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Development and validation 
of asthma risk prediction models 
using co‑expression gene modules 
and machine learning methods
Eskezeia Y. Dessie 1, Yadu Gautam 1, Lili Ding 1, Mekibib Altaye 1, Joseph Beyene 2 & 
Tesfaye B. Mersha 1*

Asthma is a heterogeneous respiratory disease characterized by airway inflammation and obstruction. 
Despite recent advances, the genetic regulation of asthma pathogenesis is still largely unknown. 
Gene expression profiling techniques are well suited to study complex diseases including asthma. In 
this study, differentially expressed genes (DEGs) followed by weighted gene co‑expression network 
analysis (WGCNA) and machine learning techniques using dataset generated from airway epithelial 
cells (AECs) and nasal epithelial cells (NECs) were used to identify candidate genes and pathways and 
to develop asthma classification and predictive models. The models were validated using bronchial 
epithelial cells (BECs), airway smooth muscle (ASM) and whole blood (WB) datasets. DEG and 
WGCNA followed by least absolute shrinkage and selection operator (LASSO) method identified 30 
and 34 gene signatures and these gene signatures with support vector machine (SVM) discriminated 
asthmatic subjects from controls in AECs (Area under the curve: AUC = 1) and NECs (AUC = 1), 
respectively. We further validated AECs derived gene‑signature in BECs (AUC = 0.72), ASM (AUC = 0.74) 
and WB (AUC = 0.66). Similarly, NECs derived gene‑signature were validated in BECs (AUC = 0.75), 
ASM (AUC = 0.82) and WB (AUC = 0.69). Both AECs and NECs based gene‑signatures showed a strong 
diagnostic performance with high sensitivity and specificity. Functional annotation of gene‑signatures 
from AECs and NECs were enriched in pathways associated with IL‑13, PI3K/AKT and apoptosis 
signaling. Several asthma related genes were prioritized including SERPINB2 and CTSC genes, which 
showed functional relevance in multiple tissue/cell types and related to asthma pathogenesis. Taken 
together, epithelium gene signature‑based model could serve as robust surrogate model for hard‑to‑
get tissues including BECs to improve the molecular etiology of asthma.

Abbreviations
AECs  Airway epithelial cells
ASM  Airway smooth muscle
AUC   Area under the receiver operating characteristic curve
BECs  Bronchial epithelial cells
CV  Coefficient of variation
DCEGs  Differentially co-expressed genes
DEGs  Differentially expressed genes
LASSO  Least absolute shrinkage and selection operator
MCC  Matthews correlation coefficient
NECs  Nasal epithelial cells
RF  Random forest
RFE  Recursive feature elimination
ROC  Receiver operating characteristic
SVM  Support-vector machine
TOM  Topological overlap matrix
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WB  Whole blood
WGCNA  Weighted gene co-expression network analysis

Asthma is a complex heterogeneous disease characterized by recurring symptoms of reversible airflow obstruc-
tion, bronchial hyperresponsiveness, and airway inflammation. Genetic, environmental and other social determi-
nants risk factors play key roles in asthma  etiology1. A family history of asthma is an associated with an increase 
in asthma risk in the offspring, demonstrating a strong genetic component with estimated heritability as high 
as 80%2,3. Clinical outcome such as lung function, Immunoglobulin and skin prick test have been suggested as 
clinical biomarker. However, clinical biomarkers are not specific to capture the allergic inflammation signal pre-
sented in asthmatic patients. There is a need for an effective molecular biomarker that are closely linked to disease 
mechanisms. Gene expression profiling techniques that simultaneously analyze a large quantity of transcripts are 
well suited to identify novel genes and pathways involved in asthma  pathogenesis4,5. Transcriptomic signatures 
that differentiate asthmatic and healthy state based on genome-wide gene expression profile in different human 
tissue/cell types including nasal airway epithelium cells (NECs), airway epithelium cells (AECs), bronchial airway 
epithelium cells (BECs), and whole blood (WB) cells were reported  previously6. Furthermore, gene signatures 
from airway smooth muscle (ASM) cells data that discriminate asthmatic and healthy subjects were  reported7. 
Ideally, gene expression based diagnostic model should be constructed in the tissue/cell types relevant to the 
disease  development8. For example, identifying biomarkers and constructing diagnostic genetic models using 
bronchial airway epithelium as target tissue have great potential for elucidating pathophysiological changes in 
bronchial airways of  asthma8. However, one of the major challenges in asthma research is obtaining sufficient 
bronchial epithelial samples to construct diagnostic and prediction models. This is not realistic specifically in 
children because obtaining these samples requires performance of invasive bronchoscopies.

Previous studies demonstrated that nasal upper bronchial airway epithelium tissue/cell types shared the same 
airway biology with lower respiratory  tracts8–10. Thavagnanam et al. suggested to use easily accessible tissue (e.g., 
NECs) as a surrogate for less accessible tissue (e.g., bronchial epithelium) in asthma  studies6. The WB cells is 
another surrogate sample and used in many asthma studies. In addition, samples obtained from easily accessible 
surrogate tissue can help to get large sample size required for developing diagnostic model with sufficient sta-
tistical power. Identifying gene signatures obtained from easily accessible tissue sampled during asthma attacks 
can aid to elucidate the pathogenesis and changes in asthmatic easy-to-access bronchial  airways11,12. However, 
previous studies have typically considered a single tissue or a small number of tissues and there are limited studies 
that comprehensively evaluated whether diagnostic models derived from surrogate tissue samples can provide 
comparable diagnostic performance with less accessible target tissues (i.e., cells from lung tissue). In this study, 
we systematically determine which of the genes have tissue-specific effects or broadly shared among tissue types.

In addition, most of the previous studies in asthma mainly focused on identifying DEGs. The analysis and 
interpretation of DEGs is important for defining key genes which may be driving changes in asthma. However, 
individual genes may fail to fully capture the molecular pathways as genes do not function in isolation. Most 
importantly, each gene has limited contribution to complex diseases including  asthma13. Co-expression analysis 
considers all genes together and constructs networks among genes to form co-expressed modules and these 
modules are potentially used to infer regulatory association between target genes and transcription  factors14. 
Furthermore, co-expression module genes can be used to discover interaction network and hidden biological 
models relevant to disease  pathogenesis15,16.

In recent years, machine learning approaches such as LASSO logistic regression, SVM and random forest 
(RF) were used to unravel new biological insights from the genomic  data17,18. Although these approaches identi-
fied potential gene signatures in asthma, their approach only considered each gene individually. However, the 
individual genes may not always decipher meaningful biological functions. To address these limitations, we 
analyzed gene expression data from 257 asthmatic and 136 control subjects in NECs and 62 asthmatic and 43 
control subjects in AECs and developed co-expression network graph combined with machine learning methods 
to prioritize and select potential genes related to asthma risk. We further validated the performance of the risk 
models in an independent and different tissue types including BECs, ASM and WB datasets.

Materials and methods
Data sets and filtering criteria. Our overall workflow strategy is shown Fig.  1. Initially, gene expres-
sion profiles and the corresponding clinical information were downloaded from publicly available NCBI Gene 
Expression Omnibus (GEO) database. Eligible gene expression asthma datasets were chosen using the following 
inclusion criteria. (1) Homo sapiens, (2) sample size ≥ 50, (3) consists of gene expression profiles of asthmatic 
and control subjects and published within seven years. Three asthma RNA-seq datasets (accession: GSE152004, 
GSE201955 and GSE58434) and two asthma microarray datasets (accession: GSE67472 and GSE69683) satisfied 
the inclusion criteria were used for subsequent analysis. The raw count dataset, GSE152004 derived from nasal 
epithelium cells (NECs) contains 257 asthmatic and 136 control subjects. The normalized microarray dataset, 
GSE67472 derived from airway epithelium cells (AECs) contains 62 asthmatic and 43 control subjects. The nor-
malized RNA-seq data in GSE201955 derived from bronchial epithelial cells (BECs) contains 79 asthmatic and 
39 control subjects. The RNA-seq data in GSE58434 derived from airway smooth muscle (ASM) cells contains 
17 asthmatic and 36 control subjects. The normalized microarray data in GSE69683 derived from whole blood 
(WB) cells contains 324 asthmatic and 87 control subjects. The summary of the datasets used in this study are 
shown Table 1.

Data processing and selection of DEGs. For raw count RNA-seq expression matrix in the NECs 
(GSE152004) dataset,  DESeq219 package was used to pre-process, filter out genes showing less than 10 reads 
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based on the sum of rows and normalize the background. Batch effect, treatment effect and/or unrelated variables 
in the datasets derived from ASMs and BECs were eliminated using surrogate variable analysis (SVA)  package20. 
After each dataset was preprocessed and normalized separately, the normalized gene expression datasets derived 
from AECs and NECs tissue types were used for model development and the normalized datasets derived from 
BECs, ASM and WB tissue/cell type samples were used for model validation. Differentially expressed genes 
(DEGs) in asthmatic subjects compared with controls were identified using  limma21 package and a significance 
threshold adjusted P-value < 0.05 based on Benjamin-Hochberg procedure was used to identify DEGs in AECs 

Figure 1.  The overall workflow of this study. Initially, RNA-sequencing or microarray based gene expression 
data were collected, preprocessed, normalized, and analyzed for differential expression analysis and weighted 
correlation network analysis (WGCNA) to generate DEGs and modules associated with asthma status. 
To identify differentially co-expressed genes (DCEGs), an intersecting analysis between DEGs (adjusted 
p-value < 0.05) and genes within modules significantly correlated with asthma status (P-value < 0.05) was 
performed. Candidate DCEGs were further analyzed by four machine learning algorithms to identify gene-
signatures and constructed different asthma classification models and prediction, which were then validated in 
independent datasets. CV-coefficient of variation.

Table 1.  Asthma gene expression datasets used in current study. AECs Airway epithelial cells, ASM Airway 
smooth muscle, BECs Bronchial epithelial cells, NECs Nasal epithelial cells, WB Whole blood.

Tissue class GEO ID
Sample size
(cases /controls) Gender (% female) Age (years), mean ± SD Tissue type Platform

Surrogate GSE152004 257/136 51 14.35 ± 3.19 NECs Illumina HiSeq 2000

Primary/target tissue GSE67472 62/43 51 35.34 ± 10.83 AECs
Affymetrix Human 
Genome U133 Plus 2.0 
Array

Surrogate GSE69683 324/87 55 NA WB Affymetrix HT 
HG-U133 + PM Array

Primary GSE201955 79/39 71 38.54 ± 12.07 BECs Illumina HiSeq 2500 
and 400

Primary GSE58434 17/36 NA NA ASM Illumina HiSeq 2000
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and NECs datasets. We used the ggplot2 package to generate a volcano plot and show both the adjusted P-value 
and fold change. The statistical software R was used to conduct all statistical analyses.

Gene co‑expression network analysis. Initially, genes were filtered by coefficient of variation (CV) to 
avoid non-varying or low-expressed genes in both AECs and NECs datasets, and genes with CV > 4% (5833 
and 7496 hypervariable genes in AECs and NECs, respectively) were utilized to construct a gene coexpression 
network using WGCNA R  package22. To characterize the correlation structure of these hypervariable genes, 
gene similarity matrix was constructed using pairwise correlation Sij=cor(xi , xj ), where xi and xj represent the ith 
row and the jth row of gene expression data matrix X, respectively. The similarity matrix was transformed into 
an adjacency matrix, represented by Aij =

∣

∣cor(xi , xj)
∣

∣

β , where the suitable soft-thresholding candidate power 
β that ranges from 1 to 20 and the appropriate power were determined based on index value in the dataset ( 
usually greater than 0.85) using the pick Soft Threshold  function22. Second, the adjacency gene network was 
transformed into a topological overlap matrix (TOM), and corresponding dissimilarity (1-TOM) matrix was 
computed. Finally, average linkage hierarchical clustering with Dynamic Tree Cut was used to identify modules, 
and minimum number of genes in each module was set to be  5023.

Selection of asthma correlated modules and differentially co‑expressed genes (DCEGs). To 
select asthma correlated modules, module eigengenes (ME), which is the principal component of each gene 
module and could be considered as a representative of all genes in a given module was computed. The ME values 
were correlated with asthmatic and control subjects using Pearson’s correlation and the modules significantly 
correlated with asthmatic subjects were selected (|r| ≥ 0.2 and P-value < 0.05). The genes within the modules 
that had significant association with asthmatic subjects and controls in AECs and NECs dataset were selected 
and named as module genes (co-expressed genes). Then, an overlapping analysis was conducted between co-
expressed genes and DEGs to screen differentially co-expressed genes (DCEGs) for further analysis.

Gene prioritization using four machine learning algorithms. For identification of prioritized gene-
signatures associated with asthma, we used gene expression data from AECs (n = 105) and NECs (n = 393) and 
selected the respective DCEGs as input features in four different supervised ML algorithms: RF, recursive feature 
elimination (RFE), LASSO, and  Boruta24–27.

RF is a supervised ML algorithm, which creates decision trees on randomly selected data samples, obtains 
prediction from individual tree and choose best solution by means of majority voting. RF also uses mean decrease 
accuracy for ranking individual gene-importance24. RFE is an effective gene selection algorithm that fits a diag-
nostic model recursively and removes weakest gene features per iteration until a specific optimal number of gene 
features is selected, while attempts to eliminate collinearity among gene features in the  model25. The genes are 
ranked by gene importance of the  model25. Logistic regression with LASSO penalty is gene-selection method, 
which uses regularization parameter to shrink insignificant regression coefficients to zero and this method 
will automatically select those genes that are useful, discarding redundant or non-informative genes in asthma 
 prediction26. The Boruta algorithm uses a random replicate of the original data to create shuffled copies of all 
features which are called shadow features. Then, the algorithm performs a classification matrix using all features 
to compute the most important features. The shadows’ feature importance is used as a reference for evaluating the 
scores obtained by the actual  features27. The potential features yielded the ‘‘confirmed’’ status in Boruta iterations 
and achieved higher importance than the best shadow was selected. Boruta algorithm is an extended version of 
RF and widely used for selecting gene-signature associated with response  variable28,29. Despite each method has 
its own strength, there are limited studies that examine which method perform better in risk prediction including 
asthma; particularly when there is high correlation among gene features. The four methods were used to screen 
potential gene-features and their asthma classification performance were compared.

Construction of asthma classification models and validation. To compare which method outper-
forms in classifying asthmatic from control subjects based on the same number of gene-signatures obtained 
from the four methods (LASSO, RF, RFE, and Boruta) in multiple tissue/cell types, two broadly used classifiers 
RF and SVM were selected. RF algorithm was used for both feature selection/prioritization and  classification24,25. 
We also used SVM algorithm as classifier to evaluate classification performance of the identified gene-signatures 
based on different models in multiple tissue/cell  types30,31. The SVM and RF algorithms were used to predict 
asthma in the discovery sets: NECs and AECs tissue/cell types and validation sets: BECs, ASM and WB tissue/
cell types and finally the best risk prediction method for different tissue/cell type datasets in discriminating 
asthmatic from control subjects was selected.

Evaluating classification performance. The model diagnostic performance of different feature selection 
and classification methods were evaluated based on different performance metrics including AUC, Matthew’s 
correlation coefficient (MCC), and F1-score (F-measure). Multiple model prediction performance metrics were 
used to avoid overoptimistic results when the number of asthmatic and control subjects are unbalanced, as previ-
ous studies  suggested32,33. The AUC of ROC curve is the approximation of the area under precision-recall curve, 
whereas F1-score and MCC are defined as follow.

F1 =
TP

TP +
1
2
(FP + FN)
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where, TP, TN, FP and FN represent the number of correctly predicted asthma class, the number of correctly 
predicted control class, the number of incorrectly predicted asthma class and the number of incorrectly predicted 
control class, respectively. F1 equal to 1 shows perfect model classification performance and 0 implies the model 
is imperfect. MCC values range from –1 to 1, the model classification performance is perfect at 1 and completely 
incorrect classification at -1.

Functional annotation and enrichment analysis. To identify the biological function underlying dif-
ferentially co-expressed genes in each significant asthma associated module, we performed pathway enrich-
ment analysis by Ingenuity Pathway Analysis (IPA) software (http:// www. ingen uity. com/ produ cts/ ipa). The IPA 
method evaluates proportional representation of module genes from a defined set in a canonical pathway in 
all set of known genes. Canonical pathways of the input module genes were evaluated to identify significantly 
enriched pathways adjusting for multiple testing. The p-value is calculated based on a right-tailed Fisher Exact 
test. For canonical pathway analysis, a -log (P-value) > 2 was taken as threshold to define significant canonical 
 pathways34.

Results
Identification of differentially expressed genes (DEGs) in asthma. The genome wide DEG analysis 
results for asthma in the AECs and NECs were visualized via volcano plot (Fig. 2a,b). The results showed that a 
total of 3564 genes from AECs in Fig. 2a and 8669 genes from NECs data in Fig. 2b were differentially expressed 
with adjusted p-value < 0.05, and these DEGs were retained for subsequent analysis.

Identification of asthma associated key modules and co‑expressed genes. To characterize the 
correlation structure of 5833 and 7496 hypervariable genes and further examine their gene-regulatory networks 
in AECs and NECs, respectively, we conducted WGCNA analysis using hierarchical agglomerative clustering 
with average linkage. For AECs dataset, the suitable soft threshold power (β) = 8 (scale-free R2 = 0.9) was used 
as the correlation coefficient threshold to ensure relatively balanced mean connectivity and scale free network 
(Fig. S1a). WCGNA revealed a total of 13 modules in the AECs dataset (Figs. S2a and 2c). For NECs dataset, 
power (β) = 5 (scale-free  R2 = 0.86) was used as the correlation coefficient threshold to ensure balanced con-
nectivity and scale free network (Fig. S1b) and the result of WGCNA analysis showed a total of 10 modules 

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Figure 2.  Identification of asthma related genes for the AECs and the NECs. (a, b) Volcano plot showing 3564 
DEGs for the AECs and 8669 DEGs for NECs respectively. DEGs- differentially expressed genes (adjusted 
p-value < 0.05). (c) The correlation between 13 modules and asthma status in the AECs data. The modules 
associated with asthma include purple module, magenta module, pink module, greenyellow module, yellow 
module, green module and brown module in the AECs dataset. (d) The correlation between 10 modules and 
asthma status in the NECs data. The modules associated with asthma include blue module, brown module, pink 
module and black module in the NECs dataset. We kept genes within the selected modules for each dataset for 
subsequent analysis.

http://www.ingenuity.com/products/ipa
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in the NECs dataset (Figs. S2b and 2d). To identify module-trait association, the estimated eigengenes values 
were correlated with the clinical traits of asthmatic and control subjects in the AECs and NECs datasets as indi-
cated in the heatmap (Fig. 2c,d; |r| ≥ 0.2 and P-value < 0.001). Seven modules (purple, pink, greenyellow, brown, 
magenta, yellow, and green) in AECs and four modules (blue, brown, pink and black) in NECs were identified 
as significantly correlated with asthmatic subjects. The purple, pink and green modules were positively corre-
lated with asthmatic subjects, while the brown, yellow, greenyellow and magenta were negatively correlated with 
asthmatic subjects in AECs dataset. The blue module was positively correlated with asthmatic subjects, while the 
brown, pink and black modules were negatively correlated with asthmatic subjects in NECs dataset. A total of 
2495 co-expressed genes were found in seven significant modules including purple module (170 genes), magenta 
module (244 genes), pink module (283 genes), greenyellow module (86 genes), yellow module (467 genes), 
green module (455 genes) and brown module (790 genes) in the AECs dataset (Table S1), while a total of 2634 
co-expressed genes were found in four significant modules including blue module (1225), brown module (961), 
pink module (211) and black module (237 genes) in the NECs dataset (Table S1).

Selection of DCEGs in asthma correlated modules. Next, overlapping analysis between 3564 DEGs 
and 2495 co-expressed genes in six asthma correlated modules derived from AECs dataset resulted a total of 
854 DCEGs (Table S1). Similarly, overlapping analysis between 8669 DEGs and 2634 co-expressed genes in four 
asthma correlated modules derived from NEC data resulted a total of 725 DCEGs (Table S1). These identified 
DCEGs in both AECs and NECs dataset were used for functional enrichment and asthma diagnostic gene-
signature based model development.

Functional analysis of the DCEGs in asthma correlated modules. To obtain further insights into 
the biological function of the DCEGs in significant asthma associated modules derived from AECs and NECs 
datasets, the biological function enrichment analyses were performed using IPA software and the results are 
shown Fig. 3a,b and Tables S2, S3. The functional enrichment analysis of 132 unique DCEGs in the purple mod-
ule derived from AECs dataset enriched in key biological functions such as IL-13 Signaling, role of IL-17A in 
arthritis, glutamate removal from folates, histamine biosynthesis (Fig. 3a). The enrichment analysis of 163 corre-
lated genes in the pink module involved  in several biological functions, for example mitochondrial dysfunction, 
PI3K/AKT Signaling, and others (Fig. 3a). Other functional enrichment of correlated genes in asthma corre-
lated modules (greenyellow and brown modules) derived from AECs dataset are shown in Fig. 3a and Table S2. 
Meanwhile, pathway analysis of DCEGs in the two most asthma correlated modules (blue and brown modules) 
derived from NECs dataset showed enrichment in several biological functions. The most enriched pathways 
of 1225 correlated genes for blue module included integrin signaling, CAMP-mediated signaling, protein cou-
pled receptor signaling, S100 family signaling, IL-13 Signaling (Fig. 3b and Table S2). The 961 correlated genes 
in brown module involved in pathogen induced cytokine storm signaling, Th1 and Th2 Activation, crosstalk 
between dendritic cells and natural killer cells (Fig. 3b and Table S3). The functional enrichment overlapping 
analysis of correlated genes associated with asthma relevant modules of purple and pink modules derived from 

Figure 3.  The significant canonical pathways of DCEGs associated with (a) purple module, pink module, 
greenyellow module, and brown module derived from AECs dataset (b) blue module and brown module 
derived from NECs dataset and (c) common canonical pathways of correlated genes derived from AECs and 
NECs datasets.
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AECs  and blue and brown modules derived from NECs were enriched in biological functions including IL-13 
Signaling and PI3K/AKT signaling and apoptosis signaling (Fig. 3C and Tables S2, S3).

Selection of potential genes associated with asthma. Based on the diagnostic gene selection meth-
ods discussed in material and method section, four ML-methods were applied to further select and prioritize 
asthma associated gene-signature in AECs dataset (n = 105) from the total of 854 DCEGs. Logistic regression 
with LASSO penalty and five-fold cross-validation was implemented to identify optimal � value = 0.02 which is 
derived from minimum binomial deviance, which was related to 30 DCEGs in predicting asthma in AECs data-
set (Fig. S3a,b). Three other ML-algorithms including RF, Boruta and RFE were also used to prioritize and select 
top 30 DCEGs based on the relative importance of each DCEG in asthma prediction (Fig. S3c–e).

Constructing gene expression‑based asthma classifier models. To compare the power of discrimi-
nation between asthmatic and control subjects, we examined 30-gene signature identified by distinct ML feature 
selection algorithms: LASSO, RF, RFE and Boruta. The diagnostic performance of selected genes by four meth-
ods are shown in Fig. 4a–d in AECs dataset. The diagnostic ability of LASSO using 30-gene signature and AECs 
dataset showed AUC = 0.99 and AUC = 1 based on RF and SVM classifiers, respectively (Fig. 4a,b). LASSO-based 
genes performed better compared with other methods in discriminating asthmatic from control subjects in 
AECs dataset. Moreover, the AUC  precision-recall curve (AUC-PR) was used as additional measure of model 
to control potential misleading of AUC curve. Importantly, AUC-PR measure of LASSO selected genes showed 
superior ability in classifying asthmatic from control subjects (Fig. 4c,d). Furthermore, the sensitivity, specificity, 
MCC and F-score values of LASSO gene selection method revealed better performance in classifying asthmatic 
from control subjects in AECs dataset (Fig. S3f and Table S4).

The methods to construct diagnostic model, evaluate and validate for asthma prediction in NECs dataset, are 
analogues to the diagnostic model in AECs dataset. LASSO method with tenfold cross-validation identified 34 
DCEGs in predicting asthma in NECs dataset (Fig. S4a,b) with optimal λ value = 0.004. Moreover, three methods 
(RF, Boruta and RFE) were used to prioritize and select top 34 potential gene signatures based on the relative 
importance of each DCEG in asthma prediction. The corresponding results are shown in Fig. S4c–e. Next, the 
diagnostic performance of four methods were examined using RF and SVM classifiers and their corresponding 

Figure 4.  Model comparison of different gene selection methods (a, b) AUC values of different gene feature 
ranking methods-based RF and SVM classifiers in AECs dataset, respectively (c, d) AUC precision-recall 
(AUC-PR) curve values of different gene feature ranking methods based RF and SVM classifiers in AECs 
dataset, respectively.
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results are indicated in Fig. 5a–d. Notably, the diagnostic performance of LASSO identified 34-gene signature 
based on RF (AUC = 1) and SVM (AUC = 1) classifiers showed higher diagnostic performance in classifying asth-
matic subjects from controls in NECs dataset (Fig. 5a,b). In addition, the AUC-PR values indicated that LASSO 
method with RF (AUR-PR = 0.92 and SVM (AUC-PR = 0.99) classifiers revealed in superior ability for classifying 
asthmatic subjects from control compared with other methods (Fig. 5c,d). Furthermore, the specificity, MCC 
and F-score values of LASSO with SVM classifier showed that the LASSO method had better classifying ability 
compared with other methods in NECs dataset (Fig. S4d and Table S5).

Evaluation of the diagnostic models using independent data. To evaluate and compare whether 
the 30 and 34 gene-signatures derived from AECs and NECs datasets perform well in distinguishing asthmatic 
subjects from controls, various tissue/cell types of datasets including BECs, ASM and WB tissue/cell types were 
used as model validation datasets. Initially, the differential co-expressed AEC-and NCE-derived gene signa-
tures between asthmatic subjects and controls were compared in validation datasets. Notably, the identified gene 
signatures-derived from AECs and NECs were found to be expressed in all three validation datasets (Fig. 6a,b), 
where nine genes including CPA3, SERPINB2, CHCHD5, EMC6, RPUSD3, POSTN, SEC14L1 and UPK1B 
derived from AECs dataset were persistently upregulated in asthmatics subjects compared with controls. Out of 
34 gene-signatures derived from NECs, two genes (CTSC and UPK1B) were persistently upregulated while one 
gene TMEM8B were persistently downregulated in asthmatic subjects compare with controls in all validation 
datasets. Other gene-signatures showed tissue specific differential expression.

After evaluating the differential expression of 30 and 34 gene-signatures, we examined their diagnostic per-
formance in various cell/tissue types. The diagnostic performance of 30-gene signature-based RF and SVM 
classifier algorithms are shown in Fig. 7. Using SVM classifier with 30-gene-signture-derived from AECs data, 
the AUC values achieved were 0.72, 0.97, 0.74 and 0.66 in BECs, NECs, ASM and WB, respectively (Fig. 7a–d). 
Using RF classifier, AEC-derived gene-signature, the AUC values for the four validation datasets were 0.76, 0.97, 
0.82 and 0.65, respectively (Fig. 7a–d). For RF classifier, the AUC-PR values in the in BECs, NECs, ASM and 
WB were equals 0.57, 0.94, 0.87 and 0.31, respectively (Fig. S5a-d). Moreover, model performance measures 
including sensitivity, specificity, MCC and F1-score of the 30-gene signature-based model derived from AEC 
data are shown in Fig. S5e and Table S6. Using SVM classifier in BECs, NECs, ASM and WB datasets, 30 gene-
signature based diagnostic model derived from AECs exhibited a performance with MCC of 0.44, 0.79, 0.44 
and 0.24, respectively (Table S6 and Fig. S5e). Furthermore, 30-gene signature using SVM classifier in BECs, 
NECs, ASMs and WB datasets exhibited a performance with F1-score of 0.64, 0.86, 0.85 and 0.41, respectively 
(Table S6). The results showed that AECs-derived diagnostic model had better classification performance in the 
BECs, NECs and ASM data sets. Relatively, diagnostic model showed lower classification ability when the model 
was tested on WB dataset.

Figure 5.  Model comparison of different gene selection methods (a, b) AUC values of different gene feature 
ranking methods-based RF and SVM classifiers in NECs dataset, respectively (c, d) AUC precision-recall 
(AUC-PR) curve values of different gene feature ranking methods based RF and SVM classifiers in NECs 
dataset, respectively.
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Figure 6.  The heatmap showing the multiple tissue/cell type datasets logFC distribution of the gene signatures 
derived from AECs and NECs datasets. (a) 30-gene signature in various tissue types including NECs: nasal 
epithelial cells, AECs: airway epithelial cells, ASM: airway smooth Muscle and BECs: bronchial epithelial cells 
and WB: whole blood cells. (b) 34-gene signature in NECs, AECs, ASMs, BECs, and WB cells. Log2 fold-
change is the log2-ratio of (expression in asthmatic subjects/expression in control subjects).Upregulation and 
downregulation in asthmatic compared with control subjects are reflected by log2 FC > 0 and < 0, respectively. 
FC = fold-change. The heat map of multiple tissue/cell type datasets of log FC values of gene signatures were 
generated using the pheatmap Version: 1.0.12 package ((https:// cran.r- proje ct. org/ web/ packa ges/ pheat map/ 
index. html) in R.

Figure 7.  Validation of the 30-gene-signature based diagnostic model derived from AEC data. The classification 
performance is presented in terms of AUC values based RF and SVM methods in discriminating asthmatic 
subjects from control for (a) BECs, (b) NECs, (c) ASM, and (d) WB datasets.

https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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Similarly, the diagnostic performance of model derived from NECs data showed that the AUC value of SVM 
classifiers were 0.75, 0.89, 0.82 and 0.69 in BECs, AECs, ASM and WB, respectively (Fig. 8a–d). The diagnostic 
performance of model derived from NECs data showed that the AUC values based on RF classifier equals to 0.77, 
0.91, 0.87 and 0.66 in BECs, AECs, ASM and WB, respectively (Fig. 8a–d). The AUC-PR values of SVM classifier 
in the in BECs, NECs, ASM and WB attained 0.57, 0.83, 0.88 and 0.32 to respectively (Fig. S6a–d). Moreover, 
the sensitivity, specificity, MCC and F1-score of the 34-gene signature-based model derived from NECs data 
are shown in Fig. S6e and Table S6. As indicated in Fig. S6e and Table S6, the 34-gene signature using SVM 
classifier was tested in BECs, AECs, ASM and WB validation sets and the model performance of MCC value for 
each dataset was equal to 0.44, 0.65, 0.63, and 0.26, respectively. The diagnostic model showed a performance 
with F1-score value of 0.65, 0.80, 0.86 and 0.44 in the BECs, AECs, ASM and WB validation sets, respectively. 
The diagnostic model derived from NEC dataset also indicated that model perform well in the BECs, AECs and 
ASM compared with WB validation set.

Discussion
In our study, we developed diagnostic models based on asthma associated gene signatures obtained from a total 
of 105 AECs and 393 NECs subjects and validated in various tissue/cell types. We performed an integrated analy-
sis of  differential gene expression analysis,WGCNA and machine learning to identify potential gene signatures 
that discriminate asthmatic subjects from controls. Frist, we identified 854 and 725 asthma associated DCEGs 
in AECs and NECs datasets, respectively based integrated analysis of DEGs and WGCNA methods. Then, four 
machine learning algorithms including LASSO, RF, RFE and Boruta methods were used to select potential 
asthma associated DCEGs and their discriminating power and model performance measures were evaluated 
in both AECs and NECs datasets. The results showed that LASSO method identified 30 and 34 gene-signatures 
and showed better asthma prediction performance in AECs and NECs datasets, respectively. The validation 
datasets in independent multiple tissue/cells suggested that gene-signatures-derived from nasal/upper airways 
epithelium gene signature-based model could distinguish asthmatic subjects from controls in multiple tissue/
cell types including BECs, ASMs and WB cells. The results suggested that the identified gene-signatures may be 
serve as promising a minimally invasive biomarker for asthma diagnosis.

Despite it is ideal to develop gene-signature based model-derived to obtain samples from target tissues in 
diseases development (e.g. from lung tissue), it is not feasible and difficult specifically when a large sample size is 
needed for developing diagnostic tools with robust statistical power. Similar to previous studies, our asthma diag-
nostic classifiers were developed based on surrogate cell/tissue types and target cell/tissue9,10,35. An experimental 
study suggested to use nasal epithelial cells as surrogate for bronchial epithelium cells for  asthma10. Despite 
several previous studies developed classification models to predict asthma, most of the studies focused on gene 
expression data from single  tissue11,36. Previous study compared different tissue types including AECs, NECs 
and peripheral blood mononuclear cells to predict asthma using DNA methylation data and showed that asthma 
diagnostic model derived from AECs and NECs tissue/cell types resulted better asthma prediction performance 
compared with peripheral blood mononuclear  cells37.

To characterize and understand DCEGs and their functional enrichment, WGCNA analysis was used in tis-
sues that are quite related, which increases the expectation that a gene network signature in a tissue like NECs 
will replicate in AECs. Four modules (purple, pink, greenyellow and brown) in AECs and three modules (blue, 

Figure 8.  Validation of the 34-gene-signature based diagnostic model derived from NEC dataset. The 
classification performance is presented in terms of AUC values based RF and SVM methods in discriminating 
asthmatic subjects from control for (a) BECs, (b) NECs, (c) ASM and (d) WB datasets.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11279  | https://doi.org/10.1038/s41598-023-35866-2

www.nature.com/scientificreports/

brown and pink) in NECs were identified as significantly correlated with asthmatic subjects. The purple and pink 
modules were positively correlated with asthmatic subjects in AECs. The blue and brown were positively and 
negatively correlated with asthmatic subjects, respectively in NECs. We showed that DCEGs within asthma asso-
ciated modules in AECs and NECs datasets were correlated with the expression of different genes that revealed 
distinct biological signaling and harbored gene-network signature associated with asthmatic subjects. Asthma 
associated pink and purple modules in AECs and blue and brown modules in NECs, and associated pathways 
showed an overlapped asthma related pathways including IL-13 Signaling and PI3K/AKT Signaling and apoptosis 
signaling. Notably, AEC and NEC-derived correlated gene signatures including CCL26, CLCA1 and POSTN 
were involved in IL-13 signaling, where IL-13 signaling of the airway epithelium is associated pathophysiology 
of asthma and airway  inflammation38. The purple asthma associated module derived from AECs were enriched 
in mitochondrial dysfunction and PI3K/AKT signaling. The DCEGs uniquely correlated with asthma associated 
brown module derived from NECs was enriched in pathogen induced cytokine storm signaling, Th1 and Th2 
Activation, crosstalk between dendritic cells and natural killer cells that suggests potential mechanism among 
these enriched pathways. Overall, our findings showed that NECs and AECs derived DCEGs enriched in asthma 
related pathways that may drive asthma pathology. Next, considering DCEGs derived from AECs and NECs 
datasets as candidate features, we used four ML methods to select potential gene-signatures that were important 
for subsequent validation.

ML methods were used to develop asthma diagnostic model in predicting asthmatic subjects from  controls17. 
However, relatively limited studies were focused integrating analysis of DEGs, WGCNA and ML methods in 
asthma prediction. In this study, different models comparison showed that DEGs, WGCNA followed by LASSO 
method identified 30 and 34 potential gene signatures, respectively. In AECs and NECs datasets with higher 
performance in discriminating asthmatic subjects from controls. Several previous transcriptomics studies used 
DEGs and ML approach to construct diagnostic and or prognostic  models39,40. We compared our approach with 
standard combined DEG + ML approach and the result showed similar performance (Supplementary Fig. S7 
and Supplementary Table S7). However, integrated analysis of DEG, WGCNA and ML approach is essential 
approach to select key co-expressed genes for the exploration of biological function, pathway, etc. and also to 
alleviate multiple testing problem by reducing feature size and hence minimize computational cost compared 
with combined analysis of DEG and ML  approach41. Hence, we implemented DEG + WGCNA + LASSO model 
to select candidate genes for downstream analyses and validation.

LASSO identified potential DCEGs includes CPA3, SERPINB2, CHCHD5, EMC6, RPUSD3, POSTN, 
SEC14L1 and UPK1B in AECs dataset and these DCEGs were also persistently upregulated in multiple tissue/
cell type datasets from asthmatic subjects. The previous study reported that elevated expression of CPA3 gene 
was observed in asthmatic subjects compared to controls and CPA3 gene correlated with sputum mast cells, 
asthma and  rhinitis42. Recent study reported that the expression level of SERPINB2 gene was increased in airway 
epithelial cells of asthmatic and in atopic asthmatic subjects compared  controls43.

The LASSO identified five potential DCEGs in NECs dataset includes SIX2, CDH26, NEBL, CTSC and 
SLC2A9A. Several DCEGs identified in this study demonstrated biological function relevant to asthma. For 
example, a previous study showed that abnormality CDH26 gene are characterized by IL-13 stimulation of the 
airway epithelium and T2 inflammation of the airway epithelium in asthma  development44. Yang et al. (2017) 
reported that CTSC gene was elevated in asthmatic subjects, which was also associated with methylation marks 
of subjects with asthmatic and  allergy45. It has been reported that CTSC gene is maturated by a multistep pro-
teolytic process and is secreted by activated cells during inflammatory lung  diseases46. Our study also confirmed 
that CTSC gene was not only upregulated and co-expressed with other potential asthma related genes in nasal 
epithelium of asthmatic subjects but also persistently upregulated in multiple tissue/cell types of asthmatic 
subjects, which reflects that upregulation of CTSC gene in multiple tissue/cell may have functional association 
with the development and progression asthma disease.

To the best of our knowledge, our study is one of the first to develop asthma diagnostic models using dif-
ferential expression analysis and co-expression network combined with machine learning based on microarray 
and RNAseq datasets of AECs and NECs tissue/cell sample types. Prioritizing and identifying potential gene 
signatures to construct asthma diagnostic model from easily accessible tissue/cell types are vital to elucidate 
pathological process of asthma at molecular level, and to extend adequate evidence for the development of 
therapeutic target. The main contribution of the current study is to identify potential gene signatures and to 
compare diagnostic performance of different machine learning methods in classifying asthmatic from control 
subjects based on AECs and NECs tissue/cell datasets and validate the diagnostic models, which are stable and 
show robust performance in classifying asthmatic from control subjects. Our method prioritized and identified 
potential asthma associated DCEGs, suggests several of which are implicated in asthma pathology.

More recently, machine learning and statistical methods haven been commonly used in RNA-seq and micro-
array data analysis of biomedical  studies47,48. However, the analysis of high-dimensional genomic data has a 
number of challenges including model overfitting and multicollinearity problems (e.g., existence of DCEGs in 
modules). To address such problems, appropriate statistical machine learning methods are required. Here, to 
identify the appropriate gene selection method in distinguishing asthmatic subjects from controls, we evalu-
ated different gene selection methods based on the results of DEGs and WGCNA in the derivation datasets and 
independent validation datasets. From classification performance, LASSO algorithm was identified as robust 
method to select potential gene signature to improve the diagnostic performance. Notably, all methods showed 
better diagnostic performance in the derivation sets. However, the robustness of the model should be validated 
in external validation datasets. In our study, we developed gene signatures based diagnostic models using NECs 
and AECs datasets, and validated to examine whether they can perform well in external datasets with different 
tissue/cell types including BECs, ASM cells and WB datasets. Moreover, we examined whether diagnostic mod-
els that derived from easily accessible cell/ tissues (NECs and AECs) can also serve as robust surrogate model 
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for target cell/tissue (e.g., ASM cells, BECs) and easily accessible cells (e.g. WB cells) regardless of sequencing 
technology (microarray or RNA-seq). Notably, gene signature based diagnostic model derived from microarray 
gene expression AECs dataset and gene signature based diagnostic model derived from RNA-seq NECs dataset 
were validated and the analysis indicated that both diagnostic models showed a better performance in the BECs 
and ASM dataset compared with WB dataset. The reason could be gene expression derived from WB tissue may 
not specific to asthma conditions. Whereas validation of diagnostic model based on gene expression comes from 
the target tissue sources-BECs and ASM tissue/cell types showed better performance, where these target tissue/
cell types have well known role in asthma exacerbations and airways  remodeling7,49. Overall, the results showed 
that diagnostic models derived from NECs and AECs datasets can serve as surrogate source of biological samples 
for hard-to-get tissues including BECs dataset.

Most models perform better prediction in training dataset but predict poorly in external validation  dataset50, 
may be due to overfitting problem. The best model should have high AUC, F1-score and MCC  values32. Our 
gene-signature based diagnostic models derived from AECs and NECs data showed higher accuracy and stable 
performance in external different tissue/cell type datasets. The multiple tissue/cell validation datasets circum-
vent overoptimistic results and assure general reproducibility. Despite our developed diagnostic models showed 
promising performance in predicting asthma, the current study has still some limitations. Since this study focused 
on computational analysis based on retrospective samples, future validation of the identified signatures should 
be performed with functional experiments. The sample size in some public dataset is small, which may hide 
potential correlations between gene expression signatures and outcome variable. Future study should consider 
increasing sample size and other feature selection strategies to improve diagnostic prediction performance of 
asthma and other airway diseases.

In conclusion, we identified small number of differentially co-expressed gene signatures and established diag-
nostic models based on an integrated analysis of bioinformatics and machine learning methods to predict asthma 
diagnosis using airway epithelium gene expression data. Based on multiple-diagnostic performance criteria, 
we found that comparable diagnostic performance between AECs and NECs, which highlight the importance 
of gene-signature –based diagnostic models derived from AECs and NECs data as suitable surrogate model in 
predicting asthma diagnosis. More importantly, our diagnostic models are promising tool to improve decision 
making, which may provide potential gene signatures for diagnosis of asthma and other airway diseases.

Data availability
All gene expression datasets supporting this work are freely accessible at NCBI GEO (https:// www. ncbi. nlm. nih. 
gov/ geo/) with accession numbers GSE67472, GSE152004, GSE69683, GSE201955 and GSE58434.

Code availability
The R code for all analyses in this manuscript has been deposited as open-source code in GitHub at https:// 
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