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Real time monitoring of COVID‑19 
intervention effectiveness 
through contact tracing data
Graham C. Gibson 1*, Spencer Woody 2, Emily James 3, Minda Weldon 4, Spencer J. Fox 2, 
Lauren Ancel Meyers 2 & Darlene Bhavnani 3

Communities worldwide have used vaccines and facemasks to mitigate the COVID‑19 pandemic. When 
an individual opts to vaccinate or wear a mask, they may lower their own risk of becoming infected 
as well as the risk that they pose to others while infected. The first benefit–reducing susceptibility–
has been established across multiple studies, while the second–reducing infectivity–is less well 
understood. Using a new statistical method, we estimate the efficacy of vaccines and facemasks at 
reducing both types of risks from contact tracing data collected in an urban setting. We find that 
vaccination reduced the risk of onward transmission by 40.7% [95% CI 25.8–53.2%] during the Delta 
wave and 31.0% [95% CI 19.4–40.9%] during the Omicron wave and that mask wearing reduced the 
risk of infection by 64.2% [95% CI 5.8–77.3%] during the Omicron wave. By harnessing commonly‑
collected contact tracing data, the approach can broadly provide timely and actionable estimates of 
intervention efficacy against a rapidly evolving pathogen.

Vaccination and mask wearing continue to be two of the most important public health tools for preventing 
COVID-19 transmission and  mortality1–10. However, estimates of their effectiveness vary widely across com-
munities and stages of the  pandemic11. Measuring the impacts of vaccination and mask wearing is particularly 
important for protecting vulnerable communities, which include nursing homes and congregate settings such as 
college  campuses12. Understanding intervention effectiveness of strategies that have minimal impact on global 
economic activity can better inform policy responses that balance reduction in epidemic burden and economic 
cost.

Discrepancies in intervention effectiveness estimates may stem from variation between study populations, 
such as the prevalence of comorbidities, demographic structure, and contact patterns. During the Delta wave, 
estimates of two-dose mRNA-1273 (Moderna) effectiveness against symptomatic and asymptomatic infection 
were as high as 86.7%13–15 in a hospital setting and as low as 53.1% in nursing home  residents16. Although both 
of these studies controlled for the common sources of heterogeneity (age and previous infection), there may 
have been a higher prevalence of comorbidities in the nursing home population. During the Omicron wave, 
effectiveness estimates for two doses of either Moderna or Pfizer mRNA vaccines ranged from 70% in a South 
African hospital  setting17 to 36.6% across multiple testing facilities in Ontario,  Canada18. Again, these studies 
controlled for many of the same confounding variables, including age and comorbidities, however, Buchan et al. 
were unable to control for previous levels of infection in the population, possibly leading to the discrepancy in 
 findings18. These results highlight that SARS-CoV-2 intervention effectiveness varies through time and across 
communities and that statistical models for estimating effectiveness should consider local epidemiological, 
demographic and behavioral conditions.

Test-trace-isolate which includes “contact tracing” has been used widely to prevent COVID-19 transmission, 
particularly during the early months of the pandemic. While such efforts were often impeded by testing delays 
and resource  limitations19, they frequently collected valuable data on the vaccination history, mask use history, 
behavior, contact patterns, previous infection, and infection status of index patients and their  contacts2,9,20. Such 
data allow for estimation of the protective effect of mask wearing and vaccination simultaneously, as well as their 
effect on both infection and onward transmission. We contrast this with traditional “test-negative” designs of 
vaccine effectiveness, where symptomatic individuals present to health care providers and their test and vaccine 
status are recorded. In traditional test-negative designs, confounders are assumed to be randomized conditional 
on receiving a test (with the exception of healthcare seeking behavior)21. However, test negative designs cannot 
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jointly estimate the protective effect of interventions against onward transmission and often have difficulty con-
trolling for previous infection. In the context of COVID-19 test negative designs, it is unclear whether presenting 
at a testing facility sufficiently controls for an individual’s propensity to wear a mask or social distance. Finally, 
test negative designs can suffer from susceptible depletion  bias22, which cannot occur in contact tracing based 
studies since the analysis is conducted conditional on a set of exposures of susceptible individuals.

We analyze data from a SARS-CoV-2 contact tracing program at a large university in the US to estimate the 
changing impact of vaccines and face masks on transmission, while highlighting community structures that are 
higher risk. To our knowledge, this is the first study to estimate vaccine and face mask effectiveness in a univer-
sity community and the first to simultaneously estimate the effectiveness of more than one intervention in any 
population, however, other studies have leveraged contact tracing data for vaccine effectiveness  estimation2,23. 
Our framework is designed to provide real-time and venue-specific estimates–such as transmission risks associ-
ated with schools, workplaces, sporting events, and congregate living–while informing targeted interventions 
and risk communications.

Methods
Definition of intervention effectiveness. We define intervention effectiveness ( EA ) as

where YA=1 denotes the counterfactual test positivity rate if everyone had received the intervention and YA=0 
denotes the counterfactual test positivity rate if no one had received the intervention. Equivalently, we define the 
effectiveness of an intervention as one minus the causal risk  ratio21,24,25. Ideally, we would measure true infections 
rather than those that test positive, but this is unobservable.

We estimate Eq. (1) from the observed data in the presence of confounding by marginalizing over covariates 
(W).

We do not bound the expected value of the effectiveness of the intervention between 0 and 1, but rather allow 
negative values, which would indicate that the intervention is associated with an increase in the probability of a 
positive test. To establish EA as a causal quantity, we must assume no unmeasured confounding after condition-
ing on observed covariates as well as counterfactual consistency. We verify that each combination of covariates 
has at least one individual who tested positive and at least one who tested negative.

As we are particularly interested in the effectiveness across time due to immune waning and emerging vari-
ants, we also define the conditional intervention effectiveness, conditional on a particular variant (V) dominating 
during a given time period.

Estimation of intervention effectiveness using contact tracing data. We begin by formulating a 
parametric logistic regression model for the probability of a test positive interaction between an index case and a 
contact. We denote Yi,j as an indicator of a positive contact of the j-th index case with the i-th contact.

In Eq. (4), duration is a binary indicator of the duration of the contact (greater or less than 60 minutes), indoor 
is a binary indicator of whether the interaction occurred indoors or outdoors, physical contact is an indicator 
of a direct physical contact, and relationship denotes a categorical variable of the relationship (roommate, class-
mate, or baseline, which included common relationship types such as friends, partners, co-workers, family). We 
include an interaction term of the effect of vaccination and mask wearing (for both cases and contacts) with an 
indicator of the variant circulating during three distinct waves, Alpha, Delta and Omicron. When index cases 
have multiple contacts, the risks associated with those events may be correlated. To account for this correlation, 

(1)EA = 1−
P(YA=1 = 1)

P(YA=0 = 1)

(2)EA = 1−
EW [P(Y |A = 1,W)]

EW [P(Y |A = 0,W)]

(3)EA|V = 1−
EW [P(Y |A = 1,V ,W)]

EW [P(Y |A = 0,V ,W)]

(4)

Yi,j ∼Bernoulli(µi,j)

logit(µi,j) = β0 + β1 · contact maskedi,j + β2 · case maskedi,j

+β3 · contact vaccinatedi,j + β4 · case vaccinatedi,j

+ β5 · contact maskedi,j · I(Delta)i,j + β6 · case maskedi,j · I(Delta)i,j

+ β7 · contact vaccinatedi,j · I(Delta)i,j + β8 · case vaccinatedi,j · I(Delta)i,j

+ β9 · contact maskedi,j · I(Omicron)i,j + β10 · case maskedi,j · I(Omicron)i,j

+ β11 · contact vaccinatedi,j · I(Omicron)i,j + β12 · case vaccinatedi,j · I(Omicron)i,j

+ β13 · durationi,j + β14 · indoori,j + β15 · physical contacti,j

+ β16 · relationshipi,j + b0,j

b0,j ∼N(0, σ 2)
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we include a random intercept ( b0,j ) specific to index case j that captures additional transmission risk beyond 
the explicit covariates.

We tie this model to the estimand defined in Eq. (3) through a Bayesian parametric formulation of the 
g-computation formula. The g-computation formula is an established method to marginalize over confound-
ing variables when estimating a marginal treatment effect, in this case, one minus the marginal risk  ratio26,27. 
As an example, to recover vaccine effectiveness from Eq. (2) during the Omicron wave we target the following 
functional of the observed data.

Under a parametric logistic outcome regression model we can plug-in the expression for the expected probability 
in the numerator and denominator of Eq. (5) and marginalize out over the empirical distribution of confounders.

Equation (6) can be thought of as the expected value across the empirical distribution of the data if we were to 
“set” the contact vaccination status and “set” the circulating variant to Omicron. As each βk is a random variable 
in a Bayesian context, we obtain uncertainty estimates of our target estimand in Eq. (6) through standard MCMC 
sampling of the posterior. See Appendix 1 for more details.

Data
Contact tracing data. Data were generated by the University of Texas at Austin’s (UT) COVID-19 testing 
and tracing program which functioned under the authority of Austin Public Health. For the purposes of our 
analysis, we divided the data into three distinct variant waves; the period when the Alpha variant was dominant 
(02/15/2021–06/15/2021), when the Delta variant was dominant (06/15/2021–12/10/2021) and when the Omi-
cron variant was dominant (12/10/2021–03/04-2022). We defined a period of dominance by variant as the time 
period in which greater than 95% of cases in the greater Austin area were attributed to a specific variant. UT 
Austin reported an average of less than 1% test positivity for both the period when the Alpha and Delta variants 
were dominant and up to an 8.7% test positivity for the period when Omicron was dominant. The university 
never implemented a vaccine mandate, but did strongly suggest vaccination. There was a mask mandate in place 
during the period when Alpha was dominant as well as a hybrid strategy for both in-person and remote classes. 
However, by the arrival of the Delta variant, the university had lifted the mask mandate and resumed in-person 
classes with limited remote options. Student, Staff and Faculty cases were reported to UT Contact Tracing fol-
lowing a positive rapid antigen or nucleic acid amplification test conducted between 02/15/2021 and 03/04/2022 
(Table 1). Case reports were received from campus testing programs and via self-report. In collaboration with 
Austin Public Health, UT Contact tracing identified additional UT Student, Staff, and Faculty cases who were 
interviewed by Austin Public Health. Contact tracers interviewed cases by phone about their symptoms, history 
of vaccination, and contacts exposed during their infectious period. In 2021, the infectious period was estimated 
to begin 2 days prior to, and end 10 days after, symptom onset (or, positive test result if asymptomatic) . Begin-
ning on January 1st, 2022, and during the Omicron wave, the infectious period was assumed to end 5 days after 
symptom  onset28. Detailed information about the nature of each exposure was collected from the case, including 
the duration of exposure, context (indoor vs. outdoor), nature of contact (physical vs. non-physical), relation-
ship with the contact (e.g. roommate, classmate, or baseline, which included common relationship types such 
as friends, partners, co-workers, family) and whether masks were worn by both the case and contact. Contacts 
were notified of their exposure by phone, and interviewed about their symptoms, history of SARS-CoV-2 infec-
tion and vaccination. Contacts with no history of recent infection (within three months of the exposure) were 
encouraged to seek a COVID-19 test twice, between 3 and 5 days following the exposure to catch new infections 
early and between 5 and 7 days to align with national guidelines, regardless of vaccination status. Negative test 
results were acquired through campus testing programs and through self-report. Data was stored in UT’s contact 
tracing database.

Cases were included in the analysis if they were: (1) successfully investigated at UT and were willing to share 
their contacts, (2) had at least one contact who tested at least once 3 to 14 days after the exposure and, (3) had 
a known vaccination status at the time of exposure. Contacts were included if they had received at least one 
phone call attempt from contact tracing and if the contact’s vaccination status was known. Test results for each 
contact were appended to the index case. As we were unable to observe every contact of each index case, and this 
missingness may be associated with both vaccination status and test positivity, there may be bias in the resulting 
estimates of vaccine effectiveness. Missingness was particularly pronounced during the period when Omicron 
was dominant due to an overwhelming case load for contact tracers (Fig. 1A). We explore this bias in detail 
“Contact tracing data” in section. Most index cases had less than 5 contacts and the distributions of the number of 
contacts for each of the variant waves appeared roughly power law (Fig. 1B). Any contact that reported a positive 
test result 3 to 14 days after exposure was considered a test-positive contact. Contacts with only negative results 
during this period were considered test-negative contacts. Contacts with missing test results were included in 
an analysis of non-response. Some UT-affiliated contacts who were unable to be notified by contact tracers at 
UT still tested at a campus testing site and their results were entered into the contact tracing database. Case and 
contact vaccination status was assessed through two primary routes. First, interviews were conducted over the 
phone to assess vaccination status at the time of exposure for both cases and contacts. However, when contact 

(5)EA|Omicron = 1−
EW [P(Yi,j|contact vaccinated = 1, I(Omicron)i,j = 1,W)]

EW [P(Yi,j|contact vaccinated = 0, I(Omicron)i,j = 1,W)]

(6)EA|Omicron = 1−

1
ni,j

∑
i,j logit

−1(β0 + β3 + β7 + β1 · contact maskedi,j + ....)

1
ni,j

∑
i,j logit

−1(β0 + β1 · contact maskedi,j + · · · )
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tracers were unable to notify a contact and obtain a vaccination status, university vaccination records were used. 
Cases and contacts were considered fully vaccinated if the exposure occurred at least 14 days after the second 
dose of an FDA-approved mRNA vaccine. Johnson and Johnson and AstraZeneca vaccinated individuals were 
dropped from the analysis. Cases and contacts who were unvaccinated, partially vaccinated, or had an exposure 
occurring in the 14-day period following the final dose of an FDA-approved mRNA vaccine were considered 
unvaccinated. The sample size was not sufficient to estimate natural waning immunity or booster effectiveness 

Table 1.  Characteristics of case-contact interactions by contact test status collected through COVID-19 
Contact Tracing at the University of Texas at Austin during the study period (02/15/2021–03/04/2022).

Negative (N = 2612) Positive (N = 511) Test result unavailable (N = 659) Total (N = 3782)

Contact Vaccination Status

 Boosted 109 (4.2%) 38 (7.4%) 25 (3.8%) 172 (4.5%)

 Unvaccinated 888 (34.0%) 230 (45.0%) 353 (53.6%) 1471 (38.9%)

 Vaccinated 1615 (61.8%) 243 (47.6%) 281 (42.6%) 2139 (56.6%)

Case Vaccination Status

 Boosted 148 (5.7%) 26 (5.1%) 31 (4.7%) 205 (5.4%)

 Unkown 86 (3.3%) 94 (18.4%) 10 (1.5%) 190 (5.0%)

 Unvaccinated 807 (30.9%) 198 (38.7%) 236 (35.8%) 1241 (32.8%)

 Vaccinated 1571 (60.1%) 193 (37.8%) 382 (58.0%) 2146 (56.7%)

Contact Mask Use

 Masked 346 (13.2%) 29 (5.7%) 79 (12.0%) 454 (12.0%)

 Unknown 61 (2.3%) 7 (1.4%) 29 (4.4%) 97 (2.6%)

 Unmasked 2205 (84.4%) 475 (93.0%) 551 (83.6%) 3231 (85.4%)

Case Mask Use

 Masked 499 (19.1%) 37 (7.2%) 108 (16.4%) 644 (17.0%)

 Unkown 61 (2.3%) 7 (1.4%) 29 (4.4%) 97 (2.6%)

 Unmasked 2052 (78.6%) 467 (91.4%) 522 (79.2%) 3041 (80.4%)

Exposure Context Location

 Indoor 2525 (96.7%) 472 (92.4%) 639 (97.0%) 3636 (96.1%)

 Outdoor 87 (3.3%) 39 (7.6%) 20 (3.0%) 146 (3.9%)

Duration

 15-30 minutes 124 (4.7%) 11 (2.2%) 39 (5.9%) 174 (4.6%)

 30-60 minutes 342 (13.1%) 37 (7.2%) 89 (13.5%) 468 (12.4%)

 Greater than 60 minutes 1994 (76.3%) 443 (86.7%) 477 (72.4%) 2914 (77.0%)

 Less than 15 minutes 59 (2.3%) 8 (1.6%) 19 (2.9%) 86 (2.3%)

 Unknown 93 (3.6%) 12 (2.3%) 35 (5.3%) 140 (3.7%)

Days Since Vaccination

 Mean (SD) 169 (68.8) 195 (73.5) 153 (82.5) 170 (72.1)

 Median [Min, Max] 169 [1.00, 547] 202 [10.0, 348] 153 [3.00, 415] 170 [1.00, 547]

 Missing 857 (32.8%) 227 (44.4%) 342 (51.9%) 1426 (37.7%)

Relationship

 Classmate 708 (27.1%) 16 (3.1%) 117 (17.8%) 841 (22.2%)

 Coworker 7 (0.3%) 0 (0%) 1 (0.2%) 8 (0.2%)

 Friend 551 (21.1%) 183 (35.8%) 84 (12.7%) 818 (21.6%)

 Other 655 (25.1%) 149 (29.2%) 344 (52.2%) 1148 (30.4%)

 Partner 100 (3.8%) 39 (7.6%) 45 (6.8%) 184 (4.9%)

 Roommate 548 (21.0%) 101 (19.8%) 57 (8.6%) 706 (18.7%)

 Teammate 43 (1.6%) 23 (4.5%) 11 (1.7%) 77 (2.0%)

Physical Contact

 Direct non-physical contact (within 6 feet) 1854 (71.0%) 320 (62.6%) 384 (58.3%) 2558 (67.6%)

 Direct physical contact 255 (9.8%) 102 (20.0%) 137 (20.8%) 494 (13.1%)

 Indirect contact (shared spaces) 430 (16.5%) 80 (15.7%) 105 (15.9%) 615 (16.3%)

 Unknown 73 (2.8%) 9 (1.8%) 33 (5.0%) 115 (3.0%)

Contact Tracing Response

 Notified and Screened 2224 (85.1%) 84 (16.4%) 596 (90.4%) 2904 (76.8%)

 Unable to make contact 388 (14.9%) 427 (83.6%) 63 (9.6%) 878 (23.2%)
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within a period dominated by a particular variant. This study was determined to be not human subjects research 
by UT’s Institutional Review Board.

Missing data. A test result was missing for 10.3% of contacts. Unlike traditional test-negative designs, miss-
ingness in contact tracing test-negative designs may be informative. If a contact engages in COVID-19 risk tak-
ing behavior, they may be more likely to become infected, more likely to be unvaccinated and more likely to be 
missing a test result. We do observe a lower rate of vaccination among those missing a test (Table 1). Given the 
integration of testing and tracing data at UT, we were still able to observe individuals who tested at UT regardless 
of whether the individual was successfully notified by a contact tracer. However, we were unable to observe their 
test status if they tested off campus or did not test at all. We were also able to monitor the proportion of contacts 
who were successfully investigated by contact tracers (Fig. 1A). The proportion fell drastically during the Omi-
cron wave, when contact tracers became overwhelmed by the number of cases. If unvaccinated individuals who 
were likely to test positive due to risk taking behaviors were more likely to not respond to contact tracers then 
this can significantly bias the estimate of vaccine effectiveness downward. In particular, when vaccine effective-
ness is low (13%), the bias can reach -100%, indicating that vaccination dramatically increases the odds of testing 
positive. By monitoring the proportion of contacts successfully notified, we can identify time periods where esti-
mates may become unreliable, such as the Omicron surge. Further details, including specific simulation studies 
of the bias, are supplied in Appendix A2.

Ethical approval. All data collection efforts were carried out in accordance with the University of Texas at 
Austin guidelines and approved by the University of Texas at Austin internal review board (STUDY00000438-
MOD02). Informed consent was obtained from all subjects and/or their legal guardians.

Results
There were 3782 case-contact pairs available for analysis. For the period when the Alpha variant was dominant, 
there were 300 cases and 593 contacts. For the period when the Delta variant was dominant, there were 703 
cases and 2433 contacts. For the period when the Omicron variant was dominant, there were 456 cases and 756 
contacts. The distribution of the number of contacts by case is show in Appendix A2. 57% of cases and 56% of 
contacts were female (Table 1). The median age for index cases and contacts were 21 years (range = 17–48 years) 
and 20 years (range = 14–40 years), respectively. Over half of all index cases and contacts were vaccinated (56.7% 
and 56.6%, respectively). The majority of cases and contacts were unmasked at the time of exposure (80.4% and 
85.4%, respectively). Exposures typically lasted over 60 minutes (82.2%) and were indoors (96.7%). The average 
number of days since receiving two doses was 169 for contacts, with 95% having been vaccinated between 50 and 
250 days prior to exposure. Overall, 76.8% contacts were successfully notified of their exposure to the index case 
and 82.5% of contacts tested following their exposure regardless of notification. In order to account for missing 
test results among contacts, four different scenarios were considered: (1) the contact was notified of the exposure 
(i.e., answered the contact tracer’s call) and their test result was captured (61.0%); (2) the contact was notified of 
the exposure but did not get tested (15.7%); (3) the contact was not successfully notified but still tested (21.3%); 
and (4) the contact was not successfully notified and no test result was available (2%). Test positivity was 3.6% 
and 52.3% among contacts who were or were not reached, respectively.

We estimated vaccine effectiveness against infection in the UT community during three different periods 
of the pandemic (Fig. 2A). When the Alpha variant was dominant (02/15/2021–06/15/2021), vaccination of 
a contact reduced their risk of infection by 25.1% [95% CI − 16.0–62.0%] based on 493 index case contact 
pairs (Fig. 2A). When the Delta variant was dominant (06/15/2021–12/10/2021), the estimate was 36.8% [95% 

Figure 1.  (A): Proportion of contacts successfully investigated across time. There was a significant drop in the 
contact tracers ability to investigate contacts of index cases during the Omicron surge due to the magnitude 
of the case load. (B): Distribution of the number of contacts by index case, conditional on an index case 
having at least one contact, across the time periods when Alpha (02/15/2021–06/15/2021), Delta (06/26/2021–
12/10/2021), and Omicron (12/10/2021–03/04/2022) were dominant.
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CI 20.8–51.3% ] based on 1,885 index case contact pairs. Finally, when the Omicron variant was dominant 
(12/10/2021–03/04/2022), we found no protective effect, with an estimated effectiveness of -107.0% [95% CI 
− 159.2 to − 64.8%] based on 294 index case contact pairs. Turning to the vaccination status of the index case, 
vaccine effectiveness against onward transmission was estimated to be 38.7% [95% CI 23.9–51.1%] during the 
alpha wave, 40.7% [95% CI 25.8–53.2%] during the delta wave, and 31.0% [95% CI 19.4–40.9%] during the period 
when Omicron was dominant (Fig. 2C).

Mask wearing by both the contact and the index case was not significantly protective during the Alpha or 
Delta variant waves (Alpha: 22.7% [95% CI − 36.2–63.9%], Delta: 20.4% [95% CI − 61.8–71.4%] ) (Fig. 2B). 
However, during the time period when Omicron was dominant mask effectiveness was estimated to be 64.2% 
[95% CI 5.8–77.3%]. Mask wearing by the index case alone, while not significant, did have point estimates in 
the direction of a protective effect (Alpha: 26.7% [95% CI − 23.8–63.3%], Delta: 43.4% [95% CI − 8.4–76.9%], 
Omicron: − 8.0 % [95% CI − 74.2–47.8%]) (Fig. 2D).

We also estimated the odds ratio of transmission as a function of behavioral and environmental covari-
ates while accounting for vaccination status and masking during the exposure. Classmates (OR = .15 [95% CI 
.06–.29]) and roommates (OR = .53 [95% CI .39–.70]) (Fig. 3A) were significantly less likely to transmit relative 
to the baseline, which included common relationship types (friends, partners, co-workers, family). We also 
find that longer interactions (> 60 minutes) (OR = 1.46 [95% CI 1.13–1.89]) and those involving direct physical 
contact (RR = 1.37 [95% CI 1.07–1.84]) increase the probability of a test-positive contact relative to shorter and 
less physical contacts, respectively. The estimated random intercepts by index case exhibit significant variation 
(Fig. 3B), with some index cases having more than twice the average transmission odds after controlling for 
covariates. Thus, there are likely other drivers of infection risks beyond vaccination, mask wearing, relationship 
type, the nature or duration of the exposure, and exposure location.

Discussion
Contact tracing data from a large urban university in the US revealed a precipitous decline in the effectiveness of 
vaccines against SARS-CoV-2 infection as the pandemic progressed, consistent with other  studies18,29,30. Declines 
likely stem from a combination of immune evasiveness of the variants, natural waning of immunity over the 
months following vaccination, and unobserved behavioral factors. However, during the Omcron surge, contact 
tracers became overwhelmed by the volume of cases, and follow up of contacts significantly decreased. This 
may explain the statistically significant negative estimate of vaccine effectiveness during the Omicron surge and 
highlights a weakness of the contact-tracing based vaccine effectiveness design. However, by consistently moni-
toring the rate of successful contact investigations, public health officials can identify periods when estimates 
may become unreliable. Lyngse et al. similarly found a negative point estimate for vaccine effectiveness against 
infection during the Omicron  wave31. The high degree of uncertainty in our estimates of intervention effectiveness 
stems from small sample sizes, particularly for the periods when Alpha and Omicron were dominant.

Figure 2.  Estimates of intervention effectiveness (in percent) against infection of the contact with 95% credible 
intervals (vertical black marks). (A): Posterior density of vaccine effectiveness against infection (contact 
vaccination status). The negative estimate for the time period when Omicron was dominant may stem from 
excess behavioral risks in the vaccinated group. (B): Posterior density of mask effectiveness against infection 
(contact masking status). (C): Posterior density of vaccine effectiveness against onward transmission (index 
vaccination status). (D): Posterior density of mask effectiveness against onward transmission (index masking 
status).
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We found that vaccines offered a high level of protection against onward transmission during the Alpha, 
Delta, and Omicron waves. While prior household-based studies have demonstrated this protective  effect32,33, we 
believe this is the first indication that vaccines reduce infectivity in a larger community. These estimates provide 
evidence in support of clear and consistent messaging to promote vaccination, boosting, and vigilant use of masks 
during dangerous surges in college communities. Contact tracing data allow us to control for environmental 
and behavioral factors that influence transmission, when estimating the effectiveness of interventions. In our 
college-aged study population, the relationships between the index case and the contact strongly correlated with 
infection risk. Individuals who encountered each other through daily college activities (such as classmates and 
roommates) had a lower odds of testing positive than non-college structured relationships (friends, family, co-
workers, etc). These results have counterintuitive implications for university administrators grappling with the 
costs and benefits of limiting campus activities during  surges34,35. Limiting in-person classes may be less effective 
at preventing infection than limiting social gatherings among friends to small “bubbles” or strongly encouraging 
vaccination, masking and testing to mitigate risks during social encounters.

While large scale studies have confirmed the protective effect of surgical mask  wearing36,37, in a cluster ran-
domized trial, Abaluck et al. found that mask wearing significantly reduced symptomatic seropositivity by 9%38 
but the effect decreased for cloth masks relative to surgical masks. This may suggest that our results are driven 
by the mix of cloth, surgical and other masks used in this college population or data quality issues related to self-
reporting of mask use. Larger scale studies are needed to disentangle behavioral from virologic drivers of changes 
in face mask effectiveness. Our estimates of vaccine and face mask effectiveness in a large university community 
may be higher than that for a broader US population. College students are more likely to engage in risky behavior 
in comparison to older  adults39, and this may be compounded by consistent messaging that COVID-19 is less 
severe in young  adults39. College students also tend to have large numbers of close physical contacts per week, 
given communal living arrangements and classroom structures. They also tend to be young and healthy, with 
lower prevalence of comorbidities, which may reduce the risks of developing symptoms that would otherwise 
inhibit social activities while infectious. Even if this larger risk was mitigated by vaccination and face masks, 
we might still expect lower estimates of intervention effectiveness compared to other populations at lower risk.

While test negative designs often have the advantage of large data sets (high statistical power), consistent 
monitoring of vaccine effectiveness using contact tracing data can provide complementary real-time estimates 
that can inform rapid and effective policy responses, particularly when interventions stop working. Unlike test 
negative studies of vaccine effectiveness, which monitor only symptomatic individuals who present to health care 
providers, contact tracing data can also catch asymptomatic infections and identify super spreading individuals 
within a community, potentially helping identify emerging variant threats. However, use of contact tracing data 
to study intervention effectiveness is prone to three sources of bias that do not occur with the more commonly 
used test negative design. First, as noted above, missigness can be highly informative and can significantly bias 
the estimate of vaccine effectiveness (Appendix A2). Second, confounding factors of the particular interaction 
between the case and contact must be captured retrospectively and controlled for statistically. For example, when 
studying vaccine effectiveness, one must control for mask wearing since the choice to vaccinate and the choice 
to wear a face mask may be correlated. Conversely, vaccine status must be considered when estimating masking 
effectiveness. Finally, contact tracing may involve repeated measurements on a single index case with multiple 
contacts. These repeated measurements may be correlated due to unmeasured properties of the index case, such 

Figure 3.  Risk factors for SARS-CoV-2 transmission on a university campus. (A): Posterior densities or 
potentially confounding variables across the study period (02/15/2021 through 03/04/2022), including the 
relationship between the index case and the contact (classmate, roommate, or baseline, which included common 
relationship types such as friends, partners, co-workers, family), the location of exposure (indoor vs outdoor), 
the duration of the interaction (longer or shorter than one hour), and whether there was direct physical 
contact. The odds ratio indicates the odds for those with the indicator relative to those without the indicator. 
(B): Histogram of the estimated random intercepts of the index cases, representing excess heterogeneity in 
transmission not explained by the vaccination status of the index case and contact, mask wearing behavior of the 
index case and contact, relationship between the index case and contact, exposure duration, exposure location, 
or direct physical contact. Values less than one (greater than one) correspond to index cases who were less 
(more) infectious than average.
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as a higher viral load or immunity from prior infections, and must be considered when estimating intervention 
effects to avoid biased estimates. Other contact tracing based  studies40 have labeled missing test results as test-
negative contacts, potentially biasing the results (Appendix A2). While there is no statistical remedy for miss-
ingness not at random, analyses of contact tracing data should include monitoring of contact follow up rates to 
identify unreliable estimates. We note that data collected by contact tracing programs across the US are highly 
heterogeneous, ranging from minimal case  information41 to fully detailing each  exposure42. Moreover, it is often 
difficult to link contact tracing data to vaccination records and other relevant health  data42,43. Increased invest-
ment in infectious disease surveillance systems that enhance data capture and integrate healthcare and public 
health data would facilitate accurate and timely estimation of intervention effectiveness and behavioral risks.

Our study provides a general statistical framework for using commonly collected contact tracing data to track 
the utility of interventions as the virus continues to evolve and human behaviors shift. The proposed Bayesian 
g computation model can simultaneously assess multiple interventions, provide probabilistic estimates of their 
effectiveness at reducing both susceptibility and infectivity, and identify individual- and exposure-related factors 
that increase risks of transmission. While global contact tracing efforts are winding down, the approach can be 
applied in real-time as contact tracing is collected in specific populations to provide crucial situational awareness 
and inform effective mitigation and communication strategies.

Data availability
The data that support the findings of this study are available from University of Texas at Austin but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not pub-
licly available. Data are however available from the authors upon reasonable request and with permission of the 
University of Texas at Austin.
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