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A mechanistic interpretation 
of relativistic rigid body rotation
Stefan Catheline 

The starting point of this manuscript is classical rigid body rotation. As it is well known, it contradicts 
basis of relativity since infinite speed is reached at infinite distance from the rotation center O. In 
order to fix this problem, a phenomenological circle-based construction using Euclidian trigonometry 
is first described: the relativistic rigid body rotation. The physical Eulerian acceleration implied by 
this geometrical construction then sketches future links with Maxwell’s equation and Lense-Thirring 
effect. More importantly, relativistic rigid body rotation is shown to be compatible with Lorentz 
transformation and brings new geometrical interpretations of time and space intervals.

The departure point of the manuscript is the relativist description of a physical phenomenon that, like a sea 
serpent, repeatedly returned several times to question physicists: rigid body rotation. It was indeed omnipresent 
right at the beginning of modern sciences through, for example, vortex theories of René Descartes or William 
Kelvin. It was proposed to Albert Einstein by Kurt Gödel as a universe model. It was also the main support used 
by Lev Landau to introduce general relativity. However, rigid body rotation presents a big flaw of connection: at 
large enough distances, the speed can reach and overcome light speed. This difficulty can be avoided, and this 
is the main idea of the following developments. This forms the basis upon which this whole manuscript is built, 
through the consideration that among the three fields needed for its description, as the rigid body rotation −→ω  , 
the velocity −→v  , and the distance −→r 0 , this last has a special status: it does not curl. An intuitive phenomenological 
geometrical construction is proposed. In the first part, a mathematical description based on general Eulerian 
acceleration describes the underlying physics of the relativistic rigid body rotation. It further draws some pos-
sible links toward Maxwell’s equation and Lense-Thirring effect. In the last part, a careful geometrical analysis 
in relation with Lorentz transformation validates the origin of the name: relativistic rigid body rotation.

Theory
From the Euler relativistic equation to the Maxwell equations

The fields −→ω  , −→v  et −→r 0 are connected by the classical rigid body rotation:

The velocity thus curls around the rotation and describes a circle. Applying a vectorial product ∧−→r 0 to the 
previous equation allows to obtain the reciprocal equation:

This equation is the mechanical equivalent to Faraday induction in electricity: a velocity field give a vortex 
similar to “smoke ring”. Such a rotation field follows a closed loop along a circle. As far as the radius is concerned, 
it always joins these fields along a straight line without ever closing. Replacing this straight segment line −→r 0 by 
a segment circle −→r  , termed a ‘space circle’, is proposed in the rigid body rotation illustrated in Fig. 1. From now 
on, −→ω  , −→v  , and −→r  all follow circles. The asymmetry of these latter fields is fixed by bending space. The space 
segment circle is thus defined as:

The rotation angle 
−→
�  and solid rotation radius −→R  are defined by construction further in the paragraph. This 

represents the first postulate of the theory: straight lines do not exist, as physical trajectories are necessarily 
circular, and thus they obey the rotation: −→ω >

−→
0 .

(1)�v = �ω ∧ �r0.

(2)�ω =
�v ∧ �r0

r20
.

(3)�r = �� ∧
�R

2
.
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The space circle arbitrarily introduced for symmetry reasons between fields constitute the originality of the 
rigid body rotation. As it is of finite dimension, the space circle describes a surface in which the rigid body rota-
tion is limited. On its circular boundary at a distance R, a horizon line defines the region of maximum velocity 
where −→ω ∧

−→
R = −→c  . An upper bound for velocity that will be called speed of light, is thus inscribed within the 

very geometrical properties of rigid body rotation.
It tends to classical rigid body rotation −→r ≈ −→r 0 within the limit of Ω << 1; i.e. for weak velocity compared to 

the speed of light. It can be noted that the space circle size is by construction half of the rotation circle, ∂
−→
�
∂t = 2−→ω  . 

It follows that space circle obeys the equation  2−→ω ∧
−→
R
2 = −→c  which can be interpreted as the path taken by 

any light ray sent from the rotation center. A referential based on the space circle metric r can be qualified as 
‘physical’ or ‘real’ whereas the laboratory referential based on the metric r0 is ‘mathematical’. Finally, it should 
be noted that within the manuscript the curvature angle Ω is replaced by its complementary angle θ = π

2 − 2� 
for which, by construction, the following relations hold:

Although James Maxwell had been inspired by analogies with fluid mechanics when he built his theory, Wil-
liam Thomson (Kelvin) blamed the new electromagnetic theory for its lack of common basis with the laws of 
mechanics stated by Isaac Newton. The reversed point of view of the present theory agrees with Oliver Heaviside, 
Henri Poincaré, Albert Einstein and many others: Newton’s Law should share the basis of the Maxwell equa-
tions. Above all, mechanics does not grant to magnetic fields the central role they deserve. Let us start with the 
most general expression of acceleration as given by the equation of Leonhard Euler and deduce the expression 
of electromagnetic force formalized by Hendrik Lorentz. The most general and compact expression of classical 
acceleration is:

This equation can be developed according to:

With

In rigid body rotation, the following relation holds 
−−→
grad v2

2 = −−→
ω ∧ −→v  . Then the expression of acceleration 

−→a = d−→v
dt  becomes:

With Eqs. (6) and (7) embryos of magnetic and electric fields are obtained. However, if in the acceleration 
of Eq. (7) the gradient expression is very similar to what is expected from an electric field, the curl operator and 
the related magnetic field is absent. Indeed, going back to Eq. (5), the gradient can be interpreted as a centrifu-
gal acceleration opposed to half of the attractive acceleration of the curl term or in other words, the magnetic 

(4)cos =
v

c
and sin =

√

1−
v2

c2
.

d�v

dt
=

∂�v

∂t
+

(

�v.
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∂t
+

−−→
gradv2
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+ 2 �ω ∧ �v,

(6)�ω =
−→
curl

�v

2
.

(7)�a =
∂�v

∂t
−

−−→
grad

v2

2
.

Figure 1.   (a) Relativistic rigid body rotation and (b) relativistic induction, the basis of the rotation theory. 
Three circles are needed for its construction: the speed circle of radius r0, the space circle R/2 and the rotation 
circle R that defines horizon.
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acceleration. As a consequence, just by introducing −→aE = −
−−→
grad v2

2  as a definition of the electric acceleration 
rather than −→aE = +

−−→
grad v2

2  , attractive virtue originated from the magnetic acceleration −→aB = 2−→ω ∧−→v  is incor-
rectly attributed to the electric field. In other words, the electric field changes its sign by including the magnetic 
acceleration at the origin of the attractive acceleration. The mechanics approach thus fails to account simultane-
ously for the electric and magnetic fields.

Let us now turn our attention toward a mechanistic approach through relativistic rigid body rotation. By 
construction of the rigid body rotation, the physical or real radial axis for a central observer is the curvilinear 
abscissa along the space circle. As a consequence, the orthoradial axis is parallel to a radius of the space circle. 
For the central observer, the velocity vector direction is a tangent of the velocity circle and thus presents a non-
zero radial component vr, Fig. 2. Thus, the acceleration formulated by Gustave Coriolis appears. This precisely 
applies to the radial component of the velocity which results from the relativistic distortion angle of the velocity 
direction. For the central observer, this acceleration can be expressed as:−→a Coriolis = 2−→ω ∧−→vr  . It is worth not-
ing that vr = c for a photon emitted from the center. The Coriolis acceleration bends its trajectory in a way that 

perfectly follows a line along a circle centered on O’ with an angular speed 
−→
ω′ = 2−→ω  : this is the space circle 

of Eq. (3), Fig. 1a. Using relativistic transverse Doppler shift, the space circle is described since 19631. It was 
later studied through a spatial metrical tensor borrowed to general relativity2. So the magnetic field reappears 
through a second-order term from Coriolis acceleration. Consequently, if particles captured by this magnetic 
field behave like satellites in circular motion, the indirect link with the original rigid body rotation through the 
Coriolis acceleration will explain the disappearance of any common center of rotation. This brings up one more 
obstacle toward a mechanical interpretation of the magnetic field. The Euler acceleration is generally stated as:

Under its stationary form, the fundamental equation of GEMQ rotation is obtained and alone replaces 
Eqs. (1)–(3):

Amazingly, although issued from classical mechanics, the relevance of the Euler equation is striking. It per-
fectly describes acceleration within the curved space of relativistic rotation, as illustrated in Fig. 2. The classical 
Euler equation becomes relativistic by abandoning the radial direction of the laboratory −→r 0 and by defining 
the direction induced by the Coriolis acceleration −→u r =

−→v r
vr

 , as a new radial direction of physical space which 
precisely defines the space circle of Eq. (3). The mathematic basis of the present theory will probably not demand 
the use of new tools of any exotic space nor tensor developments of general relativity but rather novel interpreta-
tions of classical mechanics in a Euclidian world.

The previous equation can be written differently, as:

Finally, if the gradient term related to the electric field is maintained by ignoring its true curl nature, the 
following equation is obtained:

�a =
∂�v

∂t
+�ω ∧−→vϕ+2 �ω ∧−→vr .

(8)�a = �ω ∧ −→vϕ+2 �ω ∧ −→vr .

(9)�a =
∂�v

∂t
+ �ω ∧

(−→vϕ +−→vr
)

+ �ω ∧−→vr =
∂�v

∂t
+ �ω ∧ �v+ �ω ∧−→vr .

�a =
∂�v

∂t
−

−−→
grad

v2

2
+ �ω ∧−→vr .

Figure 2.   Relativistic rotation of a satellite around a central observer. A part of the Coriolis acceleration 
−→
a ω = 2

−→
ω ∧ −→

v r  has a radial component that is added on top of the classical gravitational attraction: this is the 
magnetic effect described by Josef Lense and Hans Thirring.
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The projection of Coriolis acceleration in radial and orthoradial directions of the laboratory frame gives:

It is worth mentioning here that these magnetic effects due to Coriolis acceleration add on top of the gravi-
tational attraction between masses or electric attraction for charges. However, neither radial nor orthoradial 
acceleration implies a change in the absolute value of the velocity. They express the angular change θ that operates 
between the moving frame and the observer, and sustain a uniform circular motion.

The relativistic Euler equation that was expected is thus:

If the transient regime term ∂
−→v
∂t  is removed, the expression for a stationary regime is:

The aim is to deduce equations of electromagnetism from this latter Euler acceleration within a relativistic 
rotation. On top of geometric considerations, a physical system, such as an electron caught in an electromag-
netic field is needed. Expressions of mass, of charge and of electromagnetic field are missing here. Nevertheless, 
a qualitative comparison with a result of literature obtained from relativistic equations of electromagnetic field3 
confirms the relevance of the Eulerian approach of Maxwell equations.

A term to term identification of Eqs. (11) and (12) shows the electric field as a gradient of energy as expected 
in the beginning of this section. Second, the presence of magnetic force results from a rigid body rotation. The 
case of a moving charge at the origin of magnetic field is well known as Faraday’s induction. A neutral mass in 
rotation inducing a rotation field is way less famous but has however been described in the frame of General 
Relativity and is known as the Lense-Thirring effect. This was recently demonstrated in experiment4. This second 
order force with respect to velocity naturally appears in the theory as a direct consequence of the topologic angu-
lar distortion experienced by the referential frame in circular motion. Its origin is more precisely, the Coriolis 
acceleration, just as the last term of the equation. This last term, is a first order term and with a component paral-
lel to the satellite velocity, plays a central role during transient phase of acceleration, deceleration and probably 
more generally, during energy exchange with other systems.

From relativistic rigid body rotation to relativity.
Except for the natural introduction of a maximum speed and the Lense-Thirring effect, the relativistic rigid 

body rotation introduced in Fig. 1 does not quite deserve its first adjective “relativistic”. This section is specifi-
cally devoted to geometric interpretation of the relativistic rigid body rotation within the landscape of the space 
and time perceptions of special relativity.

In Fig. 3a, four reference frames can be defined: the first one is attached to the central point of observation 
O. It is the Galilean reference frame ℜG, a mathematical fixed referential with horizontal x, vertical y, and out of 
plane z (parallel to −→ω  ) axes. The second reference frame ℜ0 is also attached to O but in rotation motion at the 
angular speed ω. A cylindrical coordinate system is associated to ℜ0 with directions 
(

�u⊥ = �v
��v� , �u� =

�r0
��r0�

, �uz =
�ω

��ω�

)

 . This reference frame is also a purely mathematical construction and does not 

{ −→
ac� = �ω ∧ �vcos2θ
−→
ac⊥ = ω�vcosθ sinθ

.

(10)�a =
∂�v

∂t
−

−−→
grad

v2

2
+ �ω ∧ �vcos2θ+ ω�vcosθsinθ .
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−−→
grad

v2

2
+ �ω ∧ �vcos2θ+ ω�vcosθ sinθ .
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e
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√
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{
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1
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(
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Figure 3.   Relativistic rigid body rotation of a satellite. (a) The rotation velocity −→v  appears from the central 
observer O in referential ℜ with a radial components vr. (b) A proper length L0 appears from O through its 
orthoradial component Lϕ.
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fully obey the laws of physics. Indeed, a light ray sent from O would not follow direction −→u � . The third reference 
frame ℜ is also attached to O and, is also in rotation at the angular speed ω but it differs in the directions of the 
associated cylindrical coordinate system 

(

�uϕ =
�vϕ

��vϕ�
, �ur =

�vr
��vr�

, �uz =
�ω

��ω�

)

 . The latter trihedrons are rotated by 
the angle α around direction −→u z . The special feature of this latter referential ℜ compared to the classical cylindri-
cal system ℜ0 is to indicate the tangent of the space circle as radial direction. It is the space circle that for any 
observer in a laboratory describes the outer direction. ℜ is associated to a physical frame of reference, in the 
sense that the radial direction −→u r perfectly follows the light path of a ray sent from O. The last reference frame, 
attached to O’ and traveling at velocity −→v  is the local satellite referential ℜ’. Observed from ℜ, the local metric is 
modified in a way that the coordinate system directions are not perpendicular any more 
(−→
u
′
y =

�v
��v� ,

−→
u
′
x =

�vr
��vr�

, �uz =
�ω

��ω�

)

 . The angular distortion measured from O, (
−̂→
u′ y ,

−→
u′ x) = θ explains the origin 

of a radial component vr of the velocity field −→v  . It can be recalled (section “Introduction”) that construction of 
the cosine of this angle takes the form:

Observed from ℜ, the velocity −→v  is a tangent to the orbit circle and not parallel to −→u ϕ anymore; it acquires 
a radial component vr. Moreover, any length LO transported within the satellite and aligned with −→v  , Fig. 3b is 
seen by its projection along −→u ϕ , and thus appears smaller by the quantity sinθ:

This is the contraction of length in motion along direction −→v  . Length contractions are a consequence of 
the angular distortion between referential ℜ and ℜ′. It can be noted that radial length along the space circle is 
not affected by any contraction as this direction is shared by ℜ and ℜ′, 

−→
u′ x =

−→u r . As a direct consequence of 
the length contraction caused by the angular distortion, the parallel component of a moving surface becomes 
S = S0sinθ , and a moving volume becomes V = V0sinθ.

Time dilatation of a clock attached to the referential in motion ℜ’ from an observer within the laboratory 
follows the same logic issued from the local metric distortion of distance. Time dilatation is not an independent 
phenomenon. The orthoradial component of velocity vφ is decreased by sinθ  when compared to the rotation 
velocity v. Two options are possible: vϕ = d

t  decreases because distance d is contracted, the case examined in 
the previous section, or because t dilates, in other words the rigid body rotation ω slows down. ‘Dilatation’ is 
a sibylline terminology. It means that the time indicated by a clock linked to a motionless observer runs faster 
that time of a moving clock. As a consequence, for an observer placed in the center O of rigid body rotation, any 
clock (rigid body rotation) with an intrinsic period  τ0 or pulsation ω0 and moving at a velocity v is perceived 
with an increased period τ = τ0

sinθ  or with a decreased pulsation:

It is worthy to mention here that rotation has been shown to be compatible with special relativity5,6. However, 
an original Euclidian geometric interpretation of Lorentz transformation is proposed now.

In the special relativity theory, transformation of space and time operates between inertial referential frames 
according to the Lorentz transformations:

These transformations express the invariance of the unsurpassable speed of light and were thus discovered 
from the Maxwell equation. Historically7, after having unsuccessfully applied the Galilean transformation to the 
Maxwell equations, Poincarré had the reverse idea to apply Lorentz transformations to laws of mechanics. The 
mechanical or geometrical interpretation of the Lorentz transformations remained an enigma until Einstein 
introduced them as a special rotation class of quadrivectors in a Minkowski space. The elegance of this math-
ematic formalism logically seduced the world of physicists, who adopted the Einstein point of view once and for 
all8: “ (…) the Lorentz transformation so defined is identical with the translation and rotational transformations of 
the Euclidian geometry, if we disregard the number of dimensions and the relations of reality”. By including special 
relativity in a wider theory that Einstein called “general relativity”, Landau9 expressed the general feeling shared 
by most physicists today: “(…) this is for sure the most beautiful of the physics theories.” Nevertheless, here an 
alternative interpretation of the Lorentz transformations is proposed, based on Euclidian geometry and connected 
to the above-mentioned ‘reality’ of Einstein. The leading idea is to merge the four spatio-temporal variables (x, 
y, z, t) into three physical dynamic entities ( −→ω ,−→r ,−→v  ) that implicitly contains Time.

The Lorentz transformation (16) can be written in a more geometrical way by using angles θ and θ’ defined 
as cosθ = v

c  and cosθ ′ = v′

c  . v is the velocity of the frame center O′ from observer O, v′ = x′

t′  is the velocity of 
the satellite spinning around O′.

(13)cosθ =
r0

R
=

v

c
.

(14)Lϕ = L0 sinθ .

(15)ω = ω0sinθ .

(16)






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Let us begin with examination of the simple case for which cosθ′ = 0; i.e. v′ = 0 or x′ = 0. The resulting Lorentz 
transformations at work on the origin O′ of the coordinate system in motion R′ are:

This special case of the Lorentz transformations is perfectly compatible with the relativistic rigid body rota-
tion. In Fig. 4a, the distances ct, ct′, and v = ctcosθ are interpreted as the hypotenuse, the opposite side and the 
adjacent side of the rectangle triangle inscribed within the relativistic rotation circle of center O around which a 
satellite revolves on O′ at constant speed v. The relativistic rotation first introduced intuitively as a starting point 
of the theory proves to be a special case of the Lorentz transformations. As mentioned in the previous sections, 
the relativistic term 1

sinθ  has a geometrical interpretation as an angular distortion between the velocity direction 
and the space circle direction. This interpretation is hidden in special relativity theory within hyperbolic func-
tions that describe rotation of a (x, y, z, t) quadrisystem. Piloted by this angular distortion, the ratio of clock 
beatings from O and O′, according to the second Eq. (18), agrees perfectly with the pulsation decrease of the 
rotation rate of Eq. (15). In agreement with2, this offers the possibility for common synchronization of all points 
of the space circle by a simple sinusoidal term. If an isotropic pulse is sent from O, the whole clocks of the rota-
tion are synchronized. In addition, based on the first Eq. (18), the space segment x = vt is represented in red in 
Fig. 4a. Similarly, based on the second part of Eq. (18) multiplied by the speed of light, the ‘time’ segment ct is 
represented in blue in Fig. 4a. This is the time beating of clock from O, which is proportional to the time needed 
for light to propagate around one horizon tour.

Let us now examine a second simple extreme case for which cosθ′ = 1. This situation corresponds to a body 
traveling at the speed of light v′ = c from the referential of satellite O’. In this moving referential at velocity v from 
O, the situation is quite simple as the time and space segments are both equal to ct′. However, from the rotation 
center O, the space and time segments are dissociated in two parts; the first original segment corresponds to the 
motion of O′ whereas the additional segment corresponds to the motion of the satellite body, Fig. 4b. The red 
space original segment ct′ cosθsinθ  corresponds, as in the previous case, to the light traveling distance r. The red space 
additional segment ct represents the light traveling distance R. The blue time original segment ct corresponds, as 
in the previous case, to the propagation time of light along the distance R. The blue time additional segment, ct′ cosθsinθ   
is the propagation time of light along the distance r and therefore can be interpreted as a temporal perspective that 
increases with distance. Responsible for the disappearance of synchronism between moving frames10, this latter 
term was the radical novelty brought by special relativity. The resulting symmetry of the red and blue pairs of 
segments as parts of the same rectangle in Fig. 4b, shows that the sum of the space segments is equal to the sum of 
the time segments, and that as a consequence, the ratio of distance to time is the speed of light c from the observer 
located on O. This is the invariance property of the speed of light. This symmetry of space and time, x = ct, appears 
immediately within the Lorentz transformations when c = x′

t′  is used in Eq. (16) or equivalently cosθ′ = 1 in (17):

In the general case of the Lorentz transformations, a complete representation is shown on Fig. 4c. It gets more 
complex but each term of Eq. (17) is faithfully represented by the time (blue) and space segments (red). This 
double pairs of segments find here a quite interesting interpretation. Let us examine the rectangle-triangle with 
a vertex O′, a side x′ (green segment) and a space segment (red) as hypotenuse. The angle θ is retrieved in the 
opposite corner to O′, in the junction of the red and blue segment (Supplement Material, Appendix A). What-
ever the velocity v’, this rectangle-triangle is a small-scale head-to-tail replica of the rectangle-triangle defined 
in Fig. 4a for the motion of O′. Their homothetic ratio is cosθ’. The length of the additional space segment is 

(17)

{

x = ct
′ cosθ ′+cosθ

sinθ

t = t
′ 1+cosθcosθ ′

sinθ

.

(18)
{

x = ct
′ cosθ
sinθ

t = t′

sinθ

.

(19)
{

x = ct
′ 1+cosθ

sinθ
t = t

′ 1+cosθ
sinθ

.

Figure 4.   Relativistic rigid body rotation and geometrical interpretation of Lorentz transformations when 
cosθ′ = 0 (a), cosθ′ = 1 (b), and general case (c). The red color is chosen for space segments, blue for time 
segments as they are measured from O and green is from O′.
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the distance of the moving body seen from O′, x′
= ct′cosθ ′ , but corrected by the Lorentz contraction, in other 

word multiplied by 1
sinθ  . The blue adjacent side with respect to θ is the additional time segment. Therefore, this 

homothetic rectangle triangle is crucial in the definition of space–time additional segments. When the moving 
body travels at the speed of light c, the configuration described in Fig. 4b is retrieved as expected. Then, the two 
triangles have the same size and are included in the same rectangle. The additional time segment has been called 
the synchronism time. This sort of temporal perspective, can have the following geometrical interpretation: it is 
the light time of the distance from the space circle of the observer O. In other words, the synchronism time is the 
time needed at the speed of light to bring a satellite observed from O’ back to the circle rotation of observer O.

The ratio of space to time results in the geometrical law of relativistic speed transformation (Supplement 
Material, Appendix B). The last comment concerns the invariance of the interval s2 = c2t2−x2. It is obvious from 
a geometrical point of view from Fig. 4a where s2 = c2t′2 and from Fig. 4b where s2 = 0. It is way more difficult on 
Fig. 4c. However, as a general trend, it results by construction that c2t2 ≥ x2 and thus that the interval s2 always 
have a real root. Thus, the spacetime interval of the relativistic body rotation is said to be time-like or light-like 
but can never be space-like.

Conclusion
As already shown in the literature, the rigid body rotation is compatible with special relativity. The novelty 
introduced in this manuscript is a Euclidian trigonometric construction of this relativistic rigid body rotation 
together with its acceleration field as observed from the central inertial frame. This geometric construction fully 
explains the origin of Lorentz transformation as a simple angular distortion between frames. In contrast with 
relativity, the postulate underlying this geometric representation is not light speed limit. The funding postulate 
states that straight line does not exist and that any trajectory is the result of rigid body rotation. Then light 
speed limit becomes a consequence of circles construction. With this postulate in mind, future works will aim 
at revisiting problems in physic.
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