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Metabolomic analysis 
of Mycobacterium tuberculosis 
reveals metabolic profiles 
for identification of drug‑resistant 
tuberculosis
Pratchakan Chaiyachat 1,2, Benjawan Kaewseekhao 1,2, Angkana Chaiprasert 3, 
Phalin Kamolwat 4, Ditthawat Nonghanphithak 1,2, Jutarop Phetcharaburanin 5, 
Auttawit Sirichoat 1,2, Rick Twee‑Hee Ong 6 & Kiatichai Faksri 1,2*

The detection of pre-extensively (pre-XDR) and extensively drug-resistant tuberculosis (XDR-TB) 
is challenging. Drug-susceptibility tests for some anti-TB drugs, especially ethambutol (ETH) 
and ethionamide (ETO), are problematic due to overlapping thresholds to differentiate between 
susceptible and resistant phenotypes. We aimed to identify possible metabolomic markers to detect 
Mycobacterium tuberculosis (Mtb) strains causing pre-XDR and XDR-TB. The metabolic patterns of 
ETH- and ETO-resistant Mtb isolates were also investigated. Metabolomics of 150 Mtb isolates (54 
pre-XDR, 63 XDR-TB and 33 pan-susceptible; pan-S) were investigated. Metabolomics of ETH and ETO 
phenotypically resistant subgroups were analyzed using UHPLC-ESI-QTOF-MS/MS. Orthogonal partial 
least-squares discriminant analysis revealed distinct separation in all pairwise comparisons among 
groups. Two metabolites (meso-hydroxyheme and itaconic anhydride) were able to differentiate 
the pre-XDR and XDR-TB groups from the pan-S group with 100% sensitivity and 100% specificity. 
In comparisons of the ETH and ETO phenotypically resistant subsets, sets of increased (ETH = 15, 
ETO = 7) and decreased (ETH = 1, ETO = 6) metabolites specific for the resistance phenotype of each 
drug were found. We demonstrated the potential for metabolomics of Mtb to differentiate among 
types of DR-TB as well as between isolates that were phenotypically resistant to ETO and ETH. Thus, 
metabolomics might be further applied for DR-TB diagnosis and patient management.

Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb)1. Treatment of TB 
is becoming more difficult and challenging with the emergence of drug resistance. In 2020, 25,681 cases were 
reported of pre-extensively drug-resistant tuberculosis (pre-XDR-TB; resistant to isoniazid/rifampicin and any 
fluoroquinolone) or XDR-TB (resistant to rifampicin, plus any fluoroquinolone, plus bedaquiline (BDQ) and/
or linezolid (LZD))1. The global treatment success rate for DR-TB remains low, at 59 percent2. In particular, the 
treatment success rate for XDR-TB was only 39%1. Selection of appropriate anti-TB drugs for treatment of each 
patient requires evaluation of the drug-resistance properties of their strain of Mtb: this is crucial for DR-TB 
treatment3.

Improper diagnosis of DR-TB not only raises the chance of drug resistance developing, but it can also result in 
lower therapeutic efficacy, increased side effects, and decreased patient compliance. Furthermore, according to a 
prior epidemiological investigation, the recurrence rate of DR-TB is around 61.3%, which is significantly higher 
than for drug-susceptible TB (27.9%)4. Transmission of primary DR-TB, especially pre-XDR and XDR-TB5,6 is 
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a serious situation requiring novel tools for detection and classification. Therefore, the investigation of specific 
markers to rapidly identify DR-TB, especially pre-XDR/XDR-TB, is essential for early diagnosis and timely 
drug-regimen adjustment in patients.

Metabolomics, an emerging science of the “-omics” era, can be used in the identification and quantification 
of low-molecular-weight metabolites (< 1500 Da). Metabolic fingerprints can potentially be used to discriminate 
between states of health and disease7. In TB, metabolomics analysis of Mtb isolates is one such form of precision 
medicine offering personalized management of TB patients. Recently, metabolomics has been applied to generate 
metabolite patterns that can differentiate among DR-TB types8. Key metabolites associated with specific forms 
of TB disease have the potential for use as diagnostic biomarkers or indicators9,10. Therefore, this approach could 
strengthen the performance of drug-susceptibility testing (DST) and can also be used in personalized medicine 
for TB patient management. However, the number of studies applying this technology is limited.

For DST, discrepancies between genotypic and phenotypic test results can occur11–14. Determination of resist-
ance status against some anti-TB drugs, especially ethambutol (ETH) and ethionamide (ETO), can be problematic 
due to overlapping minimum inhibitory concentration (MIC) thresholds to differentiate between susceptible 
and resistant genotypes5. Only 38% of isolates phenotypically resistant to ETO (and 35% for ETH) were also 
genotypically resistant5. In particular, there was an 80% disagreement for ETO between genotypic DST and the 
phenotypic test provided by the Mycobacteria Growth Indicator Tube (MGIT)15. Metabolomic analysis might 
provide additional markers to help resolve such discrepancies.

Here, we aimed to determine the metabolomic profiles of Mtb using ultra-high performance liquid chroma-
tography coupled with the electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-ESI-
QTOF-MS/MS) approach to distinguish pre-XDR and XDR-TB isolates from drug-susceptible isolates. We also 
determined the specific metabolites present in ETO- and ETH-resistant isolates of Mtb.

Results
Sample characteristics.  One hundred and fifty Mtb isolates were included for metabolomic analysis. These 
comprised 54 pre-XDR and 63 XDR-TB isolates identified as such based on the previous WHO definitions1. 
Thirty-three pan-S isolates were used as the control group. Phenotypic DST results for all isolates were available 
for 14 anti-tuberculosis drugs (isoniazid (INH), rifampicin (RIF), streptomycin (STM), ethambutol (EMB), Kan-
amycin (KAN), para-amino salicylic acid (PAS), levofloxacin (LFX), ethionamide (ETO), gatifloxacin (GAT), 
moxifloxacin (MOX), linezolid (LND), clarithromycin (CLA), azithromycin (AZM) and amikacin (AMK). Line-
age data were available for 54/150 (36%) of the isolates (Supplementary Table 1). There were statistically signifi-
cant differences (p = 0.00006) in the proportions of lineage 2 (East-Asian) isolates represented among groups; 
pan-S (3/7 isolates, 42.85%), pre-XDR (27/31 isolates, 87.1%) and XDR-TB (16/16, 100%).

Overall metabolic profiles.  The metabolites (n = 4071) of Mtb isolates with different susceptibility pro-
files are shown in Supplementary Table 2. The raw mass spectral data were processed by peak labeling, baseline 
filtering, retention-time correction, normalization and other standard procedures. In the positive and negative 
spectrum modes, 2526 and 1545 characteristic ion peaks were detected, respectively. Metabolites identified in 
both positive and negative modes were used for the downstream analysis. The standard quality-control (QC) 
strategy was applied, and their coefficient of variation (CV) is shown in Supplementary Table 3. The mean %CV 
across the 17 QC repeats showing the variation at 33.12%.

Metabolomic comparisons among pan‑S, pre‑XDR and XDR‑TB isolates.  The patterns of metab-
olomes among pan-S, pre-XDR and XDR-TB isolates were analyzed using 3D-PCA. There was a distinct separa-
tion between pan-S (green) and drug-resistant isolates (blue and red) based on 3D-PCA (Fig. 1a). The top twelve 
metabolic markers for differentiation among pan-S, pre-XDR and XDR-TB groups are shown (Table 1). We then 
further analyzed the metabolomic pattern with heat-map analysis (Fig. 1b) using the twelve metabolites with 
the greatest variation between groups. The dendrogram shows the correlation between the relative intensities of 
metabolites in each sample. The decision tree for classification among pan-S, pre-XDR and XDR-TB groups is 
shown in Fig. 2. The probability of assigning each sample to the correct group was 100% (Table 2) and only two 
metabolites (meso-hydroxyheme and itaconic anhydride) were required. These two metabolites were not found 
in the human metabolite database (HMDB).

O‑PLS‑DA among pan‑S, pre‑XDR and XDR‑TB isolates.  Besides 3D-PCA, supervised O-PLS-DA 
was used for pairwise comparisons (pan-S vs. pre-XDR, pan-S vs. XDR-TB and pre-XDR vs. XDR-TB). The 
O-PLS-DA score plot showed a clear separation among the three Mtb groups (Fig. 3). When compared with pan-
S, 1-carboxyvinylcarboxyphosphonate, C23H45O9P and L-iodopyranuronate are the most significantly increased 
metabolites in the pre-XDR group (Fig. 4, (upper row)). Glycerol arsenosugar, C17H34O4 and N-acetyl-D-mura-
mate are the most significantly increased metabolites in the XDR-TB compared with the pan-S group (Fig. 4, 
(middle row)). Lacty (2) diphospho-(5′) adenosine, 1-carboxyvinylcarboxyphosphonate and C23H45O9P are the 
most significantly increased metabolites in XDR-TB compared with pre-XDR (Fig. 4, (lower row)).

Metabolomic analysis of ethionamide‑ and ethambutol‑resistant isolates.  To ensure that iden-
tification of the metabolic markers found in ETO- and ETH-resistant isolates were not confounded by lineage-
specific factors, the proportion of each lineage was compared between the resistant and susceptible groups. There 
was no significant difference (p = 0.875) in the proportion of lineage 2 isolates that were ETO resistant (12/12 
isolates with available lineage data) versus those that were ETO susceptible (15/17 isolates with available line-
age data) (Supplementary Table 4). Seven metabolites had increased levels (N-acetyl-D-muramate, 2,4,6-trini-
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trobenzene sulfonate, C24H50N1O7P, glycerophospholipids, C33H61O17P, C54H102O13 and C61H115O19P) and six 
had decreased levels (L-histidinol phosphate, cyclic-AMP, 2-iodophenol, 6-deoxy-5-ketofructose-1-phosphate, 
glycerol arsenosugar and fatty acyls) relative to ETO-susceptible isolates (Fig. 5 and Supplementary Table 5).

Similarly, there was no significant difference (p = 0.905) in the proportion of lineage 2 isolates that were 
ETH resistant (11/12 isolates with available lineage data) versus those that were ETH susceptible (13/13 isolates 
with available lineage data) (Supplementary Table 4). Metabolomic analysis of ETH-resistant isolates revealed 
15 metabolites with increased levels; O-acetyl-L-homoserine, (indol-3-yl)pyruvate, (7,8-dihydropterin-6-yl) 
methyl diphosphate, (D-alanyl)adenylate, S-(hydroxymethyl) bacillithiol, 2,4-dichlorotoluene, 3-bromopro-
panesulfonate, metosulam, C19H38O4, C21H42O4, C27H54O2, gycerophospholipids, C21H44N1O7P, C76H146O6 and 
glycerolipids (Fig. 6 and Supplementary Table 6). The level of one metabolite (bromoacetate) was lower in 
ETH-resistant isolates.

Figure 1.   3D-PCA of pan-S, pre-XDR and XDR Mtb isolates (a). 3D-PCA was conducted to determine 
whether the groups could be distinguished based on metabolomics. There is a distinct separation between pan-S 
(green) and drug-resistant groups (blue and red). The pan-S Mtb isolates in this study can be separated from 
drug-resistant groups using metabolomic data. The heat map (b) shows the relative expression levels of the 
twelve metabolites with the greatest differences in levels among pan-S, pre-XDR and XDR-TB groups (n = 150 
samples).

Figure 2.   Decision tree for classification of drug-resistance status based on levels of two metabolomic markers 
(meso-hydroxyheme and itaconic anhydride). Sensitivity and specificity were both 100% for assignment of any 
sample to the correct group.
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Table 1.   The top twelve metabolic markers for differention among pan-S, pre-XDR and XDR-TB groups. pan-
S, pan-susceptible; pre-XDR, pre-extensively drug-resistant tuberculosis; XDR-TB, extensively drug-resistant 
tuberculosis. aMetabolites that have the same molecular weight and were differentially detected from the 
metabolomic analysis.

ID Metabolites

Mean of intensity (arbitrary unit) of 
metabolites in each group Between-group comparisons

pan-S pre-XDR XDR

pre-XDR vs pan-S XDR vs pan-S pre-XDR vs XDR

Fold change p-values Fold change p-values Fold change p-values

1 itaconic anhydride 190,974.18 246,525.56 285,871.52 1.291 4.93E-12 1.16 3.73E-18 1.497 1.49E-04

2 3-bromopyruvate 221,172.55 286,524.57 330,349.71 1.295 1.38E-12 1.153 1.50E-18 1.494 1.80E-04

3 D-ribulose 5-phosphate 2,473.86 7,890.71 17,502.15 3.19 1.57E-13 2.218 4.45E-39 7.075 1.52E-23

4 xanthosine 2,917.40 9,131.20 21,779.42 3.13 2.42E-14 2.385 1.88E-46 7.465 1.97E-30

5 cyclic-AMP 247,799.09 822,971.75 977,998.24 3.321 2.43E-32 1.188 5.00E-28 3.947 6.78E-10

6 dAMP 47,267.80 171,137.06 203,507.92 3.621 3.06E-33 1.189 3.63E-29 4.305 1.79E-09

7 meso-hydroxyheme 21,779.08 23,788.05 1,710.21 1.092 1.46E-01 0.072 6.40E-30 0.079 8.24E-24

8 lacty (2) diphospho-(5’) adenosine a 143,104.96 594,299.48 1,691,809.62 4.153 1.94E-15 2.847 5.57E-57 11.822 1.45E-39

9 C23H45O9Pa 143,104.96 594,299.48 1,691,809.62 4.153 1.94E-15 2.847 5.57E-57 11.822 1.45E-39

10 C38H72O5 21,779.08 23,788.05 1,710.21 1.092 1.46E-01 0.072 6.40E-30 0.079 8.24E-24

11 C38H74NO8P a 19,035.57 20,742.42 1,434.37 1.09 2.36E-01 0.069 1.90E-24 0.075 6.67E-21

12 Saccharolipids a 19,035.57 20,742.42 1,434.37 1.09 2.36E-01 0.069 1.90E-24 0.075 6.67E-21

Table 2..   The probability of predicting group membership for each isolate using a decision tree. pan-S, 
pan-susceptible; pre-XDR, pre-extensively drug-resistant tuberculosis; XDR-TB, extensively drug-resistant 
tuberculosis

Reference isolates

Probability (%)

Predictedpan-S pre-XDR XDR-TB

pan-S (n=33) 100 0 0 pan-S

pre-XDR (n=54) 0 100 0 pre-XDR

XDR (n=63) 0 0 100 XDR-TB

Figure 3.   Orthogonal partial least-squares discriminant analysis (O-PLS-DA) cross-validated score plots 
showing significant separation between all pairs of groups; (a) pan-S vs pre-XDR, (b) pan-S vs XDR-TB and 
(c) pre-XDR vs XDR-TB. Green circles depict pan-S isolates, orange triangles depict pre-XDR isolates and 
red squares depict XDR isolates. All three comparisons show p-value < 0.01 and predictive abilities of (a) 
are (R2X = 0.288, R2Y = 0.737 and Q2 = 0.729) (b) are (R2X = 0.365, R2Y = 0.946 and Q2 = 0.944) and (c) are 
(R2X = 0.232, R2Y = 0.789 and Q2 = 0.779).
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Discussion
Only one previous study has investigated metabolic markers of Mtb that might distinguish pan-S (n = 18), MDR 
(n = 17) and XDR (n = 18) isolates16. That study used a relatively small sample size and did not identify any signifi-
cant metabolites that could differentiate between their MDR and XDR isolates. Another study investigated TB-
patient serum metabolomics and discovered four potential biomarkers: N1-methyl-2-pyridone-5-carboxamide 
(N1M2P5C), 1-myristoyl-sn-glycerol-3-phosphocholine (MG3P), caprylic acid (CA), and D-xylulose (DX) that, 
in combination, could discriminate between MDR-TB (n = 30) and pan-S (n = 30) with both sensitivity and 
specificity of 86.7%8. Here, we analyzed metabolomic profiles of Mtb isolates of known drug-resistance status 
to differentiate between pre-XDR and XDR-TB. We also specifically analyzed the metabolic pattern of isolates 
resistant or sensitive to ETO and ETH, two drugs for which there is frequently a discrepancy between genotypic 
and phenotypic DST results5,17,18.

We expected that Mtb isolates with different drug-susceptibility profiles would be metabolically diverse, and 
that untargeted metabolomics should show metabolic patterns correlated with drug susceptibility or resistance. 
Based on 3D-PCA, clear differentiation between the pan-S and drug-resistant isolates (pre-XDR and XDR-TB) 
was found. However, the pre-XDR and XDR-TB isolates were not totally separated. Then, we used a decision tree 
as an approach to differentiate among the three TB groups. Interestingly, only two metabolites (meso-hydrox-
yheme and itaconic anhydride) were required to provide 100% sensitivity and 100% specificity for distinguish-
ing among the three groups. Meso-hydroxyheme is a key intermediate of the Mycobacterium heme utilization 

Figure 4.   Metabolites differing significantly among pan-S, pre-XDR and XDR-TB groups based on O-PLS-DA. 
The green color shows the pan-S group, the orange color shows the pre-XDR group, the red color shows the 
XDR-TB group. Each black dot represents a single M. tuberculosis isolate. Only the top three markers in each 
pairwise comparison are shown.
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degrader (MhuD) reaction19. MhuD converts host-derived heme into iron by degrading it19–21. Iron is required 
for numerous essential biological processes and is associated with the aminoglycoside-resistance mechanism of 
Mtb22. Iron and heme are thought to be potential targets for future drug development due to their uptake into 
pathogens23. The higher level of meso-hydroxyheme in resistant isolates could explain the difference among drug-
resistance types. However, our analysis revealed that XDR-TB isolates had lower meso-hydroxyheme compared 
to pan-S and pre-XDR. Possibly, XDR-TB isolates require less iron for survival than pan-S and pre-XDR isolates. 
The limiting of available iron in the human host, which is sequestered in high-affinity binding proteins such as 
heme, is an important part of the innate immune response to bacterial infections24. Lowering the amount of 
iron required for survival in the host could be one of the adaptations of XDR-TB isolates. Another metabolite 
that was differentially expressed among DR-TB types is itaconic anhydride. This metabolite is an inhibitor of 
isocitrate lyase, a key enzyme that enables the bacilli to persist under oxidative-stress conditions25. Possibly, a 
drug-resistant isolate is more fit to survive in hostile environments26. Neither of these two metabolites has any 
matches in the human metabolic database. Therefore, besides being diagnostic markers for DST, these metabolites 
might potentially find a use in treatment monitoring to detect any change of drug susceptibility of the pathogen 

Figure 5.   Metabolite markers to identify ethionamide resistance. The comparison is based on the five subsets 
of matched test and control subgroups (A to E) that contain various drug-resistance patterns. Only matched test 
strains (n = 12 from among ETO-resistant strains) and control strains (n = 17) were used. Then, a Venn diagram 
was created using the Venn function in R-programming. The specific controls (any isolates without ETO 
resistance) were used to create a new comparison. Metabolites present at higher or lower levels were analyzed 
after a comparison of metabolite expression levels between test and control. Only intersecting results found in all 
five comparisons were filtered. The numbers in brackets of each group refer to the number of isolates included. 
For ETO, seven increased and six decreased metabolites were identified.
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in patients. To confirm the clinical application of these markers, further study investigating these metabolites in 
patient serum during the course of treatment is needed.

We also used O-PLS-DA for pairwise analyses among the three groups (pan-S, pre-XDR and XDR-TB) to 
identify metabolic markers. All pairwise comparisons yielded clear distinctions, so we focused on the three 
most-significantly increased metabolites in each case. Interestingly, levels of C23H45O9P differentiated between 
pre-XDR and pan-S and also between pre-XDR and XDR-TB isolates. This metabolite therefore shows great 
potential for discrimination among drug-resistance types. The metabolites identified as important using O-PLS-
DA differed from those identified using the decision tree because the two methods use different algorithms: one 
identifies markers that can be used to differentiate among three groups whereas the other makes only pairwise 
comparisons. Nonetheless, based on the metabolic patterns that are clearly different between groups, the poten-
tial applicability remains for the metabolome to distinguish isolates with different drug-resistance properties.

Figure 6.   Metabolite marker to identify ethambutol (ETH) resistance. The comparison is based on each of 
the six subsets of the matched test and control (A to F) that contain various drug resistance patterns. Only 
the matched Test and Control; Test (n = 12 from 17 ETH resistant strains) and Control (n = 13) were used. 
The subset of isolates with (test) and without (control) ETH phenotypic resistance was filtered. Then, a Venn 
diagram was created using the Venn function in R-programming. The specific controls (any isolate without ETH 
resistance) were used to create a new comparison. Metabolites present at higher or lower levels were analyzed 
after a comparison of metabolite expression levels between test and control. Only intersect results found in all 
six comparisons were filtered. The numbers in the brackets of each group confer to the number of isolates. For 
ETH, fifteen increased and one decreased metabolite were found.
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Phenotypic DST of Mtb for certain drugs can be problematic due to the uncertain MIC cut-off values for 
some drugs and the extent of reproducibility of such tests27. Previously, our research group reported that 65% of 
isolates that were phenotypically ETH resistant and 62% that were phenotypically ETO resistant did not yield 
the same results according to genotypic resistance analysis5. Phenotypic drug-resistance profiles are not always 
associated with distinctive metabolic fingerprints16. Rego et al. (2021) compared a relatively low number of Mtb 
isolates (n = 53) and did not investigate specific drugs, especially ETH and ETO. In our study, we attempted to 
identify the metabolomic patterns associated with phenotypic resistance against ETH and ETO using subsets of 
DR Mtb isolates. Due to the high level of genotypic /phenotypic discrepancy for ETO and ETH (Supplementary 
Table 4), we relied on the gold standard of drug-susceptibility testing using the agar proportion method28.

We analyzed the relative amounts of metabolites in ETO-resistant isolates (that were also resistant to other 
drugs) and subtracted from these the expression levels in isolates that were not resistant to ETO (but some may 
have been resistant to other drugs). Only the common metabolites found in ETO-resistant isolates and not in 
any ETO-susceptible isolates were counted as ETO resistance-specific metabolites. We found seven increased and 
six decreased metabolites specific to ETO-resistant isolates. Changes in these metabolites might be associated 
with the ETO-resistance mechanism. The most increased metabolites included glycerophospholipids (GPL) and 
C61H115O19P. The literature suggests that the bacterial stress sensor may respond directly to GPL concentration29. 
Previously, comparative lipidomic analysis revealed an increased amount of fatty acyls and GPL in DR-TB: 
both metabolites are important for Mtb virulence and pathogenicity30. The most important metabolite showing 
decreased levels in ETO-resistant isolates was cyclic-AMP (cAMP). A variety of cyclic nucleotides are utilized 
by Mtb, including cAMP, cyclic-di-AMP (c-di-AMP) and cyclic-di-GMP (c-di-GMP) that regulate bacterial cell 
physiology and disrupt signaling in host cells31. The cAMP is important for gene regulation in mycobacteria, 
and the ability to secrete cAMP into host macrophages during infection contributes to Mtb pathogenesis32. 
C-di-GMP has been reported to promote the resistance of Mtb to ETH, possibly because increased Ethr activity 
suppresses ethA expression, lowering the amount of active ETH in the bacterial cytoplasm33. However, the role 
of cAMP in the drug-resistance mechanism in Mtb is unknown and needs to be further investigated. Most of 
the ETH- and ETO-resistant isolates used in our study belonged to lineage 2. This lineage is strongly associated 
with MDR-TB phenotypes34,35 and acquisition of resistance34. Due to the lineage 2 proportion between ETH/
ETO resistant and susceptible isolates are relatively comparable, the metabolomic markers we found is therefore 
not confounded by the lineages of Mtb.

We used a similar approach to identify the metabolites associated with ETH resistance. In ETH-resistant 
isolates, fifteen metabolites exhibited increased expression levels and only one had decreased levels. The most 
increased metabolites included (indol-3-yl)pyruvate and 3-bromopropanesulfonate. The latter is a specific 
inhibitor of methyl-CoM reductase and completely inhibits dechlorination of 1,2-DCA but has not previously 
been considered in the context of drug resistance36. The most decreased metabolite was bromoacetate, used by 
researchers as a toxic small molecule to model the selective pressures imposed by antibiotics and anthropogenic 
toxins in Escherichia coli. Further study of these changed metabolites is needed to explain the ETH-resistance 
mechanism of Mtb. A previous study used untargeted urine metabolomics with gas chromatography-time of 
flight mass spectrometry (GC-TOF–MS) to investigate the drug metabolism of a TB patient cohort (n = 20)37. 
They identified 2-aminobutyric acid (AABA) as the specific metabolite associated with ethambutol resistance. 
However, AABA was not on our list of ETH-resistance metabolites. This might be due to differences in study 
design, especially given that our model investigated pathogen metabolites compared to human metabolites.

Like ETO resistance-associated metabolites, no information is available on whether the metabolites specifi-
cally found in ETH-resistant isolates are actually associated with mechanisms of resistance. Although statistically 
significant, changes in metabolite levels in each group were usually less than two-fold, which might or might 
not be biologically meaningful and/or reproducible. Additional studies are needed to fill this knowledge gap.

In laboratory diagnosis, pathogen detection using microscopic and/or molecular techniques including drug-
susceptibility tests are used to identify DR-TB38. However, these techniques are laborious, and the DST results 
are sometimes discordant between methods. In the advanced “omics” era, our findings might support the future 
development of metabolomics-based TB diagnosis. In a clinical setting, the metabolite patterns of Mtb could 
also be useful. Acquired resistance might occur, defined as resistance to one or more anti-TB drugs in isolates 
recovered from patients who had received previous anti-TB treatment39. In acquired resistance, metabolomics 
of Mtb can change according to the resistance phenotype40. Here, we focused on untargeted LC–MS-based 
metabolomics. The major advantage of this approach is the discovery of novel metabolites in relation to the study 
context. We showed that metabolomics of Mtb could be used to distinguish between various DR-TB strains as 
well as between isolates that were phenotypically resistant to ETO and ETH. However, the reproducibility of 
the metabolomic analysis from the machine is still one of the concerns as reflected with %CV over 30% in the 
QC sample set. This technical limitation could be managed by repeated sampling, an approach which would 
increase the cost per test for an already expensive technique. Therefore, the application of metabolomics as a 
diagnostic aid for personalized treatment and monitoring of TB patients is still limited due to the high cost, low 
reproducibility, and requirement for sophisticated equipment. As with other advanced methods, such as high-
throughput DNA sequencing, we can expect the cost of mass spectrometry to decrease in the future, making it 
suitable for affordable and routine use. Much more research and development are needed to make this technology 
cost effective, easy to use and practical in real-world settings. The work reported here has laid the foundation 
for further study and validation.

Limitations of our study should be discussed. We analyzed only pre-XDR and XDR-TB strains compared to 
pan-S. As MDR-TB Mtb isolates are resistant to INH and RIF, a state that is shared by pre-XDR and XDR-TB, 
we included only highly resistant isolates in the study. We assumed that metabolomics changed more as resist-
ance increased. No clinical data such as the treatment regimens of TB patient were available. The proportions 
of isolates of different lineages among groups were significantly different. Therefore, the unequal representation 
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of lineages might have influenced the metabolite markers found. Additional study controlling for lineage before 
testing drug-resistance pattern should be done. For some Mtb isolates, there were no available phenotypic DST 
data. Therefore, these isolates could not be included for metabolomic analysis relating to ETO and ETH resist-
ance. Although the sample size for ETO and ETH metabolomic analysis was limited, lineage representation did 
not significantly differ among the datasets used and the analysis approach was very stringent, giving us confidence 
in the findings. Because of the limited number of samples available, a testing/validation set analysis approach 
could not be used. Therefore, the random sampling approach indicating 100% accuracy might not truly reflect 
the actual performance of metabolomic analysis for DR-TB identification. The metabolomic data used in this 
study was from normal, cultured cells that were not subject to stresses such as presence of drugs. To increase the 
safety of the analysis protocol, we used only dead bacterial cells for sample preparation. We avoided experiments 
that included activation of the bacteria with anti-TB drugs to stimulate the expression of bacterial metabolites.

The WHO Laboratory Biosafety Manual, has categorized drug-susceptible, drug-resistant, and multidrug-
resistant Mtb strains into biohazard risk category 3 whereas XDR Mtb strains were assigned to risk group 4, the 
highest risk category for human and community health41. We used heat inactivation of the bacteria to ensure 
biosafety while working with XDR Mtb strains and applied the same method to all other strains for consistency. 
However, this approach could potentially alter the metabolome of bacteria subjected to heat and also cause 
the degradation of some metabolites. Therefore, the metabolomic analysis of heat-inactivated Mtb might not 
accurately reflect the normal metabolism and might give misleading information on the biology of Mtb. This is 
the key limitation of our study that should be considered when interpreting the results. Metabolomic profiles 
obtained following extraction methods that do not use heat inactivation42 should be investigated in the future.

The high number of bacterial cells obtained in culture yields a high concentration of metabolites, thus increas-
ing the sensitivity for UHPLC-ESI-QTOF-MS/MS detection and analysis. However, it is uncertain that large 
amounts of these same metabolites would be released in clinical samples. The significant metabolomic markers 
we found were less than two-fold different between test and control groups. It is unclear whether this difference 
between the Mtb groups is biological meaningful and/or clinically significant. This needs to be further investi-
gated. We attempted to analyze the metabolites associated with para-aminosalicylic acid resistance, but too few 
resistant and control isolates were available to reveal any significant metabolite marker.

In conclusion, we reported that Mtb metabolomics could distinguish among pan-S, pre-XDR and XDR 
according to levels of two metabolites (meso-hydroxyheme and itaconic anhydride). We also demonstrated the 
potential for metabolomics of Mtb to differentiate between isolates that were phenotypically resistant to ETO 
and ETH.

Methods
Mtb isolates and setting.  Mtb isolates from our previous project43, for which phenotypic/genotypic drug-
susceptibility results were available (total n = 150; 33 pan-S, 54 pre-XDR and 63 XDR-TB), were used in this 
study. The previous definition of XDR-TB, (multidrug resistant-TB (MDR-TB)) was that such isolates were 
resistant to any fluoroquinolone and at least one of three second-line injectable drugs (capreomycin, kanamycin 
and amikacin)44. We used this definition to classify TB groups in our previous drug-susceptibility test (DST) 
system. These isolates were collected from 1998 to 2013 from various provinces in Thailand. From 150 isolates, 
whole-genome sequence datasets were available for 54 isolates43,45 and lineage classification of these was done 
using RD-Analyzer46. Notably, some isolates exhibit resistance to more than one drug. This study used bacteria 
cultured from stored stock. Each Mtb isolate was cultured on Lowenstein-Jensen medium at 37 °C for 4 weeks, 
multiple colonies were scraped from the tubes, resuspended in sterile distilled water, stored at − 70 °C and mate-
rial for the metabolomic analysis was extracted on the next day. Each sample was associated with information 
including the UHPLC-MS/MS-based metabolomics data (.d files) but without information that could lead to 
identification of any participant: no informed consent was required.

Drug‑susceptibility testing.  Phenotypic DSTs for anti-TB drugs were performed using the standard 
agar proportional method47. Drug critical concentrations (CCs) used were 0.2 mg/L for isoniazid, 1.0 mg/L for 
rifampicin, 5.0 mg/L for ethambutol and ethionamide, 6.0 mg/L for amikacin and kanamycin, and 2.0 mg/L for 
streptomycin, p-amino salicylic acid, ofloxacin, levofloxacin, moxifloxacin and gatifloxacin. A critical propor-
tion value of 1% was used. A culture that had 1% or more growth on the medium containing the critical concen-
tration of the anti-TB drug is considered as resistant. Genotypic drug susceptibility test results of ETO and ETH 
was based on our previous study5 that analyzed using TB-profiler48.

Sample preparation.  Stock cultures of Mtb inactivated by heat at 95 °C for 30 min were used. Colonies 
were suspended in HPLC grade water, and optical density was adjusted at 600 nm to ODs equal to 5, and 1500 
μL of the resulting bacterial suspension were used. The metabolomics extraction was performed following the 
protocol of P A. Vorkas et al.49. Ten microliters aliquots from each sample were pooled and mixed in a 1.5 ml 
tube to make the quality-control (QC) sample and 120 µl of this was transferred to an HPLC glass insert.

UHPLC‑ESI‑QTOF‑MS/MS analysis.  The aqueous-phase extracts of each sample were analyzed on a 
reverse-phase platform. The separation part was performed using the UHPLC system (Bruker, Germany) Bruker 
intensity solo HPLC C18 2.1 × 100 mm, 2 μm column (Bruker, Germany). The column temperature was set at 
40 °C and the autosampler temperature was set at 4 °C. Mobile phase A was water 100% with 0.1% formic acid 
(FA) and mobile phase B was acetonitrile 100% with 0.1% FA. The flow rate was set at 0.35 ml/min and the elu-
tion gradient was set as follows: 99% A (0.0–2.0 min, 0.25 ml/min), 99–1% A (2.0–17.0 min, 0.25 ml/min), 1% 
A (17.0–20.0 min, 0.25 ml/min), 1–99% A (20.0–20.1 min, 0.25–0.35 ml/min), 99% A (20.1–28.3 min, 0.35 ml/
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min), 99% A (28.3–28.5 min, 0.35–0.25 ml/min), 99% A (28.5–30.0 min, 0.25 ml/min). Injection volume of 
sample (7  μl) was applied for both positive and negative ionization polarity modes. The mass spectroscopy 
part was performed using the compact ESI-Q-TOF system (Bruker, Germany). Sodium formate (2 mM sodium 
hydroxide, 0.1% FA, 50% isopropyl alcohol) was directly injected as an external calibrant with flow rate 0.5 μl/
min. The condition in positive ionization polarity mode: mass range 50–1300 m/z, cone voltage 35 V, capillary 
voltage 4500 V, source temperature 220 °C, desolvation temperature 220 °C, desolvation gas flow 8 L/min. The 
conditions in negative ionization polarity mode: m/z range: 50–1300 m/z, cone voltage 31 V, capillary voltage 
4500 V, source temperature 220 °C, desolvation temperature 220 °C, desolvation gas 8 L/min. The standard QC 
strategy was applied for the UHPLC-MS analysis. A pool of all samples was prepared as for QC. This QC sample 
was injected at the beginning, following every 10 sample injections, and at the end to estimate the instrument 
stability and determine reproducibility. Following sample analysis, QC sample dilutions, 1:2, 1:4, 1:8 and 1:16 in 
the reconstitution buffer, were run in the MS/MS mode, followed by extraction of a blank sample and reconstitu-
tion blank in MS mode to estimate the complements and impurity of the extraction and reconstitution solvent. 
The UHPLC-MS/MS-based metabolomics dataset is shown in Supplementary Table 2.

Data analysis.  The metabolomics data from 150 Mtb samples were analyzed. CompassXport.exe v3.0.9.2 
was used to convert data to .mzXML format. R-program version 4.1.2 (https://​cran.r-​proje​ct.​org) was used in 
this study. The R-program library “faahKO” was used to convert mzXML to Computable Document Format 
(CDF)50. The sample-processing function of the MAIT package was applied to take a set of files containing LC/
MS sample data and perform peak detection, retention-time correction and peak grouping51. Following this, the 
peakAnnotation function was used as spectra constructor and peak annotator. Accurate m/z (< 5 ppm) measure-
ments of detected chromatographic peaks were first matched to metabolites from online MS databases (Myco-
bacterium_lipid3, Mycobacterium metabolite_Mycomass database3, Mtb database52 and NTM metabolite_BIO-
CYC database52). Study design and flow of the metabolomic analysis is shown (Fig. 7).

To distinguish among pan-S, pre-XDR and XDR-TB isolates based on metabolomics, after cleaning the data 
and identification of the metabolites, all statistical analysis including multidimensional statistical analysis, (a) 
intensity heat map (b) 3D principal-component analysis (3D-PCA) (c) relative-intensity box plot (d) and (e) 
decision-tree analysis, were performed using R-program. Jackknife sampling technique was used for the per-
formance analysis, we sampled one isolate from each group then trained the remaining samples, pan-S (n = 32), 
pre-XDR (n = 53) and XDR-TB (n = 62) groups, and repeated this step for all samples in each group. We then 
compared metabolic markers with the human metabolomics database (HMDB). The decision trees for classifica-
tion among pan-S, pre-XDR and XDR-TB were generated using rpart (R-program)53.

Orthogonal partial least-squares discriminant analysis (O-PLS-DA) was also used for classification among 
groups. The dataset of samples arranged in columns (pan-S, pre-XDR and XDR-TB) and variables in rows 
(metabolite intensities) was prepared as a .CSV file and the O-PLS-DA score was calculated and visualized using 
Metaboanalyst 5.0 (http://​www.​metab​oanal​yst.​ca/​faces/​home.​xhtml)54. Chi-square or Fisher’s exact test was used 
for comparisons of lineage proportions between groups.

For ETH (or ETO) metabolic markers, the subset of isolates with (test) and without (control) ETH (or ETO) 
phenotypic resistance was filtered. Then, a Venn diagram for subset analysis was created using the Venn function 
in R-programming. The specific controls (any isolates without ETH (or ETO) resistance) were used to create a 
new comparison. Metabolites present at higher or lower levels were analyzed after a comparison of metabolite 
expression levels between test and control.

Ethical approval.  The study protocol was approved by the Center for Ethics in Human Research, Khon 
Kaen University (HE601249).

https://cran.r-project.org
http://www.metaboanalyst.ca/faces/home.xhtml
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Data availability
The datasets generated and analyzed during the current study are available in the MassIVE repository with acces-
sion number MSV000091354, [https://​massi​ve.​ucsd.​edu/​Prote​oSAFe/​datas​et.​jsp?​acces​sion=​MSV00​00913​54].
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