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Development and verification 
of a combined diagnostic model 
for primary Sjögren’s syndrome 
by integrated bioinformatics 
analysis and machine learning
Kun Yang 1, Qi Wang 2,3,4, Li Wu 2,5, Qi‑Chao Gao 2,3,4 & Shan Tang 6*

Primary Sjögren’s syndrome (pSS) is a chronic, systemic autoimmune disease mostly affecting the 
exocrine glands. This debilitating condition is complex and specific treatments remain unavailable. 
There is a need for the development of novel diagnostic models for early screening. Four gene 
profiling datasets were downloaded from the Gene Expression Omnibus database. The ‘limma’ 
software package was used to identify differentially expressed genes (DEGs). A random forest‑
supervised classification algorithm was used to screen disease‑specific genes, and three machine 
learning algorithms, including artificial neural networks (ANN), random forest (RF), and support 
vector machines (SVM), were used to build a pSS diagnostic model. The performance of the model 
was measured using its area under the receiver operating characteristic curve. Immune cell infiltration 
was investigated using the CIBERSORT algorithm. A total of 96 DEGs were identified. By utilizing 
a RF classifier, a set of 14 signature genes that are pivotal in transcription regulation and disease 
progression in pSS were identified. Through the utilization of training and testing datasets, diagnostic 
models for pSS were successfully designed using ANN, RF, and SVM, resulting in AUCs of 0.972, 1.00, 
and 0.9742, respectively. The validation set yielded AUCs of 0.766, 0.8321, and 0.8223. It was the RF 
model that produced the best prediction performance out of the three models tested. As a result, 
an early predictive model for pSS was successfully developed with high diagnostic performance, 
providing a valuable resource for the screening and early diagnosis of pSS.

Primary Sjögren’s syndrome (pSS) is a chronic, systemic autoimmune  disorder1,2 characterized by xerostomia 
and xerophthalmia, which are caused by lymphocytic infiltration of the salivary and lacrimal  glands2. In addi-
tion, the extra-glandular symptoms of pSS can also affect the joints, lungs, kidneys, liver, nervous system, and 
musculoskeletal  system3. The prevalence of pSS is higher in females than in males, with the average female-to-
male ratio being 9:1. Diagnosis of pSS is based on clinical signs and symptoms, which include serological tests 
for autoantibody biomarkers and salivary gland  histopathology4. Owing to disease heterogeneity and its complex 
clinical phenotypes, the underlying pathogenesis remains unclear. Therefore, identifying biomarkers and con-
structing novel diagnostic models for pSS are important in understanding disease progression.

The diagnosis model has been developed using machine learning algorithms such as random forest (RF), 
support vector machines (SVM), and artificial neural networks (ANN). In the absence of a priori assumptions, 
RF analysis can identify hidden factors that distinguish between case and control groups with a high level of 
predictive  accuracy5. An ANN based algorithm based on deep learning can help identify patterns and features in 
large volumes of  data6,7. ANN learn to recognize patterns in data based on examples without assuming anything 
about the nature or interrelationships of the data. In comparison with conventional models based on polynomi-
als, linear regression, and statistics, ANNs are  competitive8,9. An SVM is a machine-learning algorithm that uses 
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multivariate statistical analysis to classify and predict  individuals10. With SVM, high-dimensional data can be 
effectively handled, and classification results can be obtained without  overfitting11. To this end, the identification 
of reliable and efficient biomarkers that assist in early diagnosis of pSS would be of great benefit in implementing 
effective interventions. Li et al.12 identified potential biomarkers for pSS disease progression using transcriptome 
sequencing and clinical data by constructing a diagnostic model for pSS using circRNAs and clinical features 
(AUC = 0.93)13. Additionally, Nishikawa et al. reported that serological biomarkers may be potential therapeutic 
targets for  pSS14. To date, the application of machine-learning techniques in clinical settings for diagnosis and 
outcome prediction has already proven successful in the context of a range of  diseases15,16.

The central idea of genomic medicine is that outcomes are improved when genetic diagnoses and genotype-
individualized treatments are augmented by symptom-based diagnostics. To develop a transcriptome diagnostic 
model for pSS, microarray data was gathered from the Gene Expression Omnibus (GEO). Through bioinformatic 
analysis, we identified genes that were differentially expressed in pSS patients by comparing pSS samples with 
samples from patients without pSS. First, RF was used to find the genes that mattered most for classification. We 
developed a diagnostic model for pSS patients using three machine learning algorithms: ANN, RF, and SVM. 
Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance of the chosen 
biomarkers. In addition, we validated the accuracy and reliability of the models by analysis using an external 
GEO cohort (see Fig. 1).

Materials and methods
Data download and processing. We downloaded microarray expression datasets from the National 
Center for Biotechnology Information Gene Expression Omnibus database (NCBI GEO; https:// www. ncbi. nlm. 
nih. gov/ geo/). As shown in Table 1, we searched for four sets of patients with pSS and normal controls. To cre-
ate a large training cohort (GSE137684, GSE137354, and GSE34526), we used the ’ComBat’ algorithm from the 

Figure 1.  Flow-chart illustrating the study protocol.

Table 1.  Source of GEO datasets.

Training set Testing set

GSE23117 GSE40611 GSE84844 GSE66795

Sample Count 15 35 60 160

pSS 10 17 30 131

Normal 5 18 30 29

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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’SVA’ R package (version 3.46.0) to remove batch effects in different training  datasets17. Where multiple probes 
mapped to the same Gene ID, the maximum mean expression value of all probes represented the gene’s expres-
sion level. Probe IDs were converted to gene symbols based on the annotation of the microarray platforms. The 
final training dataset consisted of 57 pSS patients and 53 non-pSS samples. GSE66795 was used as the validation 
dataset.

Screening for differentially expressed genes. In the training set, differentially expressed genes 
(DEGs) were identified using the ‘limma’ package in the ‘R’ software package (version 3.54.2) 18, with an adjusted 
P-value < 0.05 and | log2 fold-change (log2FC) |≥ 1. To create a heat map and analyze clusters of DEGs, we used 
the R package ‘pheatmap’. Heatmap and volcano plot visualizations of the DEGs were performed using R pack-
ages ‘pheatmap’ (version 1.0.12) and ’ggplot2’ (version 3.4.2), respectively.

Functional enrichment analysis and construction of protein‑protein interaction network. To 
better understand the biological significance of the DEGs, we conducted GO and KEGG enrichment analyses 
using the R package ’clusterProfiler’ (version 4.7.1) 19,20. A significantly enriched pathway exhibited a p < 0.05 
and a corrected p < 0.05. The STRING database (https:// cn. string- db. org/) was used to analyze the network of 
protein-protein interactions (PPIs). The network was visualized using the ‘Cytoscape’ software package (v3.7).

Screening for signature genes by random forest. To establish a RF model based on DEGs, the R 
package ‘randomForest’ was adopted (version 4.7-1.1)21. Signature genes were selected based on the minimum 
cross-validation error. We set the number of decision trees to 500 and the number of seeds to 12,345,678. Using 
the Gini index, signature genes in the RF model were evaluated using a gene importance score, and a score of > 1 
was selected. The ‘Heatmap’ function in R was then used to cluster signature genes bidirectionally based on their 
expression profiles.

Construction of the diagnostic model using machine learning. In order to eliminate batch effects 
in the pSS and normal groups, we converted the expression data of signature genes into ‘Gene Score’ using 
the min-max method. The experimental procedure was as follows: firstly, the median expression of the genes 
expressed in all samples was calculated. If an upregulated gene expression in a sample was greater than the 
median expression value of the gene, the expression was marked as 1; otherwise, it was marked as 0. Similarly, 
if a downregulated gene expression in a sample was greater than the median expression value of the gene, the 
expression was marked as 0; otherwise, it was marked as 1. Above all, the ‘Gene Score’ sheet was used for ANN 
analysis. The ANN model was implemented using the "neuralnet" function in R (version 1.44.2)22. With the neu-
ralnet package, you can build feedforward neural networks that include one or more hidden  layers23. A variety of 
popular learning algorithms are included, including backpropagation and resilient backpropagation. Addition-
ally, learning rates and momentum can be customized. For smaller datasets, the neuralnet package provides fast 
and efficient  performance24. The random seed size was set at 12,345,678. The model consisted of three types of 
layers: the input layers, with the ‘Gene Score’ of signature genes; the hidden layers; and the output layers, with 
two nodes (control/pSS). Using the expression ‘GeneExpression’ × ‘NeuralNetworkWeight’, we constructed a pSS 
disease diagnostic model. In addition, we also used two predictive models: RF and SVM. Based on the hub gene 
set, SVM classifiers were constructed using the R package e1071 (version 1.7-13). RandomForest R package 
(version 1.7-11) was used to train the RF classifier model. In the training and validation sets, ROC curves were 
generated using the ‘pROC’  package25 and the AUC represented the diagnostic value.

Identification of immune cell infiltration. With the LM22 signature as a reference,  CIBERSORT26 was 
used to characterize tumor-infiltrating immune cells within the pSS and normal groups in the training set. The 
R function ‘corrplot’ (version 0.92) was used to calculate Spearman’s correlations relating to immune cell infiltra-
tion.

Results
Screening of DEGs and functional enrichment analysis. We combined the three datasets (GSE23117, 
GSE40611, and GSE84844) into a training cohort. The batch effect was mitigated after applying the ‘ComBat’ 
algorithm (Fig. 2A,B). In total, 96 DEGs were found between the pSS and normal samples using the “limma” 
package, of which 85 were upregulated (SAMD9, GIMAP2, and DDX60, among many others) and 11 were down-
regulated (for example, MLXIP, WASF2, and NFIC). Supplementary Table 1 presents the list of DEGs. Gene 
heatmaps (Fig. 2C) and volcano maps (Fig. 2D) were used to represent the DEG distributions. As a result of 
the GO functional classification, DEGs were mostly enriched in defense response to virus and the type I inter-
feron signaling pathways, and in cellular response to type I interferon. KEGG functional analysis revealed that 
96 DEGs were associated with the intestinal immune network for IgA production and the NOD-like receptor 
signaling pathway (Fig. 2E,F). Using STRING online database analysis of the PPI network, we obtained 400 
pairs of proteins (96 proteins in total). Pairs with a combined score of more than 0.6 were visualized using the 
‘Cytoscape’ software. Generally, the higher the degree of a node, the more important it is. CXCL10, NDC80, 
ISG15, SAMD9L, and HERC5 were identified as hub genes of the network. (Fig. 3).

Random forest screening for signature genes. To obtain more reliable pSS signature genes, 96 DEGs 
were input into the RF classifier. For the 1 to 96 variables, a recurrent RF classification was carried out and used 
to calculate the average error rate of the model. Ultimately, the model with 401 trees was selected as the final 

https://cn.string-db.org/
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parameter by analyzing the relationship between the model error and the number of decision trees (Fig. 4A). 
The relative importance of each genus was determined based on MeanDecreaseGini (Fig. 4B). We selected 14 
DEGs with MeanDecreaseGini > 1 as the pSS-signature genes for ANN analysis, 12 of which (SAMD9, DDX60, 
CXCL10, GIMAP2, NDC80, GMNN, CALHM6, TRIM22, SAMD9L, EVI2A, KBTBD8, and DDX60L) were 
upregulated and two of which (MLXIP and NFIC) were downregulated. Figure 4B shows that among the twelve 
variables, SAMD9 and DDX60 were the most important, followed by CXCL10, GIMAP2, MLXIP, and NDC80. 

Figure 2.  Analyses of DEGs in the training dataset. (A, B) Distribution and PCA before and after removing the 
batch effect. (C) Volcano plot of DEGs. (D) Heatmap of the 50 DEGs. (E) GO function enrichment analysis of 
the DEGs. (F) KEGG enrichment analysis of the DEGs.
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The heat plot (Fig. 4C) showed that the activity of 14 pSS signature genes could distinguish pSS samples from 
normal samples.

Construction and validation of the Machine Learning model. The diagnostic model we developed 
for pSS was based on three machine learning algorithms. First, we converted the 14 pSS-signature genes expres-
sion into ‘Gene Score’ in order to perform an ANN analysis. The ANN consisted of three layers (input, hid-
den, and output). The number of nodes in the input and output layers were 14 (number of input signature genes) 
and two (pSS or HC (non-pSS)), respectively (Fig. 5). The pSS-specific scoring model was formulated using 
the expression ‘GeneExpression’ × ‘NeuralNetworkWeight’. The area under the ROC curve was used to measure 
performance. In the training dataset, the AUC was 0.972, accuracy was 0.9812, precision was 1.00, recall was 
0.9661, and F1-score was 0.9828 (Fig. 6A and Supplementary Table 2). In the test dataset, the AUC was 0.766, 
accuracy was 0.7714, precision was 0.9277, recall was 0.5878, and F1-score was 0.7196 (Fig. 6B and Supplemen-
tary Table 3).

The results of the study indicate that in the training set, the RF model achieved perfect scores (values = 1) 
for AUC, accuracy, precision, recall, and F1-score, while the Support Vector Machine (SVM) model achieved 
a slightly lower AUC score of 0.9742, with accuracy, precision, recall, and F1-score values of 0.9455, 0.9322, 
0.9649, and 0.9483, respectively (Fig. 6C and Supplementary Tables 4 and 5). In the testing set, the RF model 
achieved an AUC score of 0.8321, with accuracay, precision, recall, and F1-score values of 0.8188, 0.8188, 1.00, 
and 0.9003, respectively. Similarly, the SVM model achieved an AUC score of 0.8223, with accuracy, precision, 
recall, and F1-score values of 0.8188, 0.8188, 1.00, and 0.9003, respectively (Fig. 6D and Supplementary Tables 6 
and 7). The results indicated that this model may discriminate effectively between pSS and non-pSS samples. It 
was the RF model that produced the best prediction performance out of the three models tested. In the end, we 
constructed a diagnostic model based on 14 genes using RF.

Immune cell infiltration analysis. We used CIBERSORT to analyze 22 immune cell phenotypes in the 
training set to determine whether they were associated with the pSS and non-pSS groups and with immune 
infiltration. The following phenotypes were found to be relatively abundant in pSS: naïve and memory B cells; 
CD4 memory resting, CD4 memory activated, and γδ T cells; M0 and M2 macrophages; dendritic cells; and both 
activated and resting mast cells. Meanwhile, in HC, the following phenotypes were relatively abundant: plasma 
cells; CD8 and regulatory (Tregs) T cells; resting NK cells; monocytes; mast cells; and neutrophils (Fig. 7A). The 
measured correlation for immune cell infiltration is shown in Fig. 7B.

Discussion
Currently, pSS is diagnosed based on functional (Schirmer’s test), serological (anti-Ro/SSA), and histological 
(labial minor salivary gland or salivary gland)  tests27,28. However, due to a combination of the heterogeneity of the 
disease, its complex clinical phenotypes, and the lack of effective biomarkers for early screening, most patients are 

Figure 3.  A network view of the pSS PPI network. Color is used to show the degree, with yellower genes 
indicating a higher degree, and bluer genes indicating a lower degree.
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diagnosed with an advanced form of the disease on presentation. Thus, it is crucial to develop effective screening 
tools and assess risk factors early.

We obtained four datasets (GSE23117, GSE40611, GSE84844, and GSE66795) from the GEO in order to 
build and validate a diagnostic model for pSS. We identified 96 genes that are expressed differently between the 
pSS and HC groups; enrichment analysis indicated that these DEGs were mostly involved in immunological 
processes. The ‘defense response to viruses’ and ‘type I interferon signaling pathway’ were the most enriched 
GO terms. These results are consistent with previous studies that have shown a relationship between interferon 
signaling and pSS. Titers of anti-Ro and anti-La autoantibodies are positively associated with type I interferon 
overexpression genes even in  pSS29,30. Type I interferons are important components of the innate immune system 
that facilitate inhibition of viral infections via adaptive  immunity31. The intestinal immune network governing 
IgA production was observed to be the most enriched KEGG pathway in the pSS group. In normal physiology, 
host-gut microbiota interactions are complex and multifaceted. Exposure to gut microbes stimulates continuous 
diversification of B-cell repertoires and constant production of IgA antibodies, both T-dependent and T-inde-
pendent32. Our analysis of GO and KEGG pathways revealed that these differentially expressed proteins could 
be involved in the development of pSS.

Fourteen DEGs were identified by RF analysis: SAMD9, DDX60, CXCL10, GIMAP2, NDC80, GMNN, 
CALHM6, TRIM22, SAMD9L, EVI2A, KBTBD8, DDX60L, MLXIP, and NFIC. Our findings are consistent with 
those of previous studies. AMDS9 is a genetically regulated anti-inflammatory factor in patients with rheumatoid 
 arthritis33.

It is estimated that DDX60L and DDX60 share 70% of their amino acid  sequences34. The DDX60L gene is 
activated by interferons. In the innate immune system, DDX60L proteins recognize viral RNA molecules in order 

Figure 4.  Random Forest analysis. (A) Correlation plot between RF trees and model error. (B) Gini coefficients 
were used in the RF classifiers to provide the following results. The importance index is on the x-axis, and the 
genetic variable is on the y-axis. (C) The heatmap of fourteen key genes generated by RF.
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Figure 5.  Results of artificial neural networks visualized.

Figure 6.  Evaluation of training and validation datasets using ROC curves and their AUC values. (A) ROC 
curve of ANN in training set. (B) ROC curve of ANN in testing set. (C) ROC curve of RF and SVM in training 
set. (D) ROC curve of RF and SVM in testing set.
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to protect against viral  infections35. So far, there is little information available about the function of the DDX60L. 
It has been shown that DDX60L is associated with HIV host  factors36, and childhood  obesity37. This gene encodes 
a component of the NDC80 kinetochore complex, which is responsible for organizing and stabilizing interac-
tions between microtubules and  keratochromas38. The GMNN gene regulates the cell cycle. By inhibiting DNA 
replication licensing and histone H4 acetylation, GMNN promotes cell  proliferation39. It is thought that CALHM6 
regulates infection-related  immunity40. Apart from pSS, a number of other autoimmune diseases are thought to 
be influenced by CXCL10, which recruits immune cells to sites of  inflammation41. The GIMAP family of pro-
teins regulates lymphocyte apoptosis by acting as GTPases of immunity-associated  proteins42. In lymphocytes, 
GIMAP2 heterodimerizes with the GIMAP7 protein to activate GIMAP7  function43,44. According to these stud-
ies, multiple GIMAP proteins contribute to the survival of T cells. Approximately 70% of pSS patients who meet 
the diagnostic criteria have serum autoantibodies against several intracellular proteins (e.g., TRIM21 (Ro52), 
La/SSB)45,46. Ro52/TRIM21 plays a crucial role in antibody-dependent pathogen  neutralization47. A tumor sup-
pressor, SAMD9L is repressed by the p53 pathway in breast and hepatocellular  tissues48. In hematopoietic tissue, 
SAMD9L plays a crucial role in regulating cell  proliferation49. It is possible that Evi2a is a lymphocyte-specific 
tumor suppressor, which could play a role in BCR  activation50. BBK protein that has been identified as being 
found in the Golgi apparatus and translocating to the forming spindle after KBTBD8 is the first entry into 
 mitosis51. The findings presented here indicate that KBTBD8 is also essential for the healthy function of ovarian 
 epithelium52. The MLXIP interacts with Max-like protein X (MLX) to activate transcription. Ovarian cancer cells 
migrate towards MLXLP, which was associated with a poor  prognosis53. In mice, NFIC regulates the expression 
of PTEN/SENP8 and inhibits rheumatoid arthritis-induced  inflammation54. Many of the variations have not yet 
been reported as being linked to pSS but have strong associations with other autoimmune disorders. A deeper 
understanding of the complex role these genes play in pSS requires further research.

We developed a diagnostic prediction model for patients with pSS utilizing machine learning algorithms, 
namely ANN, RF, and SVM, based on 14 genes. The diagnostic models for pSS using the aforementioned algo-
rithms were successfully designed and achieved AUCs of 0.972, 1.00, and 0.9742 in the training and testing 

Figure 7.  A review of the immunological landscape of pSS. (A) Twenty-two immune-cell subtypes were 
compared between the HC and pSS groups. (B) Correlation analysis of infiltrating immune cells.
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datasets, respectively. However, the AUCs for the validation set were 0.766, 0.8321, and 0.8223. The prediction 
properties of our model were deemed satisfactory. Nevertheless, the sample size of our cohort was limited, and 
further studies with larger-scale cohorts are required to validate our findings.

In addition, we examined the immune microenvironment of pSS. Multiple studies have shown that B 
cells are associated with disease activity in  pSS55, while CD4 + T cells in pSS undergo premature aging due to 
 lymphopenia56. A significant increase in dendritic cells has been observed in patients with pSS, which is closely 
related to Type I  interferons29; overexpression has also been observed in mast cells, which produce transforming 
growth factor β1 and promote tissue  fibrosis57. Conversely, a major reduction in NKT-like cells has been observed 
in pSS, which may be contributing to the pathogenesis of the  disease58. Researchers may be able to identify novel 
immunotherapies for pSS by further studying the host immune response.

This study has several limitations. First, for further validation of the diagnostic model, large cohorts are 
needed. Second, the predictive performance of the different pSS diagnostic model needs to be validated in larger 
cohort.

Here, we proposed and externally verified a pSS diagnostic model. Our model is both specific and sensitive 
and shows great potential as a basis for the development of new diagnostic tools for pSS. We also explored the 
immune status of pSS, and our data provide the impetus for further analyses in order to gain a deeper understand-
ing of the condition. Further research into the possible applications of our model in clinical settings is needed 
in order to improve patient outcomes.

Data availability
The datasets generated during the current study are available in the GEO database (http:// www. ncbi. nlm. nih. 
gov/ geo/) with the accession no GSE23117, GSE40611, GSE84844, and GSE66795.
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