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Explainable sequence‑to‑sequence 
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forecasting
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The goal of pollution forecasting models is to allow the prediction and control of the air quality. 
Non‑linear data‑driven approaches based on deep neural networks have been increasingly used in 
such contexts showing significant improvements w.r.t. more conventional approaches like regression 
models and mechanistic approaches. While such deep learning models were deemed for a long time 
as black boxes, recent advances in eXplainable AI (XAI) allow to look through the model’s decision‑
making process, providing insights into decisive input features responsible for the model’s prediction. 
One XAI technique to explain the predictions of neural networks which was proven useful in various 
domains is Layer‑wise Relevance Propagation (LRP). In this work, we extend the LRP technique to a 
sequence‑to‑sequence neural network model with GRU layers. The explanation heatmaps provided 
by LRP allow us to identify important meteorological and temporal features responsible for the 
accumulation of four major pollutants in the air ( PM

10
 , NO

2
 , NO , O

3
 ), and our findings can be backed up 

with prior knowledge in environmental and pollution research. This illustrates the appropriateness of 
XAI for understanding pollution forecastings and opens up new avenues for controlling and mitigating 
the pollutants’ load in the air.

Air pollution is one of the major concerns threatening human life on earth. Emission of detrimental pollutants 
into the air causes far-reaching damages to living species and the environment. It is approximated that poor air 
quality annually leads to 3.7 million deaths worldwide, besides the indirect damage caused by destroyed crops 
and water resources (e.g., through acid rain)1,2. Given how harmful air pollution can be, it is important to moni-
tor changes in the level of pollutants in the air, as well as forecast their concentrations to mitigate the effects of 
this problem.

Thanks to the ever-increasing number of pollution detectors and meteorological sensors installed in differ-
ent areas, we are able to track fluctuations in pollutant loads, and to collect enough data for pollution forecast-
ing. However, these data contain various spatio-temporal dependencies, and therefore, to enable an accurate 
prediction, complex models are needed which can capture the involved relationships. One such model, which 
was shown to perform very well in practice, is based on a sequence-to-sequence neural network with Gated 
Recurrent Units (GRU)  layers3. The model consists of an encoder and a decoder modules fed with sequences of 
data from the past seven days, and has the ability to accurately forecast pollutant concentrations for up to 48 h 
by combining local sensor measurements with global weather data.

Although this sequence-to-sequence pollution forecasting model exhibits good prediction results in a practi-
cal setup, so far no investigation was conducted to analyze how it reaches its decisions, which would be desirable 
for increasing trust in its functionality. Indeed, it has been noticed that some predictors perform well on their 
training and test datasets, but fail in real-world deployments. The work by Lapuschkin et al.4 refers to these kinds 
of model behaviours as “Clever Hans” predictors. Clever Hans was a famous horse in the early twentieth century 
known for its ability to solve mathematical problems. However, as it turned out, the horse in fact arrived at the 
right answer by observing the reaction of the enquirer. Hence, the cleverness of the horse was a false claim and 
its predictions were not reliable at all. There are other examples showing that models sometimes decide based 
on the wrong  criteria5,6. Therefore, verification and inspection of AI decisions is crucial to foster reliability and 
trust. Additionally, explaining the behaviour of the model and determining the contributions of the input fea-
tures to the final decision could also lead to a more efficient selection of features or optimization of the model.
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Our main focus in this work is to explain the predictions of the pollution forecasting sequence-to-sequence 
model with GRU layers as was proposed in Petry et al.3, using the XAI method of  LRP7, in order to demonstrate 
the usefulness of XAI for this task and domain. To this end, we extend the popular LRP technique to GRU layers 
and to a sequence-to-sequence recurrent architecture. This extension allows us to gain insights into which sets 
of input variables are the most relevant for predicting high concentration levels of various pollutants.

For instance, in the case of the pollutant NO (nitrogen monoxide), we find that the morning traffic hours play 
an important role in predicting high levels of the pollution, which is in agreement with results from previous work 
that show that NO displays a strong dependency on diurnal source  emissions8, while for predicting the load of the 
other pollutants we considered in our work the hour of the day is less important, and other meteorological factors 
as well as historical measurements are instead determinant. Besides, for the O3 (ozone) pollutant concentration, 
we find that the high predictions rely on warm temperature and low humidity, which is also consistent with well-
established domain knowledge about the central role of solar radiation for ozone  formation9,10, as well as well as 
prior work suggesting that dry deposition via trees might also be involved in regulating the O3  concentration11.

Along the way, to ensure the correctness of our implementation, we verified the LRP relevance conservation 
 property12, as well as validated the LRP input features’ relevances using a toy task (similarly to Arras et al.13). For 
reproducibility of our results we make our code publicly available (https:// github. com/ Sara- mibo/ LRP_ Encod 
erDec oder_ GRU). More broadly, our explainable GRU-based and sequence-to-sequence recurrent model can 
be employed on any other task or domain that relies on the same neural network components. Finally, we show 
that it is possible to simplify our pollution forecasting model’s structure by inspecting the LRP results. This 
adjustment speeds up the training and inference by reducing the model’s complexity with a negligible change 
in the prediction performance.

Related work
Pollution forecasting. Conventional approaches for pollution forecasting are based on numerical simula-
tions taking into account the physical and chemical processes involved in the emission, diffusion and transport 
of air pollutants. These models are built upon specialized sub-modules that deal with the different pollution 
causes (such as natural and anthropogenic sources, chemical transformations, aerosol processes and microphys-
ics, pollutant transport through wind and diffusion, dry and wet deposition), and they require sophisticated 
 parameterizations14.

Alternative data-driven approaches for pollution forecasting, and more generally for Earth system science, 
have also been explored recently based on regression analysis, autoregressive statistical models and machine 
 learning15–17. Among these models, non-linear models such as artificial neural networks improved the prediction 
accuracy over linear models, and compared to mechanistic approaches, they present the advantage of not requir-
ing a precise knowledge of the underlying chemical and physical processes. However they typically necessitate a 
larger amount of historical data to be  available18–23. Additionally, hybrid systems combining different methods, 
e.g. autoregressive statistical models with artificial neural  networks24, have also been  proposed15. Besides, in 
order to explicitly incorporate the spatial dependency between locations and the diffusion of pollutants into the 
model, some recent works used an averaging of data across neighboring locations as  input25, or feed the data 
into the neural network model via a grid structure using a convolutional or a graph neural  network26,27 (which 
bears some similarity with the tasks of video and motion  prediction16). In our work we focus on a model that 
primarily consideres temporal data as input (and we modelize the spatial location as a static input feature), as 
this setup was found to reach sufficient performance in a real-world  application3, and our main objective in the 
present work is to demonstrate the pertinence of XAI in the pollution forecasting domain and using a standard 
and widely-used neural network architecture for temporal data.

Among artificial neural networks, recurrent networks are particularly well-suited to modelize temporal data. 
Compared to feed-forward neural networks where one has to select the time window and averaging of the input 
variables, recurrent networks can directly receive the raw time series as input and learn the useful temporal 
dependencies from the training  data28.  LSTMs29,30 and  GRUs31–33 are two popular such recurrent network archi-
tectures that further alleviate the vanishing gradient problem of vanilla recurrent nets through the introduction 
of memory cells and gating mechanisms, that allow them to learn longer-range temporal dependencies. For 
example in the field of hydrology, the standard LSTM model as well as novel LSTM variants, were used to predict 
the basin water discharge from rainfall measurements and other temporal meteorological variables (as well as 
static catchment attributes), and were shown to outperform high-quality basin-calibrated hydrological models, in 
particular for flood  prediction34–36. On the task of pollution forecasting that we consider in the present work, the 
LSTM and GRU networks were already compared to one another and achieved similar prediction  performance3, 
though the GRU model has less parameters, therefore we use a GRU-based model in our work.

Despite their high prediction performance, thus far artificial neural networks were not largely adopted in 
pollution forecasting due to their lack of  interpretability28,37,38. Indeed, as opposed to regression-based models 
where one can readily obtain the contributions of environmental variables to the prediction task, neural networks 
are typically considered as black-boxes. Notwithstanding, in recent years several post-hoc XAI methods have 
been been proposed to inspect the decision process of neural networks: given a trained neural network, these 
methods are able to assign to each input variable a relevance score representing the contribution of that variable 
to a given  prediction5,39. These methods not only facilitate transparency and trust in the model’s decision, they 
potentially also lead to new scientific insights and  discoveries40.

Explanation methods. Up to now a limited number of studies already applied such XAI techniques to 
explain the predictions of neural networks for pollution forecasting. For example in Elangasinghe et al.41 the 
authors used sensitivity analysis to identify the most important input variables for the prediction of NO2 using 
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a feed-forward neural network, and successively removed the least significant features from the input to arrive 
at a simpler model with similar performance. In García et al.42 the authors used the SHAP method to interpret 
the decisions of an LSTM that also predicts NO2 concentration, and checked the compatibility of the results 
with previous intuitions and scientific domain knowledge. Another recent work by Yang et al.43 analyzed the 
contribution of inputs upon recurrent networks trained on different sets of variables for the prediction of PM2.5 
using the SHAP method. In our work we will employ the XAI technique of LRP and verify the consistency of the 
results with available domain knowledge, as well as validate our results intrinsically by using the LRP relevances 
to simplify our model’s architecture.

More generally, among the existing post-hoc XAI methods for neural networks, one can essentially identify 
three main approaches. One is based on the gradient of the prediction function w.r.t. the input variables and 
includes  Saliency44–46, Gradient times  Input47 and Integrated  Gradients48. While gradients are easy to compute, 
they are known to be noisy and subject to high variance, this is why smoothing techniques based on random 
sampling such as SmoothGrad have been  proposed49. However the introduced post-processing step induces 
additional hyperparameters and randomness in the explanation  process50. Another line of approach which is 
also model-agnostic is based on solving an ad-hoc optimization problem to learn a local linear model using 
perturbed or masked versions of the original input, which includes the  LIME6 and the Kernel  SHAP51 methods. 
These sampling-based techniques are typically non-deterministic, expensive to compute, and it is unclear how 
to extend them to recurrent networks that present temporal dependencies in the input sequence, since their 
original formulations do not consider the order of the  inputs52. Finally, another way of explaining decisions is 
based on the layer-wise decomposition of the prediction function and involves a custom backward propagation 
through the network that verifies an overall conservation principle.  LRP7,12 and Deep Taylor  Decomposition53 
are prime examples of this approach.

The LRP explanation method presents the advantage of being fast to compute, since it requires only a single 
backward pass through the network, however it is not model-agnostic and requires a specific implementation 
for each novel type of neural network layer. Theoretically, the LRP propagation procedure can be justified via 
the mathematical framework of Deep Taylor  Decomposition53,54. In terms of practical application, LRP already 
demonstrated its superiority over other XAI methods on convolution neural networks in the computer vision 
 domain4,50,55, as well as on a targeted simulation in Geoscience inspired by remote sensing tasks where spatial 
patterns need to be  extracted56. Its usefulness has also been demonstrated in the Earth science field, where it was 
able to identify physically meaningful patterns of climate variability using feed-forward networks trained on 
geospatial fields of sea surface  temperature57. With the present work, we further showcase its suitability in the 
environmental domain for the task of pollution forecasting, using a sequence-to-sequence GRU-based neural 
network model.

The LRP technique was previously extended to recurrent networks such as  LSTMs58, and the resulting expla-
nations were evaluated against other existing XAI methods on toy tasks and in natural language  processing13,54,59, 
where LRP was shown to deliver superior results. Further, this LRP extension to recurrent networks was success-
fully applied in the health domain for therapy  prediction60 and in computer security for discovering vulnerability 
in source  code61. A recent work also applied the technique to a recurrent network for PM2.5 forecasting, where 
it helped identifying a subset of input variables that lead to a similar prediction performance when the model 
was re-trained only on this  subset62.

Therefore, we will employ the LRP explanation technique to explain our pollution forecasting  model3. To this 
end we adapt the method from Arras et al.58 for a GRU layer and to a sequence-to-sequence network architecture.

Pollution forecasting task
Dataset. We consider data collected from a total of 22 measuring stations located at the city of Stuttgart and 
the federal state of North Rhine-Westphalia (NRW) in Germany, during the years 2010 to 2020. These stations 
are located at different places including urban, suburban and rural areas with diverse emission sources. Table 1 
represents the input features used for training our model, along with their source and unit. These input features 
include the concentration of four different pollutants, namely PM10 , NO, NO2 and O3 (which are also the pol-
lutants which are being forecasted), six meteorological features (temperature, precipitation, sunshine, humidity, 
wind direction and speed), five temporal features (year, month, day, hour, working vs. work-free day), as well as 
one static feature representing the station number. The temporal resolution (i.e. the time interval between two 
measurements/features) used for the inputs and the prediction is 1 h. The resulting collected dataset has more 
than 1 million data sequences of length 216 h (corresponding to 9 days) , which are distributed randomly into 
train, validation, and test sets with the proportions of 10/12, 1/12, 1/12.

During the forecast, the measured meteorological input features are replaced by weather forecasts, and the 
measured pollutant concentrations by the corresponding predicted ones in previous time steps.

In the original work by Petry et al.3, some features were used with a cyclic-feature encoding (sine and cosine). 
In order to facilitate the interpretation of the LRP relevance results, we changed the encoding of these features to 
one-hot encoding and trained a model with this new input representation. As an additional preprocessing step 
we normalized numerical features to mean zero and unit variance. Further details on the data collection can be 
found in the prior work of Petry et al.3.

Sequence‑to‑sequence model. The sequence-to-sequence pollution forecasting model we use in the 
present work is similar to the one introduced in Petry et al.3. It contains two recurrent neural network (RNN) 
modules with each two Gated Recurrent Units (GRU) layers of dimension 1024. The decoder module addition-
ally contains a fully-connected linear layer of size 1024 followed by a ReLU activation, plus a linear output layer 
without bias. Discarding the bias from the output layer is important for the XAI decomposition, such that when 
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explaining the model’s predictions we are able to decompose the full output value into input variables’ contribu-
tions (indeed most XAI methods, including LRP, ignore the output layer’s bias in the relevance decomposition 
process). The output layer has size four, and we train one model to predict all four pollutants ( PM10 , NO, NO2 
and O3 ) at once. The resulting model is depicted in Fig. 1. The model is trained by minimizing the mean squared 
error, using the AdamW optimizer and a batch size of 128. The trained model has a mean absolute prediction 
error of 3.73 μg/m3 on the validation set.

Data is fed into the model sequentially 1 h at a time. The encoder receives as input the data of the last 7 days 
(168 h), which is called historical input (we refer to this data via the subscript h in the features). In each time step 
of the prediction, the decoder receives as input the weather forecast of the current hour, together with the pollu-
tion forecast of the last hour, plus the temporal input features and the static input, and makes a new prediction. 

Table 1.  Input features for the pollution forecasting model, including their source and unit/representation. 
a https:// www. lanuv. nrw. de/ lande samt/ daten- und- infor matio nsdie nste. b https:// udo. lubw. baden- wuert tembe rg. 
de. c https:// www. dwd. de/ EN/ ourse rvices/ opend ata/ opend ata. html.

Input feature Source Unit

NO LANUVa μg/m3

NO2 LANUV/LUBWb μg/m3

O3 LANUV μg/m3

PM10 LANUV μg/m3

Air temperature DWDc °C

Precipitation DWD mm

Sunshine DWD %

Humidity DWD %

Wind direction DWD One-hot encoding (16 directions)

Wind speed DWD Beaufort scale (integer)

Year Preprocessing Integer

Month Preprocessing One-hot encoding (12 dimensions)

Weekday Preprocessing One-hot encoding (7 dimensions)

Hour Preprocessing One-hot encoding (24 dimensions)

Work-free day Preprocessing One-hot encoding (2 dimensions)

Station number Preprocessing Integer

Figure 1.  Sequence-to-sequence encoder-decoder neural network model, as introduced in Petry et al.3.

https://www.lanuv.nrw.de/landesamt/daten-und-informationsdienste
https://udo.lubw.baden-wuerttemberg.de
https://udo.lubw.baden-wuerttemberg.de
https://www.dwd.de/EN/ourservices/opendata/opendata.html
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The input data of the decoder module is called forecast input (we refer to this data using the subscript f in the 
features, or using the keyword intermediate in the case of the pollutant forecasts in prior time steps).

The model provides a forecast of the pollutants particulate matter ( PM10 ), nitrogen monoxide (NO), nitrogen 
dioxide ( NO2 ) and ozone ( O3 ) for the next 2 days (48 h). The model’s predictions are denoted by ŷ in Fig. 1 (as 
opposed to y which denotes the true value of the pollutants). More information on the implementation details 
can be found in Petry et al.3.

Explaining predictions
Layer‑wise relevance propagation (LRP). LRP is a method to explain the decisions of a neural network 
model by computing the contribution of each input feature towards the predicted  output7. More precisely, LRP 
redistributes layer-by-layer relevance scores from the output layer until the input layer neurons using a layer-
wise relevance conservation property as shown in Eq. (1). The sum of the scores that neurons of the lower-layer 
receive from the upper-layer is conserved across all  layers7,12 (up to the relevance which will be absorbed by the 
hidden layer “bias neurons” which we depict through the index 0 in Eq. 1).

where f (x) is the model’s prediction for one target output neuron of interest (in our case the prediction for one 
pollutant type), x is the model’s input, R(l)

d  is the relevance of neuron d in layer l, and Nl is the number of neurons 
(i.e., the dimension) of layer l. Further, we denote by RL

1 the relevance of the output neuron of interest, L being 
the final layer of the model, which is set equal to f (x) for initializing the LRP backward propagation process.

Hence, every neuron in the network will get assigned its own relevance score, up to the input layer neurons 
which represent the input features’ contributions. The backward relevance propagation process of LRP is imple-
mented in practice by specific LRP propagation rules which depend on the type of the network layer involved 
in the process. These rules have been theoretically justified via the mathematical framework of Deep Taylor 
 Decomposition53,54. In the next subsection we will provide more details on these rules.

LRP for a Seq‑2‑Seq model with GRUs. In this work we extend LRP to a sequence-to-sequence model 
with GRU layers. Given an input sequence indexed by t, the GRU  cell31–33 performs the following recurrence 
computations, as provided in Eq. (2):

where ht and xt are the hidden state and the input vectors at time step t, and h(t−1) is the hidden state from 
the previous time step. rt and zt are the reset and update gates, and nt is the new candidate hidden state. ( Wir  
Wiz  Win ) and ( bir  biz  bin ) are input-to-hidden weights and biases. ( Whr  Whz  Whn ) and ( bhr  bhz  bhn ) are 
hidden-to-hidden weights and biases. σ is the sigmoid activation function and is used for gate neurons, while 
tanh is the tanh activation, and both non-linear activations are applied element-wise. ⊙ denotes an element-wise 
multiplication. The remaining operations are standard vector addition and matrix-vector product. All lowercase 
variables are vectors, and uppercase variables are matrices.

Hence a GRU cell consists of the three following types of layers, and for each of them we describe below the 
LRP rule that we employ to redistribute the relevance scores from the upper-layer neurons onto the lower-layer 
neurons:

• Linear layer. For a linear layer with zi representing the lower-layer neurons, weights wij and biases bj , in the 
forward pass the upper-layer neurons zj are computed using zj =

∑
i zi · wij + bj . To compute relevance scores 

of the lower-layer neurons Ri , given the relevances of the upper-layer neurons Rj , we follow the LRP-epsilon 
rule (LRP-ǫ)7,58: 

 where Ri←j is the share of relevance that neuron i receives from neuron j and ε is a small positive number 
that is used as a numerical stabilizer. The relevance Ri is finally computed as Ri =

∑
j Ri←j , i.e. the sum of all 

relevance shares that a neuron receives from the upper-layer neurons connected to it.
• Multiplicative layer. Another type of layer occuring in a GRU cell is multiplicative interactions where the 

value of the upper-layer neuron in the forward pass is computed as the product of two lower-layer neurons, 
which we call gate and signal neurons, where the gate is the neuron that is sigmoid activated. For this type 
of layer, we utilize the LRP ”signal-take-all” redistribution rule (LRP-all)13,58, which redistributes all the rel-
evance from the product to the signal neuron. For instance, in Eq. (2) last line, neurons in the hidden state 
h(t−1) will get assigned all the relevance from the product term zt ⊙ h(t−1).

• Activation layer. In the case of element-wise non-linear activation layer such as tanh and sigmoid, the rel-
evance score from the upper-layer would be transferred to the lower-layer without any changes (identity 
redistribution). Note that this doesn’t imply that the activation function is ignored by the LRP backward 

(1)f (x) = RL
1 = ... =

Nl+1∑

d=0

R
(l+1)

d =

Nl∑

d=0

R
(l)
d = ... =

N0∑

d=0

R
(0)

d ,

(2)

rt = σ(Wirxt + bir +Whrh(t−1) + bhr)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz)

nt = tanh(Winxt + bin + rt ⊙ (Whnh(t−1) + bhn))

ht = (1− zt)⊙ nt + zt ⊙ h(t−1)

(3)Ri←j =
zi · wij

zj + ε · sign(zj)
· Rj
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propagation process. In fact the activated neuron’s value is taken into account through the LRP relevance 
redistribution in the next higher linear layer.

Further, as mentioned earlier, in order to initialize the LRP backward propagation process, the relevance score of 
the output neuron of interest, i.e. for the pollutant prediction we want to explain, is set to the neuron’s predicted 
value, i.e. to the pollutant’s concentration for the considered prediction time step, while the relevances of the 
other output neurons are set to zero. This predicted quantity will be redistributed layer-by-layer through LRP 
up until the input neurons, i.e. in our case onto the historical input features, as well as the forecast input features 
from previous time steps plus the current time step, according to the sequence-to-sequence model’s architecture.

In order to check the correctness of our LRP implementation we performed a relevance conservation sanity 
check, where we verifed that the sum of the input neurons’ relevances is equal to the model’s predicted output 
for the pollutant and time step of interest. For this particular sanity check setup we redistributed the relevance 
assigned to the hidden layer biases uniformly onto lower-layer neurons (as per default in the standard LRP 
setup a share of relevance is absorbed by the hidden layer biases, and thus relevance is not exactly conserved).

For more details on our LRP implementation we refer to our released code (https:// github. com/ Sara- mibo/ 
LRP_ Encod erDec oder_ GRU).

Validating LRP through a toy task. In a previous work the authors designed a toy task to evaluate and 
compare XAI methods on recurrent  networks13. Inspired by this approach, we design an arithmetic toy task to 
verify the LRP relevance scores objectively on our sequence-to-sequence model. As the relationship between 
inputs and outputs is known, we can use this task to validate the correctness of the LRP relevance results. These 
relevances should represent the contributions of the input features to the output accordingly to our data genera-
tion process.

To perform this experiment, we use a sequence-to-sequence model similar to the pollution forecasting one, 
but with fewer input features (we use only two input features) and a hidden layer dimension of 128. The data 
generation process is shown in Fig. 2. Output labels are created by performing simple operations such as sum and 
division on the sequence of random input features. 100,000 data points are generated with sequence lengths of five 
for historical inputs and three for forecast inputs, and split into train and validation sets in a ratio of four to one.

Same as with the pollution forecasting model, we have an encoder and a decoder module, each fed with a 
sequence of inputs, either historical or forecast inputs. According to the data generation process depicted in Fig. 2, 
to generate an output label y all the inputs from the historical input sequence are summed up and divided by two. 
The result is then passed to the decoder module. In each prediction time step for generating labels, the forecast 
input and the output from the previous time step are added together. If the model learned the input-output 
relationship correctly, which we ensured via model training, then LRP is supposed to compute the relevances 
in such a way that every element in the historical input contributes to the prediction with half of its value, while 
the contribution of each element in the forecast input, up to the current time step, should be equal to its value.

Given an input example, the true labels y and the predictions ŷ of the trained model are shown in the box 
below:

Figure 2.  Toy task generation process. Labels y are generated via simple sum and division on the sequence of 
two-dimensional inputs of random numbers sampled in the range [− 2 3].

https://github.com/Sara-mibo/LRP_EncoderDecoder_GRU
https://github.com/Sara-mibo/LRP_EncoderDecoder_GRU
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On the example above, we perform an LRP decomposition on the last time step of the predicted output 
sequence, i.e. we explain the prediction ŷ3 . The corresponding relevance scores of the inputs computed with LRP 
are shown in red, beside the value of the inputs in black, in Fig. 3.

From Fig. 3 we observe that the contributions of historical inputs are almost half of their values, and the 
relevance scores of forecast inputs are close to their value. Negative inputs get assigned negative contributions 
to the output due to their subtractive role in the summation. In other words, we can recover the input sequences 
from the LRP relevances by multiplying relevances of the historical inputs by two and keep the relevances of the 
forecast inputs unmodified. Thus LRP redistributes relevance scores among inputs as expected.

Explaining pollution forecasts
Our sequence-to-sequence model forecasts the concentration of four major pollutants, namely PM10 , NO, NO2 
and O3 for the next 48 h, as was described in the “Sequence-to-sequence model” section. Now using LRP as an 
explanation method, we analyse the contributions of the input features to high pollutant concentrations, and to 
this end we begin by performing some statistics on the LRP relevance scores.

For each type of pollutant, we filter 4800 data points with the highest predictions in the first day of the 
forecast (more precisely for each hour of the first 24 h of the forecast 200 points are selected). For these data 
points, we compute the LRP relevance scores by explaining the given predictions (for features that are one-hot 
encoded, we obtain the relevance of the feature by simply summing up the relevances across the input vector 
dimensions, which is equal to the relevance of the non-zero input vector entry). Then, we compute the average 
of the positive relevance scores for every hour of the first day of the forecast, and additionally, for a few specific 
input features’ values we compute the average of the positive relevance scores across different hours of the first 
day of the forecast (in particular for the temporal input features hour of the day, day of the week, month of the 
year, working day vs. work-free day).

The resulting statistics over input features can be visualized as two-dimensional heatmaps (the more relevant 
the feature, the deeper the color), where the x-axis represents the prediction hours (i.e., the forecast time steps) 
and the y-axis represents the input features, as well as, for specific input features where the average was performed 

Figure 3.  Toy task LRP relevance results. We explain the last time step of the prediction (marked in bold). The 
relevance score of each input is shown in red, beside the input’s value in black.
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across prediction hours, as bar plots over the possible input feature’s values (where the height of the bar represents 
the relevance of that feature’s value). Both visualizations help us to quickly identify features with the highest 
positive contributions towards high pollution predictions, as well as determine the relative importance of some 
specific features’ values over time (hours, days, months) for high predictions.

However, an important point to note here is that these heatmaps represent the contributions of the input fea-
tures to the pollution forecast, but do not indicate the corresponding input features’ values, i.e. their magnitude 
and range. For instance, we can not determine from the LRP heatmap whether the low temperature is positively 
contributing to high pollution, or whether it’s high temperature. Therefore we need to average the inputs too in 
order to determine which input values are positively contributing to high pollution forecasts. Hence we compute 
the average of the input values on the subset of data points that was previously selected as discussed above, as 
well as the mean and standard deviation of these features over the whole dataset, and report them in Table 2. For 
more brevity only the statistics of the most relevant features per pollutant (as identified through the heatmaps, 
see subsequent sections) are retrieved in Table 2.

In the following we will interpret our LRP results regarding the most relevant input features per pollutant, as 
well as the distribution of relevance for specific input features’ values for high pollution forecasts, and we contrast 
our findings with domain knowledge from prior works in order to assess the pertinence of an eXplainable AI 
method such as LRP in the environmental domain. Note that when interpreting the heatmaps (Figs. 4a, 5a, 6a, 
7a) we always implicitly back up our findings upon Table 2 to identify which values (high or low) of the input 
features led to high predictions (by comparing their average on the subset of high prediction data points to their 
mean value over the whole dataset).

Explaining high  PM10 forecasts. In Fig. 4a we plot the average of the positive LRP relevance for high 
forecasts of the pollutant PM10 . We find that the following input features are the most relevant ones for high 
levels of PM10 concentration in the air:

• High PM10 measurement. We find that high values of PM10 measurements in the historical input sequence 
have the strongest impact on the forecast of high PM10 concentrations, especially in forecasts for the next 
hour, this effect then declines over time. PM10 particles are usually produced from industrial and combustion 
processes, and through fugitive dust emission. Coarse particles of PM10 are known to easily deposit, and typi-
cally travel less than ten km from their place of  generation63. Accordingly PM10 particles that are produced 
nearby and detected through sensor measurements can be mainly responsible for the amount of PM10 con-
centration predicted in the next hours. We find that the locations of stations with high PM10 concentrations 
are indeed close to industrial plants such as cement, steel or iron manufacturing plants, along with fossil fuel 
power plants. For example station DMD2, which is located in the city of Dortmund, has several industrial 
firms closely situated to it, like the Holcim HüttenZement cement fabricator, the DGW energy plant, and the 
Thyssenkrupp steel fabricator. Such industries are known to emit a significant amount of particulate matter 
into the  air64.

• Low temperature forecast. A low temperature forecast also contributes to a high PM10 load in the air. The 
phenomenon of temperature inversion might explain this result. Indeed temperature inversion in cold days 
of the year is known to bring additional accumulation of pollutants in the atmosphere close to the  ground65. 
Temperature inversion happens when the warm air floats above the cooler air near the surface. This warm 
layer of air can play the role of a lid and trap the pollution close to the ground. Besides, the high pollutant 
concentration during cold days can also be a consequence of additional emissions due to domestic heating, 
e.g. through fossil fuel  combustion66.

In Fig. 4b, the contributions of different hours of the day to the high PM10 concentrations are shown. Even 
though the hour input feature does not have a high relevance score overall for the prediction of PM10 , compared 
to the historical PM10 measurement and the forecasted temperature (as seen in heatmap Fig. 4a), we can still 
determine which hours of the day are more relevant than others, relatively. As it can be observed from the bar 

Table 2.  Input features with the highest positive LRP relevance for high predictions of each pollutant (4800 
data points with high predictions were selected considering the first 24 h of the forecast). Columns 2 to 5 
are the average input features’ values on the considered subset of data points (and standard deviation in 
parenthesis), while the last two columns contain the mean and standard deviation of these features over the 
whole dataset. Subscript f indicates forecast input, subscript h indicates historical input. For the one-hot 
encoded input feature hour of the day the hours 7, 8, 9 A.M. are the 3 h that occur the most in the subset of 
high predictions (over the whole dataset all hours occur equally often).

Input feature PM10 NO NO2 O3 Mean (all) Std (all)

Temperature_f ( ◦C) − 0.8 (6) 2.5 (5) 15 (9.6) 26.3 (5.8) 10.5 7.4

Humidity_f (%) 85 (13.5) 65 (21) 57 (20.9) 77.5 16.8

Hour_f (one-hot) 7, 8, 9 – –

WindSpeed_f (Bft) 2 (1.3) 2 (1.1) 3.6 2

PM10_h (μg/m3) 89.5 (33) 18.6 10.5
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Figure 4.  (a) Average positive LRP relevance for the first 24 h of high PM10 forecasts. Subscript h and f are used 
for historical and forecast input. Subscript intermediate is used for pollutant forecasts in previous time steps. 
Station number is the static input. (b) Average positive LRP relevance for the input feature hour of the day for 
high PM10 forecasts (for the bar plot quantities are rescaled such that the maximum is equal to one). Statistics 
are computed over 4800 data points with the highest PM10 forecasts [created with Matplotlib version 3.3.4 
https:// matpl otlib. org/].

plot, hour 8 P.M. contributes the most to the pollution load, and the evening hours until midnight tend to have 
a higher contribution than late night hours after midnight (and before 8 A.M.). This could be attributed to the 
higher domestic heating needs in the evening after sunset, in comparison to daytime and throughout the night 
when people are  sleeping65.

Explaining high NO forecasts. Similar to the experiment with PM10 , we plot the average of the positive 
LRP relevance for high forecasts of NO in Fig. 5a. We find that the following input features contribute most 
towards high NO concentration:

• Low wind speed forecast. Wind usually plays a role in reducing the pollution load in an area by dispersing the 
pollutants. Conversely an absence of wind allows for pollutants to pile up. As a result, low wind speed becomes 
a contributor to an increase in pollution load. This could explain the high relevance scores we observe for 
low wind values with respect to high NO predictions, accordingly to Fig. 5a and Table 2. This result is also 
consistent with previous studies that found a strong negative correlation between NO concentration and 
wind  speed67–69.

• Low temperature forecast. As we observed with the pollutant PM10 , we find that low temperature contributes to 
the prediction of high NO concentration. Again the reason could be the temperature inversion phenomenon 
or the significant increase in burning fossil fuels for heating and electricity generation during cold  days70,71.

• High humidity forecast. The heatmap in Fig. 5a also suggests a positive contribution of high humidity to high 
NO concentration. NO generated by natural or anthropogenic sources is a reactive gas and rapidly oxidizes 
to NO2 , in particular through reaction with ozone. Due to this reaction large concentration of ozone and 
NO can not  coexist72. Since high humidity is generally associated with lower solar radiation and less ozone 
formation, we hypothesise this could explain why fewer nitrogen monoxide is converted into nitrogen dioxide 
when the relative humidity is elevated, allowing NO to reach higher concentration. In the previous literature 
however we could not find such a relationship between high NO pollution load and high relative humidity. 
Thus our interpretation of this result shall be taken with caution, and there might be other mechanisms at 
play that better justify the high humidity contribution to the model’s prediction.

• Morning hours in the forecast. Finally Fig. 5a shows high relevance scores for the hour of the day feature in 
the forecast input sequence. Additionally, Fig. 5b represents the average contribution of each hour of the 
day to high NO predictions across various forecast time steps. The hours of the day that positively contrib-
ute the most to the NO load in the air are around 7 A.M.–8 A.M. in the morning. This is consistent with 
the diurnal variations of pollutants found in previous  work8, presenting a major peak of NO concentration 
that starts early in the morning and lasts till late morning. Generally, high emissions of NOx coincide with 
rush-hour traffic occurring in the morning and late afternoon. However, in the late afternoon, the level 
of ozone concentration increases because of the presence of solar radiation during the day that promotes 
ozone generation. As a result, due to the oxidation of NO to NO2 through the chemical reaction previously 

https://matplotlib.org/
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mentioned of O3 +NO −→ NO2 +O2 , the concentration of NO in the late afternoon is not as high as it is 
in the  morning73. In Fig. 5b, beside the average contribution of each hour input feature to high forecasts (as 
a bar plot), we additionally plot the average occurrence of high NO forecasts for each prediction time step 
(as a dotted line). We observe that the distribution of high forecasts of NO approximately follows the same 
pattern as the contribution of the input feature hour of the day, but with a slight delay of around 2 h. This 
is probably due to the accumulation effect of pollution, meaning that NO produced at relevant input hours 
accumulates into the air to increase the NO prediction at subsequent hours.

Explaining high  NO2 forecasts. Figure 6a depicts the average positive LRP relevance for high forecasts of 
NO2 . We find the following input features to contribute substantially towards high levels of NO2:

• Low humidity forecast. Nitrogen dioxide NO2 is an acidic gas and readily reacts with water vapor to generate 
nitric acid and nitrogen monoxide through the reaction of 3NO2 + H2O −→ 2HNO3 + NO . This is also 
the reaction that causes acid rain formation from nitrogen dioxide present in the atmosphere. Therefore, 
when humidity is high NO2 can be consumed and removed from the air through nitric acid deposition, and 
conversely, when the humidity is low this could contribute to NO2  accumulation74.

• Moderately high temperature forecast. As can be seen from Fig. 6a and Table 2, an average temperature of 
15 °C (with standard deviation of 9.6 °C) seems to act in favor of a high NO2 concentration. We suspect this 
temperature level to not be low enough to explain higher emissions due to fossil fuels combustion for heating 
or accumulation of pollutant through temperature inversion, and at the same time to not be high enough 
to justify a high ozone concentration which could lead to a secondary formation of NO2 from oxidation of 
NO. Previous work found that indeed the NO2 concentration is rather affected by temperature levels either 
lower than 5 °C or higher than 20 °C75. Therefore it is possible that other mechanisms are at play here to 
increase NO2 formation, e.g. via nitrogen oxides emissions from micro-organisms present in the  soil76. More 
investigations would be needed to understand the reasons behind the role of temperature in this context, as 
well as possible interactions with other factors not modelized in our approach.

• Low wind speed forecast. Similarly to what we observed with the pollutant NO, the low wind speed also allows 
NO2 to accumulate since the dispersion and transport of pollution is hindered, as opposed to when the wind 
speed is high.

According to the bar plot in Fig. 6b, the time of the day around 8 P.M. contributes the most to high NO2 forecasts, 
and late afternoon hours contribute more than morning hours. This could be attributed to the contributions 
from evening rush-hour traffic, emissions due to heating, and the secondary formation of NO2 from the reaction 
between primary emitted NO and O3

77.

Figure 5.  (a) Average positive LRP relevance for the first 24 h of high NO forecasts. Subscript h and f are used 
for historical and forecast input. Subscript intermediate is used for pollutant forecasts in previous time steps. 
Station number is the static input. (b) Average positive LRP relevance for the input feature hour of the day for 
high NO forecasts (for the bar plot quantities are rescaled such that the maximum is equal to one). Additionally 
we plot the average occurrence of high NO forecasts per hour of the prediction time (dotted line). Statistics are 
computed over 4800 data points with the highest NO forecasts [created with Matplotlib version 3.3.4 https:// 
matpl otlib. org/].

https://matplotlib.org/
https://matplotlib.org/


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9940  | https://doi.org/10.1038/s41598-023-35963-2

www.nature.com/scientificreports/

Figure 6.  (a) Average positive LRP relevance for the first 24 h of high NO2 forecasts. Subscript h and f are used 
for historical and forecast input. Subscript intermediate is used for pollutant forecasts in previous time steps. 
Station number is the static input. (b) Average positive LRP relevance for the input feature hour of the day for 
high NO2 forecasts (for the bar plot quantities are rescaled such that the maximum is equal to one). Statistics are 
computed over 4800 data points with the highest NO2 forecasts [created with Matplotlib version 3.3.4 https:// 
matpl otlib. org/].

Explaining high  O3 forecasts. Figure 7a depicts the average of the positive relevance of the input features 
for high forecasts of O3 . The most important input features for predicting high O3 concentration are the follow-
ing:

• High temperature forecast. Elevated temperature displays a positive contribution to the ozone pollution load. 
The reason is that higher temperature is representative of more solar radiation, which supports the photo-
chemical formation of O3 . Indeed solar energy is known to play a key role in ozone formation (see e.g.9,10,78,79).

• Low humidity forecast. As already mentioned, ground-level tropospheric ozone is formed as a result of com-
plex photo-chemical  reactions9,10,79. The corresponding cyclic reactions involve NOx , Volatile Organic Com-
pounds (VOCs) and CO. High humidity is generally associated with cloudy sky and precipitation, resulting 
in weaker solar radiation, while on the other hand low humidity favors solar radiation which enhances 
ozone  production80. This explains in great part the high contribution of a low humidity forecast on ozone 
concentration observed in Fig. 7a. Another complementary explanation for this result might be dry deposi-
tion, i.e. the uptake of ozone by  trees11. Indeed when the relative humidity is high trees open their stomata 
for exchanging CO2 , and then unintentionally also absorb O3 from the air, while when the humidity is low 
trees close their stomata such that they don’t dry out, and consequently they do not remove O3 from the air, 
allowing it to pile up.

In Fig. 7b we visualize the average contribution of the input feature hour of the day for high O3 forecasts. We 
observe that the most relevant hours are during daytime, and especially between noon and 5 P.M. This is consist-
ent with the diurnal cycle of solar radiation and its impact on O3 concentration, with a maximum concentration 
occuring around 3 P.M. (i.e. approx. 2 h after the maximum of solar radiation) as was found in previous  work78.

Further statistics on the relevance for other temporal input features like months of the year, days of the week 
and work-free versus working day for high pollution forecasts of the different pollutants can be found in the 
Supplementary Section 1.

Influence of wind direction. In the previous subsections we analysed the relevance of various input vari-
ables on the forecast of high pollutant loads. In this subsection we investigate in more details a particular input 
feature which contributes to high forecasts for the pollutants NO and NO2 : the wind direction. To determine 
the most important wind directions, the relevance of the different wind directions is computed for one specific 
station. In particular we consider the station BIEL in Bielefeld which has high forecasts of NO. We average the 
positive LRP relevance of the input feature wind direction for that specific station across different hours of the 
prediction time with high forecast values. This statistic is computed over 71 data points with the highest fore-
casts of NO. The result is shown in Fig. 8. According to the bar plot, wind that blows in the direction between 
22.5°–45° enhances pollution the most, while the next peak can be found in the range 157.5°–180°.

https://matplotlib.org/
https://matplotlib.org/
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The location of the measuring station and the two most influential wind directions are depicted in a map in 
Fig. 9. As reported by the European Environment  Agency81, energy production, as well as road and non-road 
transport generate a large share of NO emissions. In accordance with that we find two sites that could be respon-
sible for the high emissions and which are consistent with the relevant wind directions identified via LRP: the 
Bielefeld airport and an energy production plant. This illustrates the usefulness of LRP for identifying potential 
relevant pollution sources.

Figure 7.  (a) Average positive LRP relevance for the first 24 h of high O3 forecasts. Subscript h and f are used 
for historical and forecast input. Subscript intermediate is used for pollutant forecasts in previous time steps. 
Station number is the static input. (b) Average positive LRP relevance for the input feature hour of the day for 
high O3 forecasts (for the bar plot quantities are rescaled such that the maximum is equal to one). Statistics are 
computed over 4800 data points with the highest O3 forecasts [created with Matplotlib version 3.3.4 https:// 
matpl otlib. org/].

Figure 8.  Average positive LRP relevance for the input feature wind direction for high NO forecasts for station 
BIEL in Bielefeld. This statistic is computed over 71 data points with the highest forecasts of NO.

https://matplotlib.org/
https://matplotlib.org/
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Simplifying the model with LRP
According to the statistics on the positive, respectively the absolute, LRP relevance values computed over 19,200 
data points with the highest forecasts for different pollutants in the first day of the prediction (4800 data points 
per pollutant) as shown in Fig. 10, we observe that the historical input data, except for the historical measurement 
of PM10 , do not contribute significantly to the pollution prediction. This indicates the model is mainly relying 
on the nearby forecast input data to make its prediction.

Considering this observation, we explored whether we could simplify the model’s structure by removing the 
encoder module from the model and re-train a new model with only the decoder module without loosing much 
prediction performance. In order to keep feeding the model with the last value of the historical measurement 
of PM10 , we included this value as input into the first time step of the decoder. The resulting validation loss and 
the training time for the modified and original models are given in Table 3. While the original encoder-decoder 
model receives a combination of historical and forecast inputs for training and prediction, and the decoder-
only model just consists of the decoder fed with forecast data plus one measurement of PM10 , we find that both 
models reach reasonable prediction performance. Indeed there is only a slight increase in the validation loss 
when using the decoder-only model (in terms of mean absolute prediction error). We provide some example 
predictions on a few data points from the validation set in Fig. 11. This experiment demonstrates that explain-
ing the model behavior with LRP can also be used to design a more efficient model. By omitting the encoder 
module, we finally obtain a model that needs less time and computational resources for training and prediction. 
The resulting model looses a bit of accuracy, but still solves the prediction problem with enough precision to 
fulfil practical expectations.

Similarly, we inspected the impact of removing a few irrelevant features as identified by LRP from the his-
torical input sequence of the original encoder-decoder model, and verified whether this affects the prediction 
performance negatively, as was done in previous  work41. For this analysis we discarded the following historical 
input features: year, weekday, work-free day, sunshine and precipitation (i.e. rain), which never were assigned a 
high relevance for the high pollutant forecasts (see relevance heatmaps in the previous section and in Fig. 10). In 
terms of validation loss for each pollutant, when we re-trained a new model with this modification, the resulting 
change in prediction performance was no more than 0.02 μg/m3, which is negligible. Hence the LRP relevance 
can not only help to understand and explain the key factors influencing the pollution forecast the most, but can 
also be used to improve model efficiency, and reduce the number of input features.

Lastly, we inspected the influence of the static input feature station number (which is represented as an integer 
indicating the location of the considered station, and can in principle be used by the model to adapt its predic-
tions to the environmental specificities of a given location). According to the LRP heatmaps, this input feature 
also never was assigned a large relevance value for high pollutant forecasts. Therefore we would expect it can 

Figure 9.  Locations of the station BIEL in Bielefeld and potential pollution sources, as well as relevant wind 
directions identified via LRP [created with Google Maps https:// www. google. com/ maps and Google Slides 
https:// www. google. com/ slides/ about].

https://www.google.com/maps
https://www.google.com/slides/about
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be discarded from the input data without much loss in prediction performance. And indeed when we re-train 
the original encoder-decoder model without that feature, we obtain a new model with an equivalent prediction 
performance (no more than 0.02 μg/m3 change in prediction performance per pollutant). This indicates that 
the remaining dynamic input features (such as weather forecast, previous pollution concentration and temporal 
features) contain enough information for the given pollution forecasting task at hand.

For a comparison of the LRP results with other XAI methods, we provide in the Supplementary Section 2 
additional heatmap visualizations with the XAI methods of Saliency and Gradient x  Input46,47.

Conclusion
In this work we applied the LRP method on a trained sequence-to-sequence pollution forecasting model with 
GRU layers. The explanations produced by LRP helped us to better understand how the model makes its pre-
dictions. LRP heatmaps were qualitatively inspected, and their results were largely consistent with available 
domain knowledge. We expect LRP to be broadly useful for the fine-grained analysis of model behavior in the 
environmental domain, in particular for the identification of potential critical factors contributing to high pol-
lution concentration, which could improve the air quality monitoring and mitigation. Further, we demonstrated 
that LRP can be used to design a computationally more efficient forecasting model. A possible future direction 
for investigation could be the identification of factors interacting together in the pollution forecast, e.g. through 
the successive removal of individual versus groups of variables, and their interpretation in terms of the involved 
chemical and physical processes. In this respect we believe that data driven and eXplainable AI could complement 
more traditional approaches for broadening the understanding of pollution mechanisms.

Figure 10.  (a) Average positive LRP relevance for the first 24 h of high forecasts for different pollutants. (b) 
Average absolute LRP relevance for the first 24 h of high forecasts for different pollutants. Subscript h and f are 
used for historical and forecast input. Subscript intermediate is used for pollutant forecasts in previous time 
steps. Station number is the static input. Statistics are computed over 4800 data points with the highest forecasts 
for each pollutant [created with Matplotlib version 3.3.4 https:// matpl otlib. org/].

Table 3.  Validation loss (as mean absolute prediction error) for two different models: the original encoder-
decoder model and a decoder-only model.

Model Loss (μg/m3) Training time (hours)

Encoder–decoder 3.73 17.6

Decoder-only 4.63 7.5

https://matplotlib.org/
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Data availability
The data is not publicly available. The data analysed in the study will be available from corresponding author 
on reasonable request. The code of the model is publicly available at https:// github. com/ Sara- mibo/ LRP_ Encod 
erDec oder_ GRU.
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