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Elevated GRO‑α and IL‑18 in serum 
and brain implicate the NLRP3 
inflammasome in frontotemporal 
dementia
Hiu Chuen Lok 1,2,4, Jared S. Katzeff 1,2,4, John R. Hodges 1, Olivier Piguet 1,3, YuHong Fu 1,2, 
Glenda M. Halliday 1,2 & Woojin Scott Kim 1,2*

Neuroinflammation is a hallmark of frontotemporal dementia (FTD), a heterogeneous group of 
proteinopathies characterized by the progressive degeneration of the frontal and temporal lobes. 
It is marked by microglial activation and subsequent cytokine release. Although cytokine levels in 
FTD brain and CSF have been examined, the number of cytokines measured in each study is limited 
and knowledge on cytokine concentrations in FTD serum is scarce. Here, we assessed 48 cytokines in 
FTD serum and brain. The aim was to determine common cytokine dysregulation pathways in serum 
and brain in FTD. Blood samples and brain tissue samples from the superior frontal cortex (SFC) were 
collected from individuals diagnosed with behavioral variant FTD (bvFTD) and healthy controls, and 48 
cytokines were measured using a multiplex immunological assay. The data were evaluated by principal 
component factor analysis to determine the contribution from different components of the variance 
in the cohort. Levels of a number of cytokines were altered in serum and SFC in bvFTD compared to 
controls, with increases in GRO‑α and IL‑18 in both serum and SFC. These changes could be associated 
with NLRP3 inflammasome activation or the NFκB pathway, which activates NLRP3. The results 
suggest the possible importance of the NLRP3 inflammasome in FTD. An improved understanding of 
the role of inflammasomes in FTD could provide valuable insights into the pathogenesis, diagnosis and 
treatment of FTD.

Neuroinflammation is recognized as a hallmark for neurodegenerative diseases including frontotemporal 
dementia (FTD), a heterogeneous group of neurodegenerative clinical syndromes characterized by progressive 
behavioral and/or language changes and associated cognitive  deficits1. There are three clinical subtypes of FTD: 
behavioral variant FTD (bvFTD), nonfluent variant primary progressive aphasia and semantic variant primary 
progressive aphasia, with bvFTD being the most  common2. Neuropathologically, FTD is categorized based on the 
pathological cellular inclusions, with tau and Tar-DNA binding protein-43 (TDP-43) being the most prevalent, 
and both of which are known to trigger  neuroinflammation3,4. Neuroinflammation is primarily mediated by 
activated astrocytes and microglia, the resident immune cells of the central nervous system. Microglia are mainly 
responsible for maintaining homeostasis and mediating host defense against pathogens and toxic protein aggre-
gates. These stimuli trigger the activation of microglia, which releases pro-inflammatory cytokines, chemokines 
and reactive oxygen species (ROS). While early studies referred to four primary features of neuroinflamma-
tion—microglial activation, increased cytokines/chemokines, recruitment of peripheral immune cells and local 
tissue damage—the definition for this term has since broadened to cover most immune processes in the nervous 
 system5. Physiologically, consequences of neuroinflammation include elevated ROS/oxidative stress, neuronal 
cell death, impaired phagocytosis and autophagy, mitochondrial dysfunction and protein  aggregation6–9, all of 
which are known to contribute to the pathogenesis of neurodegenerative  diseases10–13.

Neuroinflammation in FTD brain is evident by the presence of activated microglia in disease-affected regions, 
as shown by  immunohistochemistry14–18. Indeed, the presence of activated microglia in the brain of FTD patients 
have been confirmed in vivo by positron emission topography (PET) using inflammation markers C-PK11195 
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or C-PBR28 that bind to the 18-kDa translocator protein (TPO) of activated  microglia16,19–22. Furthermore, 
these studies showed a positive correlation between neuroinflammation and protein  aggregations16 and disease 
 progression21 across the FTD spectrum and in semantic dementia, respectively. Of note, PET imaging of seven 
cases of familial FTD with mutations in the three most common FTD causal genes, C9ORF72, MAPT and GRN, 
all showed in vivo inflammation, suggesting neuroinflammation is a part of the pathophysiology of familial 
 FTD22. These three genes, which account for 35–65% of familial FTD  cases23, and other FTD causal  genes24 are 
all implicated in  neuroinflammation25–28. Interestingly, the brain of MAPT mutation carriers show microglial 
activation in disease-affected regions prior to the development of protein aggregation and  atrophy28, while 
the leukocytes from symptomatic GRN mutation carriers have increased expression of inflammatory genes 
compared to those of healthy  controls29. In addition, the FTD risk gene TREM2 has been reported to attenuate 
 neuroinflammation30,31 and is used as a biomarker for microglial  activation32.

Microglial activation leads to the release of cytokines that amplify and modulate the innate immune response 
to a foreign pathogen through binding to specific receptors and activating signaling cascade pathways to alter 
gene  expression33,34. This allows cells to communicate with one another and orchestrate complex multicellular 
 processes35. Alterations in brain and CSF cytokines levels in neurodegenerative diseases such as Alzheimer’s 
disease, Parkinson’s disease, amyotrophic lateral sclerosis and FTD have been  reported36–47. Symptomatic FTD 
patients with GRN mutations have altered levels of pro-inflammatory cytokines in the serum and  CSF48,49. Mono-
cyte chemoattractant protein-1 (MCP-1), interferon-γ-inducible protein 10 (IP-10), IL-6, IL-11, IL-12 and IL-15, 
tumor necrosis factor β (TNFβ) and leukemia inhibitory factor (LIF)46,49–53 are all altered in the CSF or blood 
of FTD patients. Of note, the cytokines interleukins IL-1β and IL-18 are crucial for the NLRP3 inflammasome-
mediated inflammatory  responses54. NLRP3 inflammasomes are multi-protein complex comprised of a sensor 
(NLRP3), an adaptor (ASC) and an effector (caspase-1). The complex cleaves the pro-inflammatory interleukins 
IL-1β and IL-18, leading to their activation and release, resulting in a plethora of inflammatory responses includ-
ing pyroptosis. NLRP3 inflammation activation have recently been implicated in driving the tau  pathology55. The 
relationship between NLRP3 inflammasome and tau appears to be reciprocal. Activation of NLRP3 inflamma-
some can be caused by tau seeds in primary  microglia56 in FTD brain with  tauopathy55. Inflammasome activation 
is also known to regulate TDP-43  expression57. In addition, amyloid-β and α-synuclein were reported to induce 
NLRP3 inflammasome activation in Alzheimer’s58,59 and Parkinson’s60 disease, respectively.

Considering the importance of cytokines in neuroinflammation and neurodegenerative diseases, an improved 
understanding of their different roles in FTD could provide insights into the pathogenesis of FTD and other 
degenerative diseases. Currently, while there are numerous reports on cytokine changes in FTD, most of these 
analyses were performed on CSF, with little published examining cytokine changes in  serum24 or in the brain, 
and only a small number of cytokines were measured. Furthermore, no direct comparisons were made between 
serum and brain cytokine levels; this would enable the identification of common cytokines that are altered in 
both the brain/CSF and serum in FTD. This is of particular significance as such cytokines could act as reliable 
neuroinflammation biomarkers that is detectable in the serum, thus providing a non-invasive means to assess 
neuroinflammation. In this current study, 48 cytokines were measured in the blood, using a multiplex assay, and 
were compared to those in the brain in bvFTD and healthy controls. The data were then evaluated by principal 
component factor analysis to understand the contribution from different components of the variance in our 
cohort. The primary aim was to determine whether cytokine dysregulation is evident in the serum and brain 
in FTD, and to identify common cytokines that are altered in both blood and the brain. The second aim was to 
examine whether any of these affected cytokines had similar functional roles that could lead to the discovery of 
hitherto unknown neuroinflammatory pathways that contribute to the pathogenesis of FTD.

Materials and methods
Participant blood serum. Individuals diagnosed with sporadic bvFTD and healthy controls were 
recruited from FRONTIER, the frontotemporal dementia clinical research group previously at Neuroscience 
Research Australia and now at the University of Sydney Brain and Mind Centre, and from a panel of healthy 
study  volunteers61 with no neurological (i.e. no evidence of cognitive or motor impairment) or psychiatric disor-
ders. The study was approved by the University of New South Wales human ethics committee (approval number: 
HC12573). All methods were carried out in accordance with the relevant guidelines and regulations. Blood sam-
ples were obtained following written informed consent from the participant and/or primary carer. All patients 
and controls underwent a neurological examination, a comprehensive cognitive assessment and structural brain 
MRI, and met current consensus diagnostic criteria for probable  bvFTD62, as previously  described61. Ten bvFTD 
cases (6 male, 4 female) and 10 controls (4 male, 6 female) were used in this study (Table 1). The mean age of the 
two groups at recruitment were 66.9 and 75.9 years, respectively. Two blood samples were collected from each 
person 12-months apart (i.e. Year-1 and Year-2), i.e. 40 samples in total. Blood samples (9 mL) were collected 
in tubes (BD Vacutainer SST II Advance Tube #367958), and serum prepared by centrifugation at 3500 rpm for 
10 min at 4 ℃, which was then aliquoted and stored at −80 ℃ until use.

Participant brain tissues. A different cohort of bvFTD patients and controls (Table 2) was used for the 
brain tissue analysis. Fresh-frozen post-mortem brain tissue samples were obtained with consent from the Syd-
ney Brain Bank at Neuroscience Research Australia and NSW Brain Tissue Resource Centre at the University of 
Sydney (both brain banks ethically approved through their institutions to collect, characterize and bank brain 
tissue for research purposes). Ethics approval for this tissue study was from the University of New South Wales 
Human Research Ethics (approval number: HC15789). All brain donors underwent standardized assessments in 
life and standardized neuropathological examination, and met current consensus diagnostic criteria for sporadic 
bvFTD with TDP-43  pathology63,64 or no significant neuropathology (controls)65,66. The Sydney Brain Bank col-
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Table 1.  Demographics of bvFTD and controls for serum analysis.

Case Sex Age at year 1 Age at year 2

bvFTD

 1 Male 79 80

 2 Male 69 70

 3 Female 73 74

 4 Male 50 51

 5 Male 64 65

 6 Female 44 45

 7 Female 67 68

 8 Female 80 81

 9 Male 61 62

 10 Male 82 83

Control

 1 Male 80 81

 2 Female 73 74

 3 Male 75 76

 4 Male 83 84

 5 Female 80 81

 6 Female 79 80

 7 Female 76 77

 8 Female 62 63

 9 Male 76 77

 10 Female 75 76

Table 2.  Demographics of bvFTD and controls for brain tissue analysis.

Case Sex Age PMI Case characterization

FTD

 1 Male 66 39 Early FTD-TDP

 2 Male 62 15 Early FTD-TDP

 3 Female 72 25 Early FTD-TDP

 4 Male 61 37 Early FTD-TDP

 5 Female 65 22 Late FTD-TDP

 6 Female 84 17 Late FTD-TDP

 7 Male 60 28 Early FTD-TDP

 8 Female 99 13 Late FTD-TDP

 9 Female 86 25 Late FTD-TDP

 10 Male 74 20 Late FTD-TDP

Control

 1 Female 85 23 N/A

 2 Male 79 8 N/A

 3 Female 89 23 N/A

 4 Female 101 9 N/A

 5 Male 84 9 N/A

 6 Female 93 15 N/A

 7 Male 74 10 N/A

 8 Male 63 24 N/A

 9 Male 66 23 N/A

 10 Female 74 20 N/A

 11 Female 67 15.5 N/A
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lects brain tissue from brain donors participating in the FRONTIER brain donor program approved through the 
South Eastern Sydney Local Health District Human Research Ethics (approval number: HREC 10/092) and so 
the bvFTD cases with brain tissue were clinically assessed via the same procedures as indicated for the patient 
blood serum. Tissue samples from the superior frontal cortex were collected from ten bvFTD cases (5 male, 5 
female)67 and 11 controls (5 male, 6 female)68. The mean age of the two groups were 72.9 and 79.5 years, respec-
tively. Pathological severity of FTD was also assessed within the bvFTD group which could be split further into 
early stage 1 (N = 5) versus later stage disease (N = 5)69, reflecting the average disease durations of these two 
subgroups (mean ± standard deviation for stage 1 disease duration of 2.7 ± 1.5 years versus stage 2/3 disease 
durations of 8 ± 4 years).

Protein fraction extraction from human brain tissues. The TBS fractions, which contain the cyto-
solic proteins, were used in cytokine analysis. The TBS fractions were extracted from the superior frontal cor-
tex as previously  described68. Briefly, tissue (100 mg) was suspended in TBS homogenization buffer (20 mM 
Tris, 150 mM NaCl, pH 7.4, 5 mM EDTA, 0.02% sodium azide) containing protease inhibitor cocktail (Roche). 
The samples were then homogenized using Qiagen tissue lyser (30 Hz cycles, 3 × 30 s) and centrifuged for 1 h 
(100,000×g at 4 °C). The resultant supernatant then becomes the TBS fraction. Samples were stored at −80 °C 
until analysis.

Cytokine assay. A total of 48 cytokines including interleukins, chemokines, colony stimulating factors, 
growth factors, interferons, growth factors and tumor necrosis factor were measured in this study. Cytokine 
concentrations were measured in serum and human brain tissue TBS extracts using the Pro Human Cytokine 
Screening Panel 48-plex assay (Bio-Rad, Hercules, California, USA) and 5-point standard curve consisting of 
S3, S4, S5, S6, S7 standards and a blank, which covered our sample concentration range. Briefly, samples were 
diluted (serum 1:4, brain tissue 1:2), in sample diluent, and incubated with detection antibodies coupled to 
magnetic beads, washed using a Bio-Plex Pro wash station and incubated in streptavidin–phycoerythrin before 
wells were quantified using a Xponent software package (Luminex, Austin, TX). Provided standards generated a 
five-parameter standard curve for all 48 cytokines and unknown concentrations were calculated with Bio-Plex 
Manager software 6.1. The intra-assay %CV for the serum plate was 2.68–4.97 (average: 3.51) and for the brain 
tissue plate 3.65–6.42 (average: 4.86). The inter-assay %CV for the two plates was 4.48–13.57 (average: 7.92).

Statistical analysis. All statistical analyses were performed using SPSS statistical software (IBM, Chicago, 
IL, United States). A multivariate analysis (general linear model), covarying for age and sex, was used to deter-
mine differences in the cytokine levels in FTD (N = 10) and control (N = 11) with posthoc statistical significance 
set at P < 0.05. Principal component factor analyses (PCA) were performed to determine if significantly altered 
cytokines, were clustering in the same group of variance for serum and brain cytokines. To be considered sig-
nificant, cytokines required a loading score of > 0.7 and to be responsible for > 10% of variance. PCA was first 
performed on serum cytokines to determine if cytokines that were altered in the serum of bvFTD cohort were 
clustering together. This is followed by analysis on brain cytokines to examine if similar components of variance 
were observed in both brain and serum.

Results
Altered cytokine levels in FTD serum. Forty-eight cytokines were measured in bvFTD (N = 10) serum 
and controls (N = 10) using a multiplex assay. Two samples, year 1 and year 2 (i.e. 12-months apart), from 
each individual were assessed. Firstly, we assessed the cytokines independent of time and found that IL-2Rα, 
IP10, macrophage inflammatory protein 1-alpha (MIP-1α) and stem cells growth factor-beta (SCGF-BB) were 
significantly increased in bvFTD compared to controls (Fig. 1). Of the 48 cytokines, IL-10, IL-12 (p40), IL-5, 
IL-15, IL-16, monocyte chemotactic protein-3 (MCP-3) and vascular endothelial growth factor (VEGF) were 
not detected by the multiplex assay. Secondly, we assessed the cytokines longitudinally and found that five 
chemokines (GRO-α/CXCL1, monocyte chemotactic protein-1 (MCP-1), macrophage inflammation protein 
1-beta (MIP-1β), RANTES and SDF-1α) (Fig. 2A), one interleukin (IL-18) (Fig. 2B), one interferon (interferon 
alpha-2 (IFNα-2)) (Fig. 3A) and one growth factor (platelet derived growth factor BB (PDGF-BB)) (Fig. 3B) 
were significantly altered in year 2 compared to year 1 in bvFTD. None of the cytokines were altered in year 2 
compared to year 1 in controls (Figs. 2 and 3).

Cytokine analysis of FTD brain tissue. We were also interested in changes in the cytokines in bvFTD 
brain and assessed the same cytokines, using the same multiplex assay, in the superior frontal cortex, a disease-
affected region, of FTD (N = 10) and controls (N = 11). Of the 48 cytokines, HGF and IL-18 were significantly 
elevated in bvFTD compared to controls (Fig.  4) with IL-5 being undetectable. We then categorized bvFTD 
into two groups based on neuropathological severity, i.e. early stage 1 bvFTD (N = 5) and later stage 2/3 bvFTD 
(N = 5), and divided the cytokines into functional groups, i.e. chemokines, interleukins, interferons, growth 
factors and colony stimulating factors. In terms of chemokines and interleukins, GRO-α (Fig. 5A) and IL-16 
(Fig. 5B) were significantly elevated in late bvFTD compared to controls, whereas IL-18 was more significantly 
increased in early bvFTD relative to late bvFTD (Fig. 5B). In terms of interferons, there were no changes in either 
early or late bvFTD compared to controls (Fig. 6A). In terms of growth factors, HGF was increased in early 
bvFTD and further increased in late bvFTD compared to controls (Fig. 6B). In summary, GRO-α and IL-18 are 
elevated in both serum and brain in bvFTD compared to controls.
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Analysis of variance in brain and serum cytokines. To identify clustering groups of cytokines with 
similar functional characteristics in bvFTD serum and brain (> 10% variance from controls), principal factor 
component analysis (PCA) was performed on the serum (Fig. 7A) and brain (Fig. 7B) datasets. The serum PCA 
revealed two components of variance. The larger component (loading score > 0.7, accounting for 39% of vari-
ance) comprised of beta-nerve growth factor (β-NGF), granulocyte colony stimulating factor (G-CSF), IFN-α2, 
IL-17A, IL-1α, IL-2, IL-3, IL-4, IL-7, IL-8, IL-9, MIP-1β and tumor necrosis factor-alpha (TNF-α) (Table 3). The 
other component consisted of only one cytokine, RANTES.

To determine whether similar components of variance occurred in serum and brain, PCA analysis was then 
performed on all brain samples, from which two components of variance emerged (Table 4). The analysis showed 
that the greatest component of variance in FTD brain consisted of β -NGF, eotaxin, G-CSF, granulocyte–mac-
rophage colony stimulating factor (GM-CSF), IFN-α2, IFN-γ, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-16, 
IL-17A, IL-1α, IL-2Rα, IL-3, IL-4, IL-6, IL-7, IL-8, IL-9, LIF, MCP-3, monocyte induced by gamma interferon 
(MIG/ CXCL9), MIP-1α, MIP-1β, PDGF-BB, stem cell factor (SCF), stromal cell derived factor-1 alpha (SDF1α), 
TNF-α, TNF-β and VEGF (loading score > 0.7, accounting for 51% of variance) (Table 4). The second largest com-
ponent of variance consisted of fibroblast growth factor (FGF basic), GRO-α, hepatocyte growth factor (HGF), 
IL-16, IL-18, M-CSF, macrophage migration inhibitory factor (MIF) and SCGF-β (loading score > 0.7, accounting 
for 15% of variance). Interestingly, the second largest component of variance comprised of all four cytokines that 
were altered in the brain—GRO-α, HGF, IL-16 and IL-18. In addition, all the cytokines from the first components 
of variance in the serum samples were also found in the largest component of variance in the brain.

Discussion
Neuroinflammation is known to play a major role in the neuropathology of neurodegenerative diseases includ-
ing  bvFTD24. Since cytokines are integral to neuroinflammation, an improved understanding of cytokines in 
bvFTD could provide valuable insights into the pathogenesis of bvFTD and other neurodegenerative diseases. 
While changes in brain/CSF cytokines levels in bvFTD have been well documented, reports on serum cytokine 
concentrations in bvFTD are scarce, and the number of cytokines measured in these studies small. The present 
study is the first to directly compare the serum and brain levels of a comprehensive range of cytokines in bvFTD. 
The side-by-side assessment of serum and brain cytokine concentrations allowed the identification of common 
cytokines that are altered in both the blood and brain. The relative ease of serum collection over that of CSF 
makes these cytokines good candidates for neuroinflammation biomarkers. In addition, the grouping of func-
tionally similar cytokines enabled the identification of novel neuroinflammation pathways that could contribute 
to the pathogenesis of bvFTD.

In agreement with previous studies, this study also showed cytokine level changes in serum and brain of 
bvFTD patients compared to those of healthy controls. In the serum, the concentrations of four cytokines, 
IL-2Rα, IP-10, MIP-1α and SCGF-BB, were elevated in bvFTD compared to controls, while GRO-α, IFN-α2, 
IL-18, MCP-1, MIP-1β and PDGF-BB have shown time-dependent increase in serum concentration with dis-
ease progression. Of note, GRO-α and IL-18 levels were also increased in bvFTD brain, in addition to HGF and 
IL-16. The fact that both bvFTD brain and serum have elevated levels of GRO-α and IL-18 suggests that these 

β-N
GF

Bas
ic 

FGF

CTACK

Eota
xin

G-C
SF

GM-C
SF

GRO-α
HGF

IFNα2
IFNγ

IL1
2 (

p7
0)

IL1
3

IL1
7

IL1
8

IL1
α

IL1
β

IL1
rα IL2 IL2

rα IL3
0

500

1000

1500

C
yt

ok
in

e 
(p

g/
m

L) Con
FTD

IL4 IL6 IL7 IL8 IL9 IP10 LIF

M-C
SF

MCP1
MIF

MIG

MIP-1α

MIP-1β

PDGF-B
B

RANTES
SCF

SCGF-B
B

SDF-1α
TNFα

TNFβ
TRAIL

0

50000

100000

150000

200000
C

yt
ok

in
e 

(p
g/

m
L) Con

FTD

*

*

****
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two cytokines are involved in pathways crucial in the pathogenesis of bvFTD. Principle component analysis on 
brain cytokines levels have placed GRO-α and IL-18 in the group 2 of brain cytokines (Table 4), suggesting that 
these two cytokines are functionally related in bvFTD brain. IL-18 and GRO-α (also known as CXCL1) are both 
pro-inflammatory cytokines. IL-18 is involved in the activation of mast cells and CD8 + T cells, production of 
IFN-γ and Th2 cytokines and inducing innate-type allergic  inflammation70 while GRO-α binds to its receptor 
CXCR2 to promote neutrophil recruitment and activation at the site of infection. In addition, both cytokines 
are involved in NLRP3 inflammasome pathways. While IL-18 release is mediated by the NLRP3 inflammasome 
activation, which recruits caspases-1 to cleave IL-18 pro-peptide to active IL-1871,72, GRO-α has been shown to 
promote the activation of NLRP3  inflammasome73. Although dysregulation of these two cytokines were unknown 
in bvFTD, an increase in IL-1874,75 and GRO-α76 have been reported in other neurodegenerative  diseases77,78.
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Apart from IL-18 and GRO-α, the second components of variance for brain cytokines (Group 2) also con-
tained HGF, M-CSF, MIF, FGF basic, IL-16 and SCGF-β. Of note, GRO-α, HGF, IL-16 and IL-18 levels were all 
altered (Fig. 3), which is suggestive of their significant physiological roles in bvFTD brain. Apart from SCGF-
β—a recently discovered protein for which very little is known–the other cytokines in the clusters are involved 
in the NLRP3 inflammasome pathway. FGF has been shown to upregulate the NLRP3  inflammasome79, while 
MIF is required for NLRP3  activation80. Interestingly, HGF is known to inhibit the NFκB  pathway81 leading to 
non-expression of RANTES, MCP-1, IL-1β, TNF-α, IL-1 and IL-681. Significantly, the NFκB pathway is known 
to activate the NLRP3  inflammasome82. On the other hand, M-CSF have been shown to activate NFκB83. Thus, 
the cytokines clustered in group 2 of brain cytokines are involved in the NLRP3 inflammasome pathway, either 
directly or through the NFκB pathway, thus underscoring the importance of NLRP3 inflammasome in the etiol-
ogy of bvFTD.

The significance of the NFκB pathway in the pathogenesis of FTD was further confirmed by results emerged 
from the principal component analyses, in which cytokines from the first component of variance for brain 
cytokines, group 1 (Table 4), are all related to the NFκB signaling pathway, either as NFκB regulators and/
or downstream effectors of the NFκB pathway. IL-2R α, IFNγ, TNFα, IL-2, IL-17A, IL-4, IL-1α, TNF-β, IFN-
α2, IL-13, IL-12 (p70), SDF-1α, G-CSF, PDGF-BB, β-NGF, IL-15, IL-1β are all activators of NFκB84–102, while 
IL-9, IL-10 and IL-13 are reported to suppress NFκB103–105. In turn, some of these cytokines are activated by 
NFκB: TNF-α, IL-3, IL-8, MIP-1β, eotaxin, IL-6 and GM-CSF, MIP-1α106–111. In addition, LIF, SCF, IL-7 MCP-
3, MIG, VEGF and IL-12 (p40) are regulated by the NFκB  pathway112–117. Moreover, several of these cytokines 
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Figure 3.  Serum interferons, growth factors and colony stimulating factors levels in year 1 and year 2 of bvFTD 
and control cases. Serum samples collected from year 1 and year 2 of FTD (20 samples) and control cases (20 
samples) were quantified and the levels of from each year were grouped for control and bvFTD cases. The results 
for (A) interferons and (B) growth factors and colony stimulating factors were shown here. White bars show 
results from year 1 and light grey are results from year 2. Data represent mean and SE as error bars, *P < 0.05, 
**P < 0.01, ***P < 0.001.
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also have a direct link to the NLRP3 inflammasome: the secretion of IL-1α and β are mediated by the NLRP3 
 inflammasome54, while IL-4 is reported to inhibit inflammasome  assembly118 and SDF-1α inhibits inflamma-
some  activation119,120. Notably, cytokines from the entire first components of variance for serum (Group 1), 
β-NGF, TNFα, G-CSF, IL-1α, IL-2, IL-4, IL-8, IL-3, MIP-1β, IL-9, IL-17A, and IL-7, are all present in the first 
component of variance for brain cytokines, again confirming the prominence of the NFκB pathway in the eti-
ology of bvFTD. The second component for serum cytokines only consisted of one cytokine, RANTES, and it 
is also regulated by NFκB121. Of note, some of the above cytokines are also responsible for regulation of other 
cytokines. For example, IL-15 induces IL-8  production100, SDF1-α upregulates IL-6122 and GM-CSF signaling 
increases IL-1  production123, implying secondary regulatory mechanisms within these cytokines. Thus, the cur-
rent study showed that significantly altered cytokines in bvFTD are all part of an intricate network that revolves 
around the NLRP3 inflammasome, either directly or via the NFκB pathway.

Activation of the NLRP3 inflammasome has been associated with neurodegenerative  diseases124–126, including 
 FTD55. Indeed, amyloid-β and α-synuclein were reported to induce NLRP3 inflammasome activation in Alzhei-
mer’s58,59,127 and Parkinson’s60 disease, respectively. In addition, mutant SOD1 and TDP-43 proteins have also been 
reported to activate NLRP3  inflammasome128 while aggregated  tau56 and TDP-4357,129 are also known to activate 
NLRP3 inflammasome. Interestingly, a recent study implicated NLRP3 inflammasome activation in driving tau 
 pathology55. Indeed, inflammasome inhibitors have been shown to inhibit α-synuclein  pathology130 and reduce 
amyloid-β  accumulation131 in mouse models. Unsurprisingly, there is increasing interest in using NLRP3 inflam-
masome inhibitors as a therapeutic target for neurodegenerative  diseases132–134. Pilot studies using inhibitors of 
NLRP3 in mouse models of neurodegenerative diseases have proved this approach  effective130,131,135–138. In an 
FTD mouse model, the inflammasome inhibitor MCC950 improves inflammation and endoplasmic reticular 
stress signaling, in addition to partially normalizing the levels of phosphorylated  tau139.

Taken together, the current study has revealed evidence of cytokine dysregulation in bvFTD serum and brain. 
In particular, the levels of IL-18 and GRO-α appear to be changed in both serum and brain of bvFTD patients, 
making these two cytokines possible inflammation biomarkers for bvFTD. Interestingly, these two cytokines are 
both involved in the NLRP3 inflammasome pathway, which has been associated with other neurodegenerative 
diseases. Furthermore, principal component analysis performed on serum and brain cytokines have revealed 
that all significantly altered cytokines are associated with the NLRP3 inflammasome and/or the NFκB pathway, 
which is a known activator for the NLRP3 inflammasome. Thus, our data show that NLRP3 inflammasome 
signaling occurs early in the pathogenesis of bvFTD. Given the recent interest in using NLRP3 inflammasome 
inhibitors as therapeutics against neurodegenerative diseases, and the promising outcomes of these molecules 
in mouse models, a better understanding on the role of cytokines in NLRP3 inflammasome activation could 
provide valuable insights into the pathogenesis of bvFTD and its diagnosis and treatment.
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Figure 5.  Chemokines and interleukins levels in early and late bvFTD brains compared to control cases. 
Cytokine levels in the frontal cortex of FTD (10 samples) and control cases (10 samples) were quantified and 
the bvFTD cases were further separated into early cases (5 cases) and late cases (5 cases). The results for (A) 
chemokines and (B) Interleukins were shown here. White bars show results from year 1 and light grey are results 
from year 2. Data represent mean and SE as error bars, *P < 0.05, **P < 0.01, ***P < 0.001.
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Conclusions
In conclusion, our results showed that cytokine dysregulation is evident in bvFTD brain and serum. Importantly, 
GRO-α and IL-18 appear to be increased in both serum and brain in bvFTD, making them possible candidates as 
neuroinflammation biomarkers for bvFTD. The cytokines that are altered in bvFTD serum and/or brain are all 
related to NLRP3 inflammasome activation or NFκB pathway, which regulates NLRP3. These results therefore 
suggest that the NLRP3 inflammasome could be important in bvFTD pathogenesis.
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Figure 6.  Interferons, growth factors and colony stimulating factors levels in early and late bvFTD brains 
compared to control cases. Cytokine levels in the frontal cortex of FTD (10 samples) and control cases (10 
samples) were quantified and the bvFTD cases were further separated into early cases (5 cases) and late cases (5 
cases). The results for (A) interferons and (B) growth factors and colony stimulating factors were shown here. 
White bars show results from year 1 and light grey are results from year 2. Data represent mean and SE as error 
bars, *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 7.  Principal components Analysis (PCA) on significantly altered cytokines in (A) serum and (B) 
brain. PCA were performed to determine whether cytokines with significantly altered levels in FTD samples 
were clustering in the same group of variance. To be considered significant, cytokines required a loading score 
of > 0.7 and to be responsible for > 10% of variance. PCA on (A) serum and (B) brain datasets both reveal 
two components of variance. Cytokines in component 1 are represented by blue circles while cytokines in 
component 2 are represented by red circles (component 2).

Table 3.  Cytokines related to largest component of variance in bvFTD and control serum.

Cytokine Loading score

Group 1

 β-NGF 0.901

 TNF-α 0.863

 G-CSF 0.860

 IL-1α 0.848

 IL-2 0.837

 IL-4 0.820

 IL-8 0.813

 IL-3 0.784

 MIP-1β 0.737

 IL-9 0.729

 IFN-α2 0.722

 IL-17A 0.715

 IL-7 0.714

Group 2

 RANTES 0.737
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Data availability
All relevant data are available from the corresponding author upon reasonable request. Other patient data cannot 
be made publicly available because the ethical approval and the informed consent from the patients included in 
this study did not cover placing the data into publicly open repositories.
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