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Predicting body mass index in early 
childhood using data from the first 
1000 days
Erika R. Cheng 1*, Ahmet Yahya Cengiz 2 & Zina Ben Miled 3,4

Few existing efforts to predict childhood obesity have included risk factors across the prenatal and 
early infancy periods, despite evidence that the first 1000 days is critical for obesity prevention. In this 
study, we employed machine learning techniques to understand the influence of factors in the first 
1000 days on body mass index (BMI) values during childhood. We used LASSO regression to identify 13 
features in addition to historical weight, height, and BMI that were relevant to childhood obesity. We 
then developed prediction models based on support vector regression with fivefold cross validation, 
estimating BMI for three time periods: 30–36 (N = 4204), 36–42 (N = 4130), and 42–48 (N = 2880) 
months. Our models were developed using 80% of the patients from each period. When tested on the 
remaining 20% of the patients, the models predicted children’s BMI with high accuracy (mean average 
error [standard deviation] = 0.96[0.02] at 30–36 months, 0.98 [0.03] at 36–42 months, and 1.00 [0.02] 
at 42–48 months) and can be used to support clinical and public health efforts focused on obesity 
prevention in early life.

Abbreviations
BMI  Body Mass Index
CHICA  The child health improvement through computer automation system
EHR  Electronic health record
LASSO  Least absolute shrinkage and selection operator
SVR  Support vector regression
RBF  Radial basis function
WIC  Special supplemental nutrition program for women, infants, and children
MAE  Mean average error
CI  Confidence interval

The prevalence of overweight and obesity in the United States has increased dramatically during the past 40  years1. 
As of 2016, 39.8% of US adults and 20.6% of US adolescents had obesity, with a significantly higher prevalence 
among underserved  populations2. Furthermore, while previously uncommon in young children, overweight 
and obesity now affect over 40 million children under the age of 5, an epidemic that is apparent  worldwide3,4. In 
children, early obesity and excess weight gain not only predict later obesity and cardio-metabolic risk, but also 
serious morbidity within  childhood5–12. Unfortunately, once obesity is established it is likely to  persist13–15 and 
notoriously difficult to  treat16–19. In light of these facts, there has been increasing focus on prevention as holding 
the most promise for addressing the obesity  epidemic20.

The “first 1000 days” from conception until the end of the second year of life are recognized as a critical period 
for obesity prevention as this time frame offers both greater developmental plasticity and opportunity to impact 
obesogenic behaviors before they are  established21. Identifying children at a young age who carry the greatest 
risk for obesity could therefore significantly improve prevention  efforts22. A number of potentially modifiable 
risk factors during this timeframe have been identified, including higher maternal pre-pregnancy body mass 
index (BMI), maternal excess gestational weight gain, high infant birth weight, low socioeconomic status, and 
neighborhood-level factors (e.g., food availability, crime)23. But little is known about the predictive performance 
of such factors when considered jointly, as few existing population-based datasets contain socio-demographic 
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data alongside measured heights and weights across pregnancy and early childhood, and birth cohorts do not 
always capture maternal data.

Machine learning (ML) is increasingly recognized as useful for preventive  care24 and has the potential to 
identify patients with increased risk, enabling early intervention. One benefit to ML techniques is the ability to 
examine how risk factors across multiple life course periods (e.g., prenatal and early life) and settings (e.g., home 
and neighborhood) interact to affect childhood obesity risk. Although a number of studies have applied ML to 
predict obesity in early  childhood25,26, most are derived from non-US cohorts, focus on identifying predictors 
of obesity after birth, and/or rely exclusively on clinical data. Gaining a better delineation of intergenerational 
and social predictors of obesity risk in the first 1000 days is important for the prevention of obesity and could 
have downstream effects on mitigating the obesity epidemic as a whole.

We used ML technology to understand the influence of factors in the first 1000 days on BMI values during 
childhood and to develop a prediction model that can be applied during infancy for the early identification of 
obesity risk.

Methods
The proposed model was developed using a multi-stage process as summarized in Fig. 1, including: (1) raw data 
collection and integration; (2) data preprocessing; (3) feature engineering; and (4) model training and valida-
tion as described below.

Raw data collection and integration. We extracted a subset of data from the Obesity Prediction in 
Early Life (OPEL) database, a longitudinal, EHR-based data repository that combines birth certificate, con-
textual-level, and health outcome data for 19,857 children born in Marion County, Indiana between 2004 and 
2019. Linked data in the OPEL database are from three independent sources: (1) the Child Health Improvement 
through Computer Automation (CHICA) system, an electronic health record (EHR) and pediatric clinical deci-
sion support system that operated in 8 primary care clinics in Indianapolis between 2004 and  201927; (2) the 
Indiana Standard Certificate of Live Birth (i.e., ‘birth certificate’), which was made available from the Marion 
County Public Health Department; and (3) the Social Assets and Vulnerabilities Indicators (SAVI) Project, a 
geocoded data  repository28. Additional details of the independent data sources that comprise the OPEL database 
are described  elsewhere29. Institutional Review Board approval for the OPEL data linkage and related analyses 
was obtained from the Indiana University School of Medicine. This study complies with all relevant ethical 
regulations and its protocols were approved by the Indiana University School of Medicine Institutional Review 

Figure 1.  Feature reduction and data augmentation steps.
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Board. Informed consent was waived for this retrospective study as the data were already collected. We did not 
generate any new data for this study.

Data preprocessing. The OPEL database contained 149,625 clinical encounters for 19,724 unique patients 
ages 0–48 months (Fig.  1). We performed data preprocessing to remove erroneous and implausible records, 
impute missing values, and scale numerical exposure variables to a range of [0, 1] (Fig. 2).

We set upper and lower limits for height and weight for each encounter using CDC growth  charts30, categoriz-
ing values greater to or equal than three standard deviations from the mean as input error. We excluded records 
with erroneous height and weight since these variables were used to compute our outcome variable (BMI).

The available exposure variables were grouped into three categories for the purpose of imputation: mean 
imputation, historical imputation, and no imputation. Mean imputation was used for ordinal numerical vari-
ables such as weight, height, mother age, father age etc. For this group of variables, the missing value is replaced 
with the average of the values for the same variable from the nearest previous and next encounters. Historical 
imputation was used for variables that represent assessment results such as motor skills, as we assumed that in 
most cases, the previous assessment result was still valid unless otherwise indicated. We did not perform impu-
tation for the remaining variables including whether the child has seen a dentist or had a recent oral exam, as 
imputation for these variables would not be meaningful.

Feature engineering. The integrated dataset consisted of 269 variables (Fig. 1). Several of these variables 
were sparse and did not have sufficient data. Most of the sparse variables belonged to the no imputation group, 
but some were still sparse after imputation because a large number of the patients did not have values for these 
variables. In addition, some of the variables were duplicate. Eliminating sparse and duplicate variables resulted 
into 50 well-populated variables. We then applied least absolute shrinkage and selection operator (LASSO) 
regression and selected 18 features with the highest coefficients. We used the Q-Q plot to check for  normality31. 
Subsequently, we conducted univariate T-tests and reduced the feature space to 13 features with p-values < 0.05. 
In addition to reducing the feature space, we used the T-test was to confirm that the initial cut-off threshold 
adopted in the LASSO selection captured all important features. The Wilcoxon Rank-Sum test was also con-
sidered as an alternative to the T-test given that both LASSO and T-test are both parametric statistical methods 
whereas the Wilcoxon Rank-Sum is non-parametric. However, since the dataset consists of a large number of 
samples, and the data processing step removed gross errors, the T-test is asymptotically valid and was  preferred32.

The above group of features were directly obtained from the raw data. Following peer-reviewed literature 
on early life obesity risk (e.g., Ref.23), we augmented the feature space with a set of historical exposure variables 
derived from the patient’s weight, height and BMI at different time periods. The patients’ encounters were aggre-
gated over three history periods: 0–8 months, 8–16 months, and 16–24 months of age. Patients without at least 
one clinical encounter in all three periods were excluded. For these patients, the proposed model would not 
have sufficient data to make any prediction. Moreover, this requirement is in line with clinical practice which 
recommends that children below the age of 24 months have at least one visit very 6  months33.

For each historical period, the mean height, mean weight, and mean BMI was calculated and added as separate 
exposure variables. In addition, the difference in patient age (in weeks) during each of these periods and the 
last clinical encounter recorded for the patient prior to 24 months of age were also obtained. These variables are 
used to temporally anchor the weight, height and BMI values from different historical period. Independently, 
the height, weight, BMI, height percentile, and weight percentile at 24 months (the end of the historical period) 

19,857 patients with 19,2470 clinical encounters 
included in the OPEL Database

Excluded: 133 patients with 
implausible height/weight data and 
no data between 0 to 48 months

19,724 patients and 149,625 encounters

Excluded: 9,376 patients with <1 
encounter in each history period (0-8, 

8-16, and 16-24 months)

10,348 patients included in final analyses:

4,204 aged 30-36 months (5,023 total encounters)
4,130 aged 36-42 months (4,965 total encounters)
2,880 aged 42-48 months (3,397 total encounters)

Figure 2.  Participant flow.
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were also added as exposure variables. In summary, 19 features were added as the result of the above data aug-
mentation procedure (Fig. 1). They consisted of:

• Mean height, weight and BMI during the periods 0–8, 8–16 and 26–24 months (9 variables).
• Historical time difference (in weeks) between the last encounter within three periods (0–8, 8–16, and 

16–24 months) and the last encounter prior to 24 months (3 variables).
• Mean height, weight, BMI, height percentile, weight percentile and age at 24 months (6 variables).
• Prediction time difference (in weeks) between the last encounter prior to 24 months and the target encounter 

during one of the prediction horizon periods, as described next (1 variable).

Since the proposed model relies on a supervised learning methodology, outcome variables representing actual 
BMI values at each target encounter are needed for training as well as validation of the models. Moreover, to 
investigate the effect of the prediction horizon on the accuracy of the BMI value prediction, three prediction 
periods were considered: between 30 and 36 months, between 36 and 42 months, and between 42 and 48 months 
of age. It should be noted that the first prediction period has a gap of 6 months compared to the last historical 
period ending at 24 months. Sample records are constructed for each patient encounter within the prediction 
time periods. If there were multiple encounters for the same patient during any of the prediction periods, most 
of the exposure variables will be the same since they were collected prior to 24 months. The exception is the 
prediction time difference exposure variable mentioned above which indicates that the target BMI value is for a 
different patient’s age within the prediction horizon.

Model training and validation. For each patient, the encounters were split by patient age, creating a his-
tory dataset (i.e., before 24 months of age) and a prediction dataset (i.e., after 24 months of age). Our outcome 
of interest was BMI according to patient age, in months, and sex, as defined by the Center for Disease Con-
trol and Prevention (CDC)  guidelines30. We developed three models using the historical dataset, which con-
tained data from the first 1000 days, to predict BMI at various ages: between ages 30–36 months, between ages 
36–42 months, and between 42 and 48 months. All three models used the same feature values with the exception 
of the prediction time difference.

For all three models, we split the data into train (80% of the data) and validation (20% of the data) datasets for 
each fold of the fivefold cross validation. The split was performed at the patient level to ensure that patients did 
not participate in both training and validation. A random split based on geographic location was also considered; 
however, the data available was not sufficient.

All models were trained using support vector regression (SVR)34 with fivefold cross validation and a radial 
basis function (RBF) kernel. The model parameters gamma (the radial basis function variance) and C (margin) 
were optimized using the grid search technique over five values for each of the two parameters. The best models 
were obtained when gamma = 0.0001 and C = 1000. These parameters defined a SVR with a narrow margin and 
a high penalty for samples within the margin. The SVR transformation kernel is non-linear, therefore the coef-
ficients of the regression in the model architecture are not directly related to the exposure variables. That said, 
the parameters described above, the list of exposure variables, and the training methodology completely define 
the proposed models.

We selected SVR due to its efficiency, simplicity, and ability to predict BMI trajectories. This machine learn-
ing technique in combination with the added temporal variables obtained from the data augmentation process 
enabled the models to use not only the instantaneous values of the exposure variables but also the progression 
of these variables over the patient’s history (e.g., mean weight during 0–8, 8–16 and 16–24 months).

Finally, once the models were trained with the 13 features extracted from the original dataset and the 19 
features obtained from the augmentation process, we compared predicted patient BMI values generated by each 
of the models to patient BMIs recorded in the EHR for the three prediction horizons. This validation procedure 
is similar to the procedure needed to apply the models to new patients. First, the values of the exposure vari-
ables for each new patient have to be collected for the three observations periods 0–8 months, 8–16 months and 
16–24 months. Second, the desired prediction horizon has to be selected (i.e., 30–36 months, 36–42 months, or 
42–48 months) and the corresponding model is then used to compute the BMI for the selected horizon using 
the historical input data collected for the patient. Each model is an estimator of the BMI function. This estima-
tor consists of a set of support vectors (i.e., a subset of the training samples), a kernel, and Lagrange multipliers 
which optimally represent the training data. In this study, the RBF kernel was selected. The vector of exposure 
variables for the new patient is transformed using RBF. The dot product of the resulting vector and the RBF 
of each of the support vector is then computed. Finally, each dot product is multiplied by the corresponding 
Lagrange multiplier and all are summed to produce the estimated BMI for the patient.

Ethics declarations. Institutional Review Board approval for the OPEL data linkage and related analyses 
was obtained from the Indiana University School of Medicine. All methods were carried out in accordance with 
relevant guidelines and regulations.

Results
Figure 3 presents a correlation heatmap between the predictors included in the final models and Table 1 presents 
the correlations of the predictors with mean child BMI across the three prediction ranges. Table 1 reveals that 
most of the exposure variables in our model showed a significant correlation with child BMI across all three 
predictor ranges. For some of the variables (e.g., whether or not the child has ever been enrolled in WIC; whether 
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Figure 3.  Correlation heatmap between the predictors included in the final models.

Table 1.  List of top exposure variables from the raw data identified by LASSO and corresponding p-values 
for average BMI values for each prediction period obtained from univariate T-tests. The split criterion for 
each variable is indicated in the first column and the percentage of patients in each group is shown () below 
each p-value. The second column describes whether the variable is predictive, protective or inconclusive of an 
increase in BMI. The variables with inconclusive t-tests were excluded from the model (bottom 5 rows of the 
table). Numerical variables are indicated with *. All other variables are categorical.

Top LASSO variables Relationship to BMI

Prediction age (months)

30–36 36–42 42–48

Total number of patients 4204 4130 2880

Selected features

 Child sex: male vs. female Predictive < 0.01 (51%/49%) < 0.01 (52%/48%) < 0.01 (53%/47%)

Hispanic ethnicity: yes vs. no

 Child Predictive < 0.01 (47%/53%) < 0.01 (50%/50%) < 0.01 (46%/54%)

 Mother Predictive < 0.01 (45%/55%) < 0.01 (48%/52%) < 0.01 (45%/55%)

 Father Predictive < 0.01 (64%/36%) < 0.01 (66%/34%) < 0.01 (63%/37%)

Method of delivery: cesarean/vaginal Predictive < 0.01 (28%/72%) < 0.01 (27%/73%) 0.03 (28%/72%)

Parent’s preferred language: Spanish/English Predictive < 0.01 (35%/65%) < 0.01 (37%/63%) < 0.01 (35%/65%)

Maternal risk factors during pregnancy: Any/None Predictive < 0.01 (40%/60%) < 0.01 (41%/59%) 0.02 (43%/57%)

*Child’s birthweight (g): > 4000 vs. ≤ 4000 Predictive < 0.01 (11%/89%) < 0.01 (10%/90%) < 0.01 (12%/88%)

*Mother’s age when the child was born (years): > 30 
vs. ≤ 30 Predictive < 0.01 (28%/72%) < 0.01 (28%/72%) < 0.01 (27%/73%)

*Percent of population living in a food desert: 
mean < 32% Protective 0.01 (27%/73%) < 0.01 (28%/72%) 0.01 (27%/73%)

Whether the child has a developmental delay
 Suspected delay/typical development Inconclusive 0.69 (16%/78%) 0.87 (17%/79%) 0.85 (13%/80%)

 Diagnosed/suspected delay Predictive 0.31 (6%/16%) 0.54 (4%/17%) 0.03 (7%/13%)

The child has ever been enrolled in WIC: Y/N Predictive 0.19 (84%/16%) 0.08 (85%/15%) 0.03 (86%/14%)

Child wakes up at night and needs help going back 
to sleep: Y/N Predictive 0.02 (70%/30%) < 0.01 (66%/34%) < 0.01 (63%/37%)

Excluded features

 The parent thinks the child has a sleeping problem: 
Y/N Inconclusive 0.76 (10%/90%) 0.97 (10%/90%) 0.82 (11%/89%)

 Parent is confident completing health forms: Y/N Inconclusive 0.61 (6%/94%) 0.61 (6%/94%) 0.19 (6%/94%)

 Parent is at risk for low health literacy: Y/N Inconclusive 0.11 (47%/53%) 0.47 (51%/49%) 0.82 (46%/54%)

 Parent reports doors at home are secure (e.g., child 
safety): Y/N Inconclusive 0.42 (6%/94%) 0.81 (6%/94%) 0.92 (6%/94%)

*Child’s blood lead level: > 10 mg/dl vs. ≤ 10 mg/dl Inconclusive 0.15 (8%/92%) 0.94 (8%/92%) 0.49 (9%/91%)
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or not the child had been diagnosed with a developmental delay; or whether the child wakes up at night and 
needs help going back to sleep), the correlation became more important at later prediction ages; whereas for 
others, the correlation appeared to be equally important for all three prediction ages (e.g., percent of population 
living in a food desert).

Table 1 also shows that children with higher birthweights, whose mothers were older than 30 years of age at 
delivery or who had any medical risk factors during pregnancy (e.g., a flag for any one of the 13 possible medical 
risk factors reported on the birth certificate, including antiretroviral therapy, gestational diabetes, pre-pregnancy/
chronic diabetes, and eclampsia), with parents of Hispanic ethnicity, and who experienced nighttime wakings 
and needed help going back to sleep had higher average BMIs across all three prediction ranges. Conversely, 
living in a food desert was protective of BMI. All of these variables, regardless of whether they had a significant 
correlation with average BMI during early, late, or all prediction age ranges were retained as input features in 
the proposed model.

Variables that did not show significant correlations with child BMI were not retained in the proposed predic-
tion model. These variables, listed at the bottom of Table 1, included those assessing whether parents believe their 
child had a sleeping problem, parental health literacy, safety at home, and child blood lead level. Thus, from the 
initial 19 variables identified using Lasso, we retained 13 based on the results of the T-tests.

In addition to the variables that were directly derived from the OPEL database discussed above, we included 
child sex and several history variables derived from children’s weight and height (Fig. 1). These included height, 
weight, and BMI at the end of the history period (i.e., 24 months), as well as average height, weight, and BMI 
over three stratas of the history period (0–8, 8–16 and 16–24 months). We preformed the T-test for each of these 
derived variables over the three prediction age ranges with the mean value of the variable as the split value to 
confirm their predictive potential. For the sex variable, the split was performed based on male versus female. 
The p-values (Table 2) indicate that each of these variables had a significant, positive correlation with the child’s 
average BMI. A noted exception is the relationship between the average height in the history period between 0 
to 8 months, for which the correlation with child average BMI between 42 and 48 months was not statistically 
significant.

We observed significant missing data and attrition, both in terms of patients who did not have data from 
enough encounters in the history dataset, and patients with sufficient history data who did not have any recorded 
encounters in the prediction dataset. Figure 2 presents the number of unique patients who had at least one clinical 
encounter recorded within each of the history periods and one clinical encounter for each respective prediction 
period (i.e., every 6 months). This is consistent with clinical recommendations for pediatric well child  visits35.

Table 3 shows the performance of the three models for each prediction period, reported as the mean average 
error (MAE), its standard deviation, and the 95% confidence interval (CI) over the fivefold cross-validation. 
The results in Table 3 indicate that the models are able to predict the BMI of each patient with a high level of 
accuracy and a narrow confidence interval. Deviations between the predicted and actual BMI values increase 
with increasing prediction horizons.

Table 2.  List of historical exposure variables obtained from data augmentation and derived from the height, 
weight and BMI of the patient. All the variables are continuous. Table shows p-values for average BMI values 
for each prediction period using univariate T-tests. The mean value was used for the cohort split for all 
variables. The number of patients for each time period is shown in the first row and the percentage of patients 
in each group is shown below the p-value.

Prediction age, months

30–36 36–42 42–48

Number of patients 4204 4130 2880

Height

 At 24 months < 0.01 (50%/50%) < 0.01 (51%/49%) < 0.01 (50%/50%)

 Percentile, 24 months < 0.01 (51%/49%) < 0.01 (51%/49%) < 0.01 (50%/50%)

 Mean, 0–8 months < 0.01 (54%/46%) < 0.01 (52%/48%) 0.12 (50%/50%)

 Mean, 8–16 months < 0.01 (52%/48%) < 0.01 (52%/48%) < 0.01 (51%/49%)

 Mean, 16–24 months < 0.01 (49%/51%) < 0.01 (49%/51%) < 0.01 (49%/51%)

Weight

 At 24 months < 0.01 (54%/46%) < 0.01 (54%/46%) < 0.01 (55%/45%)

 Percentile, 24 months < 0.01 (51%/49%) < 0.01 (50%/50%) < 0.01 (51%/49%)

 Mean, 0–8 months < 0.01 (49%/51%) < 0.01 (49%/51%) < 0.01 (48%/52%)

 Mean, 8–16 months < 0.01 (50%/50%) < 0.01 (50%/50%) < 0.01 (52%/48%)

 Mean, 16–24 months < 0.01 (53%/47%) < 0.01 (52%/48%) < 0.01 (52%/48%)

BMI

 At 24 months < 0.01 (53%/47%) < 0.01 (53%/47%) < 0.01 (53%/47%)

 Mean, 0–8 months < 0.01 (53%/47%) < 0.01 (53%/47%) < 0.01 (51%/49%)

 Mean, 8–16 months < 0.01 (53%/47%) < 0.01 (53%/47%) < 0.01 (50%/50%)

 Mean, 16–24 months < 0.01 (53%/47%) < 0.01 (53%/47%) < 0.01 (52%/48%)
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Figure 4 displays the predicted BMIs generated by each of the models (i.e., at 30–36 months, 36–42 months, 
and 42–48 months) and the recorded BMI values during the same time period for a random sample of 50 patients. 
These figures indicate that the models accurately tracked BMI values for each patient. Figure 5 displays the BMI 
trajectories predicted by our models for a random sample of 5 patients over the three prediction periods. The 
models were able to accurately predict both upward and downward changes in BMI.

Discussion
Despite epidemiological evidence of modifiable risk factors for obesity and calls for early intervention, few 
existing obesity prevention trials focus on children younger than 5 years  old19,36. In this study, we used machine 
learning algorithms to identify children with high risk for developing obesity that could be targeted for inter-
vention. Using LASSO and support vector regression, we predicted children’s BMI between ages two and four 
using factors from the first 1000 days that were available in a unique, longitudinal, population-based dataset that 
combines EHR, birth certificate, and geocoded data.

Our models have relevance for clinical and public health efforts to prevent unhealthy weight gain and obe-
sity in early childhood. First, unlike other models that predict children’s BMI or weight thresholds at a single 
point in time, our models predict BMI in three future 6 month intervals (i.e., 30–36 months, 36–42 months, 
and 42–48 months). This may be beneficial from a clinical perspective, as it would enable pediatric providers to 
observe potential BMI increases over an extended period. As such, health care providers could use the models 
to design intervention plans that address modifiable risk factors more applicable to different age groups.

Another added benefit to providing health care providers with estimated future BMI values is that it might aid 
in discussions about preventive measures to reduce children’s obesity risk. The American Academy of Pediatrics 
(AAP) recommends measuring BMI and screening for obesity-related comorbidities as part of routine primary 
care beginning at age two, but research indicates that  parents37 and  providers38,39 often avoid the subject. In turn, 
parents who have inaccurate perceptions of their child’s obesity risk are more likely to ignore appropriate health 
 messages40. Anticipatory guidance around obesity is not part of standard care prior to age two, despite evidence 
of modifiable risk  factors23. One reason why obesity counseling in infancy may be challenging is because parents 
may be unaware of the importance of prevention. A dynamic, predictive BMI tracker, like the one we propose 
here, could alert providers of children with high risk of developing obesity prior to the onset of unhealthy weight, 
and help frame conversations about obesity prevention and risk. This may be more effective in prompting behav-
ioral change than evaluating and counseling based on risk factors alone, as other work shows that that patients’ 
understanding of their own risk is a key first step in the process of behavior  change41.

The present study also highlights the importance of several risk factors for increased BMI in the first 
1000 days. Consistent with epidemiological  research23,42, we identified several potentially modifiable factors 
associated with higher child BMI in both the prenatal and early infancy periods, including maternal risk fac-
tors during pregnancy, cesarean delivery, higher infant birthweights, and whether the child wakes up at night 
and needs help falling back asleep. Other factors, like the percentage of the population living in a food desert, 
were protective of increased BMI, which conflicts with  some43, but not all, published  literature44,45. It is possible 
that our food desert variable was confounded by other, unmeasured factors. Children’s address data were also 
extracted from the birth certificate, so we were unable to account for residential movement. In addition, while 
many markers of socioeconomic risk, including Hispanic ethnicity, Spanish parent language preference, and 
being enrolled in WIC were also predictive of higher BMIs, others, like low health literacy and children’s blood 
lead levels, were not associated with a significant increase in BMI. While our model and methods should be tested 
in other populations, our analysis provides important proof of concept that children’s BMI trajectories can be 
predicted by modifiable risk factors in early life and thus lend support to efforts to intervene prior to the onset 
of unhealthy weight gain. Our model supports other research suggesting that improving women’s health during 
pregnancy, improving children’s sleep, and alleviating socioeconomic risk may have important downstream 
impacts on children’s weight trajectories in later  childhood23.

Our study addresses several limitations of existing studies focused on using machine learning to predict 
obesity in early childhood. First, most previous models of childhood obesity risk focus their prediction horizons 
after age five. Our models could provide health care providers with BMI values over three consecutive prediction 
periods between 2 and 4 years of age, a critical window where interventions to prevent obesity may be more 
successful than those targeting weight loss in older populations. Second, existing models often classify patients 
according to a pre-specified threshold of obesity  risk46–48, which poses some limitations. For example, binary 
classifications of risk are not always explainable, and a slight deviation in the exposure variables may result in a 
sudden change in the outcome from at risk to no risk or vice-a-versa. By predicting BMI values, our proposed 
models consider the underlying growth trajectory for both weight and height instead of focusing only on the 
weight of the patient. Finally, the proposed models are cost-effective since they primarily depend on EHR data. 
We acknowledge that some of the sociodemographic variables available in CHICA are not routinely collected 

Table 3.  Model performance indicators for each prediction period.

Prediction period BMI, mean (SD) MAE (SD) 95% CI

30–36 months 16.8 (1.95) 0.96 (0.02) (0.93–1.06)

36–42 months 16.7 (1.93) 0.98 (0.03) (0.95–1.08)

42–48 months 16.6 (1.86) 1.00 (0.02) (0.94–1.10)
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as part of the clinical health record, and that EHR data typically contain information on maternal prenatal risk 
factors separately from risk factors during infancy and from measures of height and weight across childhood. 
However, the limited number of factors we identified can be easily collected from patients using existing screen-
ers, facilitating BMI prediction in real time. This is an improvement over existing models that rely on survey 
data, which may incur significant additional cost and have limited applicability to a wider pediatric population.

We observed a slight decrease in the accuracy of BMI prediction at older ages, such that predictions were more 
accurate for the 30–36 month prediction period compared with the 42–48 month period. This is expected since 
all three models use the same history period (0–24 months). We hypothesize that a significant improvement in 
the 36–42 months and 42–48 months prediction period models would have been observed if these models used 
more recent history data. Our history period was limited to 0–24 months in order to evaluate the importance of 

Figure 4.  Predicted and recorded BMI values for a sample of randomly selected patients (n = 50) at 
30–36 months, 36–42 months, and 42–48 months of age.
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risk factors in the first 1000 days and the potential for the models to predict future BMI within three 6 month 
intervals. As displayed in Table 3, we were able to achieve this with a high level of confidence. Future work should 
model a more granular trajectory of BMI across early childhood, which we were unable to do with our selected 
methods and available data.

Our study is subject to some limitations. First, maternal risk factors during pregnancy is a composite vari-
able flagging the presence of at least one of 13 possible medical conditions that appear on the birth certificate, 
including those with established relationships to childhood obesity (e.g., diabetes and gestational hypertensive 
disorders)49,50 and those that have been underexplored. We were unable to determine whether certain maternal 
risk factors influenced children’s BMIs more than others. Some of our data come from parental report, which may 
be subjective. Our study population, which is from a single county in central Indiana, is not necessarily repre-
sentative of broader populations. An external validation from a different population would be useful to confirm 
the generalizability of current findings. Future studies incorporating bigger cohorts from different populations 
would allow an assessment of the generalizability of the proposed models and could improve their performance.

Conclusion
In this study, we predicted with reasonable accuracy children’s BMI between ages two to four years using risk 
factors from the first 1000 days of life. By leveraging a linked dataset combining maternal and child data across 
prenatal and early life, we were able to highlight modifiable risk factors for increased BMI during these critical 
periods of the life course. While the proposed model is predictive rather than causal, several of the important 
predictive variables of the model align with findings from prior research which indicates that improving women’s 
health during pregnancy, improving children’s sleep, and alleviating socioeconomic risk may have important 
downstream impacts on children’s weight trajectories in later childhood. Moreover, by providing predicted 
BMI values, our models might also facilitate conversations between providers and parents about obesity risk 
and prevention in early life and enable clinicians to identify children with higher future obesity risk, enabling 
early intervention.

Data availability
The datasets used and/or analyzed during the current study and the associated models are available from the 
corresponding author upon reasonable request.
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