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Quantification of active bearing 
input force for vibration reduction 
performance of unbalanced rotor 
systems
Dongwoo Hong 1, Hyeongill Lee 2, Youkyung Han 3 & Byeongil Kim 1*

Recently, rotating machinery has been widely applied in various mechanical systems such as 
hydroelectric and nuclear power plants. When mechanical systems are operated, the main rotor 
is rotated to manufacture the product. If a fault occurs in the rotor, then the system is damaged. 
Thus, to avoid malfunction of the system and rotor damage, vibration issues because of bending, 
misalignment, and imbalance should be considered. In this regard, a smart structure-based active 
bearing system is extensively researched and developed to control rotor vibration. This system can 
continuously improve the noise, vibration, and harshness performance under various operating 
conditions by controlling the dynamic characteristics of the active bearing. This study focused on 
the effect of rotor motion control by quantifying the active bearing force and phase when an active 
bearing was applied in a simple rotor model. A simple rotor with two active bearing systems was 
modeled based on lumped-parameter modeling. In the rotor model, the active bearing, which had two 
piezoelectric actuators and rubber grommets placed in both the x- and y-directions, was located on 
both sides to control the vibration. The interaction between the rotor and the active bearing system 
was considered to quantify the force and phase of this system. Furthermore, through simulation, the 
motion control effect was validated when an active bearing was applied in the rotor model.

Recently, rotating machinery has been widely applied in various mechanical systems to manufacture products 
and generate electrical power. When mechanical systems are operated, the main rotor part is rotated, exciting the 
overall system. If a fault occurs in the main rotor part, such as bending, misalignment, or imbalance, the overall 
system malfunctions or is damaged. In order to avoid these issues, vibration control should be performed for the 
main rotor. For achieving this, a smart structure-based active bearing system has been widely researched and 
developed. This system can continuously improve noise, vibration, and harshness performance under various 
operating conditions by controlling the dynamic characteristics of the active bearing system.

Several contemporary studies have focused on rotating machinery. The finite element method (FEM)1–3 and 
the transfer matrix4,5 method are widely used to analyze rotor systems, and the lumped-parameter modeling is 
less frequently used. Werner6,7 modeled asynchronous machines based on lumped-parameter modeling, com-
pared the results with those of FEM; they observed that lumped-parameter modeling had higher accuracy. 
However, in the lumped-parameter model, the response point is fixed, whereas it can be selected by adjusting the 
number of elements in FEM or the transfer matrix method. Thus, this limitation must be overcome. Werner8,9 
performed vibration control for an induction motor based on an actuator located between the motor feet and 
soft foundation, and they showed that the vibration was efficiently reduced.

Active bearing systems with smart materials, such as magnetic and piezoelectric actuators, have been actively 
investigated to control rotor vibration10. In several studies, active magnetic bearings (AMBs) have been used. 
Lusty et al. proposed an internal-stator active magnetic actuator (AMA) for vibration reduction of a hollow 
rotating shaft and demonstrated a vibration reduction effect through the experiment11. Chen et al. proposed an 
AMB and bearingless motor to stabilize a conventional rotor system12. Saeed et al. performed rotor AMB system 
control by combining proportional–derivative (PD) and positive position feedback controllers and showed that 
the system lateral vibration was close to zero13. Bordoloi et al. used a genetic algorithm to optimize the control 
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of the AMB system and achieved vibration reduction14. Yao et al. proposed an AMA to control a rotor system 
based on PD control15. The simulation and experiment demonstrated the effectiveness of the proposed method 
for vibration reduction.

Piezoelectric actuators have been used in several studies. Zhang et al. proposed a mixed sensitivity robust 
controller for flexible rotors with piezoelectric actuators16. Jungblut et al. performed active vibration control 
through an experimental modal analysis based on a piezoelectric actuator and achieved a vibration reduction 
effect17. Heinedl et al. proposed a control algorithm based on the Lyapunov stability theorem to eliminate the 
imbalance and resonance18. Li et al. proposed a novel active control method based on a piezoelectric actuator that 
successfully suppressed milling chatter19. To reduce the cost of the active vibration control system and simplify 
the structure, piezoelectric self-sensing actuators has been widely applied in control systems20,21. In addition, a 
piezoelectric patch was applied to the rotor surface to reduce the vibration of the rotor bearing system22.

In the above-mentioned literatures on the modeling, FEM and TMM shows a great coincidence with experi-
mental data for analyzing the rotor response. However, in case of those methods, n× n matrices must be pro-
cessed, so it takes fairly large amount of time to obtain responses due to the high calculation burden. In addition, 
when the model is changed, the entire matrix configuration must be newly defined, which is cumbersome. On 
the other hand, if we use the lumped parameter method, the calculation speed is faster compared to both FEM 
and TMM, and it has the advantage of being able to receive a response immediately when the model parameters 
are changed. Werner8,9 analyzed the overall responses by modeling each part of rotor machinery system through 
lumped parameter method, while this approach cannot determine responses at a certain point along the shaft 
which is possible with FEM and TMM. However, research to overcome this limitation and see the response at 
an arbitrary location has not yet been performed. Also, from the above-mentioned literature on active bearing 
systems, contemporary studies have mainly focused on active control algorithms. Therefore, this paper focused on 
two parts, as follows: (1) check the response at an arbitrary point on the shaft modeled by the lumped parameter 
method, and (2) quantify the force and phase of an active bearing system. In order to see the detailed response 
of the shaft in the rotating system modeled by the lumped parameter method, a transfer matrix based on the 
internally dividing point method was proposed and the response was confirmed. In addition, to quantify the 
force and phase of the active bearing system, the relationship between the active bearing and the rotor system 
was considered and calculated. If the input signal of the actuator can be quantified, the amount of voltage used 
during control can be predicted, and furthermore, it can be used as an index for optimal positioning of the active 
bearing system based on the mode shape and quantified force. In this paper, it is organized by focusing only 
on quantification, and the control voltage prediction and optimal location selection will be dealt with later. The 
rotating speed was set to 400 rpm to confirm the feasibility of the vibration reduction performance in the driving 
condition of typical hydroelectric power plants. Furthermore, for the validation of the proposed method in vari-
ous conditions, control performance was investigated at three different operating speeds. A rotor system with two 
active bearings was modeled based on a lumped-parameter model. The active bearing, which had piezoelectric 
actuators and rubber grommets placed in both the x- and y-directions, was located on both sides to control the 
vibration. When using FEM or experiments, the sensor position can be selected more arbitrarily, whereas it is 
rather impossible when using the lumped-parameter model. To overcome this limitation of lumped-parameter 
modeling, a coordinate transformation method is suggested. The active bearing force and phase are quantified 
considering the relationship between the rotor and active bearing system and assuming that the bearing hous-
ing motion is zero. The main contributions of this study can be summarized as follows: (1) lumped-parameter 
modeling was performed for rotor systems with active bearings; (2) to overcome the limitation in the lumped-
parameter model, which chooses the response point, the coordinate transform matrix was established; and (3) 
the active bearing force and phase were quantified to control the rotor system.

The remainder of this paper is organized as follows. “Mathematical modeling” section describes lumped-
parameter modeling for a rotor with two active bearing systems and explains the transformation matrix. “Quan-
tification of active bearing force and phase” section describes the quantification method of the force and phase 
for the active bearing system. “Validation of rotor motion control” section discusses the motion control results, 
and finally, “Conclusion” section presents the conclusion and discusses future work.

Mathematical modeling
A simple rotor system with two active bearing parts was modeled based on the lumped-parameter model to 
validate the vibration reduction effect by quantifying the active bearing force and phase. A schematic of the 
active bearing system, consisting of a piezoelectric actuator and rubber grommet in the x- and y-directions, is 
shown in Fig. 1.

Figure 2 shows the overall model with a shaft (made of SM45C) whose diameter and length are 0.01 m and 
0.2 m, respectively. Material properties of all the components are obtained from a real laboratory setup. The 
active bearing system having a piezoelectric actuator and rubber mount is located on both sides to control the 
vibration. mR and IR represent the mass and inertia of the shaft, respectively. mBh,n,i and mas,n,i are the masses 
of the bearing housing and piezoelectric actuator, respectively, where n = x, y , and i = 1, 2 . The rotor mass and 
inertia were calculated based on the material property, and the mass of the bearing housing and piezoelectric 
actuator was measured and used. kbi,n and cbi,n represent the stiffness and damping coefficients corresponding 
to the bearing, respectively. When a ball or roller bearing is considered, the damping coefficient is assumed to 
be zero. In this study, the ball bearing was used when a simulation was performed; thus, the damping coefficient 
was not considered. kac,n,i and cac,n,i represent the stiffness and damping coefficients of the piezoelectric actuator, 
respectively. ksp,n,i is the stiffnesses of the spring. kpre,n,i and cpre,n,i represent the stiffness and damping coefficients 
of the rubber grommet, respectively.
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The stiffness and damping coefficient for the actuator and rubber grommet were assumed to follow the Kelvin-
Voigt model. εr,n and θn represent the translational and rotational motions of the rotor for each n-direction, 
where n = x and y. εbh,n,i and εac,n,i are the translational motions of the bearing housing and piezoelectric actuator, 
respectively. The overall parameters are listed in Table 1. Matrices M, C, and K for x- and y-directions are sum-
marized in (1)–(5). The displacements qn and unbalanced forces Fn are summarized in (6)–(9).

(1)My = Mx = diag
([

mR mB1 mac1 mB2 mac2 IR
])

Figure 1.   Schematic of active bearing system.

Figure 2.   Simple rotor model with two active bearing systems.
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In (9), fun,n and fac,n represent the unbalanced and actuator forces, respectively. The overall equation of motion 
for the rotor system can be expressed by (10).

When the rotor system is analyzed using FEM or experiments, the sensor position can be arbitrarily selected. 
However, (10) considers the center of mass of the rotor; therefore, the response point (sensor position) is fixed 
with no choice in the lumped-parameter model. To overcome this limitation, a coordinate transform is per-
formed using the transformation matrix Π, and the shaft part in Fig. 1 is re-expressed, as shown in Fig. 3. FEM 
or TMM require re-calculation of matrices to simulate the condition of parametric change and different response 
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(6)qy =
[

εr,y εbh,y,1 εac,y,1 εbh,y,2 εac,y,2 θx
]T

(7)qx =
[

εr,x εbh,x,1 εac,x,1 εbh,x,2 εac,x,2 θy
]T

(8)Fy =
[

fun,y 0 0 0 fac,y 0
]T

(9)Fx =
[

fun,x 0 0 0 fac,x 0
]T

(10)
[

My 0
0 Mx

][

q̈y
q̈x

]

+

[

Cy �I
−�I Cx

][

q̇y
q̇x

]

+

[

Ky 0
0 Kx

][

qy
qx

]

=

[

Fy
Fx

]

Table 1.   Rotor parameters.

Variable Values Unit

Operating speed 400 RPM

Rotor (SM45C)

Young’s modulus (E) 207 GPa

Density ( ρ) 7600 kg/m3

length ( li) 0.2 m

Bearing
Stiffness ( kbi,ni = 1, 2, n = x, y) 2× 108 N/m

Housing ( mbh,n,i i = 1, 2, n = x, y) 0.133 kg

Actuator
Mass ( mac,n,i i = 1, 2, n = x, y) 0.196 kg

Stiffness ( kac,n,i i = 1, 2, n = x, y) 5.64(1 + i0.034) KN/mm

Spring stiffness ( ksp,n,i i = 1, 2, n = x, y) 27.24× 106 N/m

Rubber grommet ( kpre,n,i i = 1, 2, n = x, y) 0.61(1 + i0.300) KN/mm



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8976  | https://doi.org/10.1038/s41598-023-35993-w

www.nature.com/scientificreports/

positions of the shaft, which takes considerably long time due to the large amount of calculation. In the case 
of the lumped parameter method, responses can be immediately checked through a simple parameter change 
without changing the model with less amount of calculation. In addition, through the coordinate conversion 
method proposed in this paper, the response at any point along the shaft can be easily obtained by changing the 
variable lseni    determining the response position.

In Fig. 3, ξseni,n represents the displacement corresponding to the ith sensor in the n-direction, and lseni  is the 
length corresponding to the center of mass and the sensor location, where i = 1, 2, and n = x and y. To divide the 
center of mass into each sensor location, the transformation matrix � is defined in (11), and the time-invariant 
and the rotational motion are assumed to be small, θn ≤ 1.

Using (11), the displacement can be rewritten as (12) and (13) through the relationship of q = �q′.

Based on this assumption, the sensor position can be selected by changing the lseni  , and the overall equation 
of motion can be rewritten as (14), which represents the sensor position.

Furthermore, (14) can be rewritten as (15).

Quantification of active bearing force and phase
To validate the vibration reduction performance through an active bearing system, the input signals were quanti-
fied considering the relationship between the external force and system motion, as shown in Fig. 4.

In Fig. 4, red and purple line represent the relationship between external force and system motion correspond-
ing to y- and x-direction, respectively. Each bearing housing in x- and y-direction is excited by external force fun,y 
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Figure 3.   Sensor position in shaft part.
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and fun,x , and it is creating the bearing housing motion εbh,y,i and εbh,x,i . In order to control the housing motion 
that occurs by external force, the piezoelectric actuator generates εac,y,i and εac,x,i . For ideal control, it is assumed 
that the housing motion is zero for each direction. When the shaft is operated, the bearing housing vibrations 
have x- and y-components, which are not independent. Thus, when considering the x- and y-direction motions 
for the bearing housing, the effects of the two actuators should be also considered. Thus, when considering the 
housing motion in the y direction, not only the external force and actuator motion in the y direction, but also 
the actuator motion in the x direction should be considered. This fact also holds in the x-direction. When the 
relationship is considered, the phase between the harmonic excitation and system motion is critical. Thus, to 
consider the phase, complex valued variables were assumed for excitation and actuator force, as in (16) to (19).

In (16)–(19), mo and e represent the unbalanced mass and eccentricity, respectively, � is the rotation speed, 
and Faci,n and φaci,n are the force and phase corresponding to the ith actuator in the n-direction, respectively, 
where i = 1, 2, and n = x and y. To simplify the notation of bearing housing, the notations were changed to 
εbh,y,i = ξyi and εbh,x,i = ξxi . For effective vibration isolation of the rotor, the bearing housing motion should 
ideally be minimized to zero. Thus, the bearing housing motion was defined by (20) and (21):

In (20) and (21), �bh,y,i,wy  and  �bh,x,i,wx are the complex amplitudes in the y- and x-directions correspond-
ing to the ith bearing housing due to the unbalance forces in y- and x-directions, respectively, where i = 1, 2. 
�bh,y,i,ac,n,ij and  �bh,x,i,ac,n,ij are the complex amplitudes in the y- and x-directions, respectively, corresponding to 
the ith bearing housing due to jth actuator, where i and j = 1 and 2 and n = x and y. φac,x,ij and φac,y,ij are the phases 
in x- and y-directions, respectively, corresponding to ith bearing housing and jth actuator. The bearing housing 
motion has two actuator terms in the other direction. When the rotor is operated, the bearing housing vibrations 
have x- and y-components, which are not independent. Thus, when considering the x- and y-direction motions 
for the bearing housing, the effects of the two actuators should be considered. Ideally, phase match should be 
conducted for one state, such as external force or for each actuator. Furthermore, the amplitude � should be zero. 
Thus, to fit the phase match, (20) and (21) were rewritten in terms of magnitude and phase, as in (22) and (23):

(16)fun,y(t) = moe�
2ei�t

(17)fun,x(t) = moe�
2ei�t

(18)faci,y(t) = Faci,ye
i(�t+φaci,y)

(19)faci,x(t) = Faci,xe
i(�t+φaci,x)

(20)ξyi =
(

�bh,y,i,wy +�bh,y,i,ac,x,ije
iφac,x,ij +�bh,y,i,ac,y,ije

iφac,y,ij
)

ei�t

(21)ξxi =
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)

ei�t
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(
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∣ei
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Figure 4.   Relationship between external force and system motion.
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In (22) and (23), |·| represents the magnitude operator. βbh,y,i,wy is the phase between the unbalanced force and 
motion of the ith bearing housing, both in the y-direction, where i = 1, 2. βbh,x,i,wx is the phase between the unbal-
anced force and motion of the ith bearing housing, both in the x-direction, where i = 1, 2. βbh,y,i,ac,n,ij is the phase 
between the jth actuator force in the n-direction and the motion of the ith bearing housing in the y-direction, 
where i and j = 1, 2 and n = x and y. βbh,x,i,ac,n,ij is the phase between the jth actuator force in the n-direction and 
motion of the ith bearing housing in the x-direction, where i and j = 1, 2, and n = x and y. To perform motion 
control, phase matching should be conducted, but (22) and (23) have five phases. Thus, a phase match should be 
performed to determine the relationship between the unbalanced force and bearing housing motion. Through 
this assumption, an out-of-phase motion can be created. Using the relationship between the bearing housing 
and active bearing system, (24) and (25) were defined, which represent the x- and y-directions, respectively:

To summarize the phase term, (24) and (25) were redefined as φac,x,ij and φac,y,ij in (26) and (27):

Equations (22) and (23) can be rewritten as (28) and (29) by substituting φac,x,ij and φac,y,ij , showing the phase 
match corresponding to the unbalanced force and bearing housing.

This study focused on reducing rotor vibration through an active bearing system by applying quantified force 
and phase. To conduct motion control, the active bearing forces were quantified through the defined bearing 
housing motion. Thus, each magnitude value was calculated using the compliance matrix H(�) . The dynamic 
stiffness matrix κ ′ was used to calculate H(�) and is defined as κ ′

(�) = −M
′
ω2 + C

′
jω + K . The compliance 

matrix H(�) is defined by (30):

Using the compliance matrix, system motion Q , and external force, the system displacement is defined by (31).

where Q is the system motion and F represents the external force, including the unbalanced and active bearing 
forces. The magnitude values in (20) and (21) were calculated using (31), and each amplitude was calculated 
using (32)–(35).

Furthermore, to calculate the phase for each amplitude, the phase operator ∠ was applied and expressed as 
βbh,y,1,wy = ∠H31 . The other phases were calculated using the same method. Using the amplitude and phase 
values, the active bearing force was quantified using (28) and (29), assuming the magnitude term to be zero, as 
defined in (36) and (37).
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Through (36) and (37), the active bearing system forces were defined as (38) and (39):

Validation of rotor motion control
The flowchart for checking the vibration reduction performance through the proposed quantification method 
is shown in Fig. 5 below. First, mathematical modeling is done on the entire model, and dynamic stiffness and 
compliance matrix are calculated. And then, the vibration isolation target is selected and the complex amplitudes 
of the isolated part are calculated. Magnitude and phase component is extracted and the control force, the input 
signal for active bearing system, is calculated based on the magnitude after assuming that the motion of the target 
part becomes zero. Finally, a signal is generated based on the derived control force magnitude and phase, and 
then used as an input to the active bearing system.

To validate the effect of vibration reduction performance, a simulation was performed. The external force was 
set to an unbalanced force in the x- and y-directions, and the sampling frequency was 10 kHz. In addition, the 
equation of motion was expressed using the state-space model and is summarized in (40) and (41).

In (40) and (41), A, B, and C are the system state, input, and output matrices, respectively, as summarized 
in (42).

A simulation was performed using the state-space model. In addition, the shaft part was divided by 5 points on 
both the left and right sides based on the center of mass, and the vibration reduction performance was checked.

Root mean square (RMS), insertion loss (IL), and whirling motions were used to validate the simulation 
results. When performing the simulation, in order to validate the control performance at different operating 
speed, four cases are tested. Fig. 6 shows the RMS value for each point, and Table 2 lists the average RMS values 
for each sensor part. Since each sensor part has two displacement sensors on x- and y-directions, the RMS values 
are calculated for both of them and compared before and after control for the validation of vibration reduction 
performance. In Fig. 6, the black dotted line represents the rotor center and the blue marks stand for the original 
(before control) values, while the red marks indicate the controlled (after control) values. In addition, * and ο 
marks represent RMS values corresponding to x- and y-direction, respectively. The time signal was used when 
the RMS value was calculated.

Figure 6 and Table 2 show the rotor control performance when the quantified force and phase were used as 
the active bearing inputs. In the x- and y-directions, the vibration was significantly reduced. However, as the 

(38)
[

Fac1,y
Fac1,x

]

= −
1

H33H99 −H39H93

[

−H9 9 H3 9

H9 3 −H3 3

][

H3 1fun,y
H9 7fun,x

]

(39)
[

Fac2,y
Fac2,x

]

= −
1

H55H11 11 −H5 11H11 5

[

−H11 11 H5 11

H11 5 −H5 5

][

H5 1fun,y
H11 7fun,x

]

(40)ẋ
′

(t) = Ax′(t)+ Bu(t)

(41)y(t) = Cx′(t)+ Du(t)

(42)A =

[

On×n In×n

−K ′/M ′ −C′/M ′

]

, B =

[

On×n

1/M ′

]

, C =
[

In×n On×n

]

, D = [On×n]

Figure 5.   Flowchart about proposed method.
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Figure 6.   Comparison of control performance—RMS value; (a) 400RPM, (b) 6000RPM, (c) 18000RPM, (d) 
30000RPM.

Table 2.   Control performance comparison—RMS value.

Comparison control 
performance ( RMS ∗ 10

−4)

X-direction Y-direction

Sensor 1 Sensor 2 Sensor 1 Sensor 2

400RPM
Original 2.508× 10−4 2.508× 10−4 1.935× 10−4 2.332× 10−4

Control 0.0903× 10−4 0.0903× 10−4 0.050× 10−4 0.051× 10−4

Reduction rate (%) 96.40% ↓ 96.40% ↓ 97.42% ↓ 97.82% ↓

6000RPM
Original 5.757× 10−5 5.757× 10−5 4.411× 10−5 5.344× 10−5

Control 2.3571× 10−6 2.3596× 10−6 1.312× 10−6 1.335× 10−6

Reduction rate (%) 95.91% ↓ 95.91% ↓ 97.02% ↓ 97.50% ↓

18000RPM
Original 6.322× 10−4 6.322× 10−4 4.455× 10−4 5.680× 10−4

Control 5.446× 10−5 5.443× 10−5 2.940× 10−5 3.018× 10−5

Reduction rate (%) 91.39% ↓ 91.39% ↓ 93.49% ↓ 94.68% ↓

30000RPM
Original 0.004 0.004 0.0019 0.0029

Control 0.0011 0.0011 3.612× 10−4 3.970× 10−4

Reduction rate (%) 72.5% ↓ 72.5% ↓ 80.99% ↓ 86.31% ↓
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rotational speed increases, the vibration reduction effect caused by the active bearing tends to decrease. Thus, 
to validate the reduction performance, the IL was used, defined in (43).

In (43), the values before and after control are determined based on the compliance matrix and quantified 
force and phase, as defined in (32) to (35). Using this relationship, IL was calculated, and the results are sum-
marized in Table 3.

The IL had a positive value, indicating a decrease in each sensor position. Based on the calculated IL in Table 3, 
it can be seen that the vibration is effectively reduced in both the x- and y-directions when the active bearing 
system is installed at both ends of the shaft. In addition, as the rotation speed increases, the trend of insertion 
loss decreases, and through this, it can be verified that the vibration reduction performance by the active bear-
ing decreases as the rotation speed increases. Furthermore, the controllability of the system can be confirmed 
using the IL by changing RPM (Hz), as shown in Fig. 7. In Fig. 7, the black dotted line represents the control 
criteria. A high IL indicates a good performance, whereas a low value indicates a poor performance. Thus, the 
peak value exhibited the desired performance. In addition, an IL value lower than the block-dotted line indicates 
that the controlled signal has a higher value than the uncontrolled signal. Based on IL results, it can be seen 
that both the x- and y-directions show good performance from 0 to 550 Hz (33,000 RPM), and then the control 
performance drops. As the operating speed increases, vibration reduction performance by active bearings tends 
to be decreased and the reason can be summarized as follows. Based on Fig. 6 and Table 2, it can be seen that the 
displacement of the shaft increases as the rotational speed increases. Since the piezoelectric actuator has limited 
specification on the displacement, it can be expected that the vibration reduction performance would be worse 
at the operating speed with relatively high displacement. Thus, when motion control is performed by applying 
quantified force and phase, the controllable level can be determined considering the shaft displacement and 
actuator specification. Furthermore, a parametric study of the variables that can be changed in the rotor system, 
such as the stiffness, damping coefficient, and bearing location, is possible. A follow-up study will be conducted 
in the future. Finally, to confirm the rotor whirling motion through the active bearing, the whirling motion at 
each point is shown in Fig. 8, where the black and blue lines represent the whirling motion corresponding to 
the uncontrolled state, and the green and red dotted lines represent the whiling motion corresponding to the 
controlled state through the active bearing system.

When rotor motion control was conducted based on the quantified force and phase, the rotor whirling 
motion for each point was significantly reduced. Thus, the active bearing with a piezoelectric actuator had a 
good performance based on the above results. Furthermore, the limitation of lumped-parameter modeling was 

(43)IL[dB] = 20log

(

before control

after control

)

Table 3.   Control performance comparison—RMS value.

Comparison control 
performance (insertion loss 
[ dB])

X-direction Y-direction

Sensor 1 Sensor 2 Sensor 1 Sensor 2

Insertion loss

400RPM 72.24 93.42 72.26 88.29

6000RPM 48.25 73.92 77.57 63.32

18000RPM 36.61 71.8 70.76 54.12

30000RPM 24.54 48.29 48 51.01
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Figure 7.   Insertion loss for (a) x- and (b) y-direction.
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overcome through the transformation matrix. Using this method, the result for each point can be analyzed, 
enabling the calculation of time and simplifying the rotor model. Based on these results, the performance of the 
rotor motion control is proven when applying the quantified signal and the transformation matrix in a rotor 
system with an active bearing model.

Conclusion
In this study, to validate the rotor motion control through the active bearing system, the force and phase were 
quantified considering the relationship between the rotor and active bearing system. The main contributions 
of this study are as follows: (1) a rotor system consisting a shaft with two active bearing systems was modeled 
based on lumped-parameter modeling, (2) a transformation matrix was suggested to overcome the limitation 
of the lumped-parameter model, and (3) the input force and phase of the active bearing system were quantified 
considering the relationship between the rotor and active bearing system.

A study was conducted to reduce the overall rotor motion for a simple rotor model. Thus, to control the rotor 
motion, a simple shaft with two active bearing systems was modeled based on lumped-parameter modeling. 
Although in this model the response point (sensor position) is fixed, other methods, such as the FEM or the 
transfer matrix method, can be used to select the sensor position. Thus, to overcome this limitation, a trans-
formation matrix was suggested. Using this matrix, the response point (sensor position) can be selected in the 
shaft. In addition, to perform motion control, the force and phase were quantified by considering the relationship 
between the rotor and active bearing system. The equation of motion was expressed in the state-space model to 
perform the simulation. When the simulation was performed, the quantified force and phase were applied to 
the active bearing system. Through simulation, the performance of the rotor motion control was demonstrated. 
The proposed method can be applied to determine the optimized variable and bearing position by changing 
parameters. Furthermore, it can be applied to other structures with mounting systems. In the future, to perform 

Figure 8.   Comparison of control performance—(a) 400RPM, (b) 6000RPM, (c) 18000RPM, (d) 30000RPM.
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real-time control, an adaptive algorithm, such as the least mean square algorithm and `neural-network-based 
signal tracking algorithm, will be applied in active bearing systems. In addition, the optimized location for 
the active bearing was determined based on the relationship between the mode shape and quantified force to 
perform optimized control. Finally, this approach is being applied to more complicated systems, such as wind 
turbine and vehicle engine.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 11 December 2022; Accepted: 27 May 2023

References
	 1.	 Luneno, J. C., Aidanpaa, J. O. & Gustavsson, R. Model based analysis of coupled vibrations due to the combi-bearing in vertical 

hydroturbogenerator rotors. J. Vib. Acoust. 133, 061017. https://​doi.​org/​10.​1115/1.​40050​02 (2011).
	 2.	 Ganguly, S., Neogy, S. & Nandi, A. On lumping of Gyroscopic matrix in Finite element analysis of rotors. Procedia Eng. 144, 

398–405. https://​doi.​org/​10.​1016/j.​proeng.​2016.​05.​149 (2016).
	 3.	 Bhutan, A. & Verma, R. The modal analysis of a double disc flexible rotor-bearing system with isotropic stiffness and damping 

properties. J. Phys. Conf. Ser. 1240, 012100. https://​doi.​org/​10.​1088/​1742-​6596/​1240/1/​012100 (2019).
	 4.	 Kwak, G. B. & Lee, H. I. Investigation of the point-mass pendulum centrifugal pendulum absorber using transfer matrix method. 

Trans. Korean Soc. Noise Vib. Eng 31, 64–72. https://​doi.​org/​10.​5050/​KSNVE.​2021.​31.1.​064 (2021).
	 5.	 Luo, Z., Bian, Z., Zhu, Y. & Liu, H. An improved transfer-matrix method on steady-state response analysis of the complex rotor-

bearing system. Nonlinear Dyn. 120, 101–113. https://​doi.​org/​10.​1007/​s11071-​020-​05952-5 (2020).
	 6.	 Werner, U. A mathematical model for lateral rotor dynamic analysis of soft mounted asynchronous machines. J. Appl. Math. Mech. 

88, 910–926. https://​doi.​org/​10.​1002/​zamm.​20070​0100 (2008).
	 7.	 Werner, U. An analytical method to minimize dynamic foundation forces caused by transient torques in the air gap of an asyn-

chronous machine. In 2007 International Conference on Power Engineering, Energy and Electrical Drives, 6–11 https://​doi.​org/​10.​
1109/​POWER​ENG.​2007.​43801​30 (2007).

	 8.	 Werner, U. Analysis of active vibration reduction for soft mounted electrical machines based on a multibody model. Int. J. Appl. 
Mech. 8, 1650085. https://​doi.​org/​10.​1142/​S1758​82511​65008​5X (2016).

	 9.	 Werner, U. Vibration control of large induction motors using actuators between motor feet and steel frame foundation. Mech. Syst. 
Signal Process. 112, 319–342. https://​doi.​org/​10.​1016/j.​ymssp.​2018.​04.​033 (2018).

	10.	 Brenkacz, L., Witanowski, L., Drosinska-Komor, M. & Szewczuk-Krypa, N. Research and applications of active bearing: A state-
of-the-art review. Mech. Syst. Signal Process. 151, 107423. https://​doi.​org/​10.​1016/j.​ymssp.​2020.​107423 (2021).

	11.	 Lusty, C. & Keogh, P. Active Vibration control of a flexible rotor by flexibly mounted internal-stator magnetic actuators. IEEE/
ASME Trans. Mechatron. 23, 2870–2880. https://​doi.​org/​10.​1109/​TMECH.​2018.​28690​23 (2018).

	12.	 Chen, Y., Yang, R., Sugita, N., Mao, J. & Shinshi, T. Identification of bearing dynamic parameters and unbalanced forces in a flexible 
rotor system supported by oil-film bearings and active magnetic devices. Actuators 10, 216. https://​doi.​org/​10.​3390/​act10​090216 
(2021).

	13.	 Saeed, N. A. & Kandil, A. Lateral vibration control and stabilization of the quasiperiodic oscillations for rotor-active magnetic 
bearings system. Nonlinear Dyn. 98, 1191–1218. https://​doi.​org/​10.​1007/​s11071-​019-​05256-3 (2019).

	14.	 Bordoloi, D. J. & Tiwari, R. Optimization of controller parameters of active magnetic bearings using genetic algorithm. In Proceed-
ings of the 8th IFToMM international Conference on Rotordynamics (2010).

	15.	 Yao, J., Dai, J. & Liu, L. unbalanced vibration response reduction of rotor using active magnetic actuator based on PD control. Int. 
J. Acoust. Vib. 24, 327–333. https://​doi.​org/​10.​20855/​ijav.​2019.​24.​21517 (2019).

	16.	 Zhang, S., Wu, J., Jungblut, J. & Rinderknecht, S. Vibration control for the flexible rotor with piezoelectric bearings based on the 
mixed sensitivity robust controller. J. Phys. Conf. Ser. 1905, 012002. https://​doi.​org/​10.​1088/​1742-​6596/​1905/1/​012002 (2021).

	17.	 Jungblut, J., Fischer, C. & Rinderknecht, S. Active vibration control of a gyroscopic rotor using experimental modal analysis. Bull. 
Polish Acad. Sci. Tech. Sci. https://​doi.​org/​10.​24425/​bpasts.​2021.​138090 (2021).

	18.	 Heindel, S., Muller, P. C. & Rinderknecht, S. Unbalance and resonance elimination with active bearings on general rotors. J. Sound 
Vib. 431, 422–440. https://​doi.​org/​10.​1016/j.​jsv.​2017.​07.​048 (2018).

	19.	 Li, D., Cao, H. & Chen, X. Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder. Mech. Syst. 
Signal Process. 148, 107190. https://​doi.​org/​10.​1016/j.​ymssp.​2020.​107190 (2021).

	20.	 Sankaranarayanan, R. A. Model-based fault diagnosis in rotor systems with self-sensing piezoelectric actuators. Ph.D. Thesis, Darm-
stadt Technical University (2017).

	21.	 He, Y., Chen, X., Liu, Z. & Qin, T. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on 
adaptive signal separation. Smart Mater. Struct. 27, 065011. https://​doi.​org/​10.​1088/​1361-​665X/​aabbf4 (2018).

	22.	 Brahem, M., Chouchane, M. & Amanou, A. Active vibration control of a rotor bearing system using flexible piezoelectric patch 
actuators. J. Intell. Mater. Syst. Struct. 31, 1284–1297. https://​doi.​org/​10.​1177/​10453​89X20​916804 (2020).

Acknowledgements
This work was supported by Basic Science Research Program through the National Research Foundation of Korea 
(NRF) funded by the Ministry of Education (NRF-2021R1A6A1A03039493 and NRF-2022R1F1A1076089).

Author contributions
H.L., Y.H. and B.K. initiated and developed the ideas related to this research work. D.H. developed novel meth-
ods, derived relevant formulations, and carried out performance analyses and numerical analyses. D.H. wrote 
the paper draft under B.K.’s guidance and B.K. finalized the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.K.

https://doi.org/10.1115/1.4005002
https://doi.org/10.1016/j.proeng.2016.05.149
https://doi.org/10.1088/1742-6596/1240/1/012100
https://doi.org/10.5050/KSNVE.2021.31.1.064
https://doi.org/10.1007/s11071-020-05952-5
https://doi.org/10.1002/zamm.200700100
https://doi.org/10.1109/POWERENG.2007.4380130
https://doi.org/10.1109/POWERENG.2007.4380130
https://doi.org/10.1142/S175882511650085X
https://doi.org/10.1016/j.ymssp.2018.04.033
https://doi.org/10.1016/j.ymssp.2020.107423
https://doi.org/10.1109/TMECH.2018.2869023
https://doi.org/10.3390/act10090216
https://doi.org/10.1007/s11071-019-05256-3
https://doi.org/10.20855/ijav.2019.24.21517
https://doi.org/10.1088/1742-6596/1905/1/012002
https://doi.org/10.24425/bpasts.2021.138090
https://doi.org/10.1016/j.jsv.2017.07.048
https://doi.org/10.1016/j.ymssp.2020.107190
https://doi.org/10.1088/1361-665X/aabbf4
https://doi.org/10.1177/1045389X20916804


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8976  | https://doi.org/10.1038/s41598-023-35993-w

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantification of active bearing input force for vibration reduction performance of unbalanced rotor systems
	Mathematical modeling
	Quantification of active bearing force and phase
	Validation of rotor motion control
	Conclusion
	References
	Acknowledgements


