In contrast, non-shockable ECG signals 
with a huge number of clear QRS complexes indicate a high level of signal self-similarity, which results in a small 
value of the  SEnt24. Given that the ECG signal is similar to the quasi-sinusoidal waveform, a version of the ECG 
segment is generated by shifting such ECG signal by half a period. A combination of the original ECG segment 
and its version is the VFLK output, which indicates the small or high values of the amplitude for the shockable 
or non-shockable ECG segments,  respectively25. The FCal feature is based on the complexity and disorganization 
of the ECG signals, which are first converted into binary signals. Well-organized ECG segments are frequently 
stuck to the isoelectric line, which results in the stability of the binary signals with low FCal values. Conversely, 

Table 4.  The highest detection performance of individual models using the input of the CFCs, which are 
transformed from the IFSs including different number of original features. Significant values are in italics.

Model # feature Ac (%) Se (%) Sp (%) BER (%)

SVM 4 99.45 ± 0.24 97.93 ± 0.86 99.57 ± 0.18 1.24 ± 0.42

LR 4 99.17 ± 0.23 96.97 ± 0.49 99.37 ± 0.13 1.83 ± 0.29

KNN 8 99.52 ± 0.01 97.69 ± 1.23 99.71 ± 0.03 1.30 ± 0.63

RF 26 99.22 ± 0.09 96.26 ± 1.82 99.37 ± 0.15 2.16 ± 0.90

BG 26 99.08 ± 0.14 95.98 ± 1.18 99.20 ± 0.19 2.41 ± 0.59

BS 26 99.49 ± 0.16 95.17 ± 1.86 99.74 ± 0.16 2.54 ± 0.99

CNN 6 99.40 ± 0.10 95.39 ± 2.41 99.73 ± 0.09 2.44 ± 1.25

LSTM 5 99.18 ± 0.78 98.06 ± 0.43 99.34 ± 0.10 1.34 ± 0.26
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rapid changes of the binary signals for the shockable ECG segments show high values of the  FCal26. Clear QRS 
complexes of the non-shockable ECG signals result in high values of the signal slope, which are represented 
by a large bCP. In contrast, no impressed slope on the shockable ECG signal implies a small bCP  value27. The 
broadband and narrowband are assumed for the non-shockable and shockable ECG signals, whose frequency 
difference is measured by the bW feature. Hence, large and small values of the bW are for non-shockable and 
shockable ECG segments,  respectively27. The non-shockable ECG signals are close to the isoelectric line most 
of the time while a large number of disorganized peaks are shown on the shockable ECG segments. Therefore, 
the Ener feature values are small and larger for the non-shockable and shockable ECG segments,  respectively28.

The limitations of our study are the time consumption and complexity of the RFE algorithm using wise-patient 
fivefold CV procedure, which is run repeatedly to compute the importance values for feature elimination. In 
addition, the input data are likely small, which reduces possibly the effectiveness of the proposed SAA using 
online ECG signals in the clinic environments. Subsequently, evaluation of the proposed SAA with massive and 
diverse ECG databases is open for the future works.

Conclusion
The change of survival is largely dependent on the rapid, correct diagnosis and countershock delivery of the 
AED for the SCA on the ECG signals. Moreover, the SAA is the most important element of the AED, which 
plays the role of the decision-support algorithm. Hence, the performance improvement of the SAA design is 
paid intensive attention from the medical experts due to high classification performance resulting in avoidance 
of numerously unexpected deaths.

In this work, we proposed an effective and simple SAA for the AED, which is a potential application for the 
clinic environment, using the ML technique. The proposed SAA was designed with a KNN model and a subset 
of 8 input features, which were carefully selected by the RFE method in combination with the BS model and 
the wise-patient fivefold CV procedure. The feature correlation was evaluated repeatedly for the entire input 
features using the average feature importance computed by the BS model to eliminate the individual features 
with the lowest important values. Consequently, various IFSs with different feature numbers were constructed 
and then converted into the CFCs by the PCA, which were independent and uncorrelated variables. Obviously, 
the uncorrelation of the ICFs was increased by the use of the CFCs as the input of the KNN model, which led 
to the relatively high performance of the diagnosis for the shockable/non-shockable rhythms. The validated 
classification performance with Ac of 99.52%, Se of 97.69%, and Sp of 99.91% on the validation set and average 
diagnosis time of 3.97 s imply the effectiveness and simplicity of our proposed SAA, which are less complexity 
than others using signal transformation techniques for the feature extraction.

Data availability
The datasets generated and/or analysed during the current study are available on the physionet.org. (https:// physi 
onet. org/ conte nt/ cudb/1. 0.0/ and https:// www. physi onet. org/ conte nt/ vfdb/1. 0.0/).
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