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Using machine learning to detect 
coronaviruses potentially infectious 
to humans
Georgina Gonzalez‑Isunza 1, M. Zaki Jawaid 4, Pengyu Liu 1, Daniel L. Cox 4, 
Mariel Vazquez 1,3 & Javier Arsuaga 2,3*

Establishing the host range for novel viruses remains a challenge. Here, we address the challenge of 
identifying non-human animal coronaviruses that may infect humans by creating an artificial neural 
network model that learns from spike protein sequences of alpha and beta coronaviruses and their 
binding annotation to their host receptor. The proposed method produces a human-Binding Potential 
(h-BiP) score that distinguishes, with high accuracy, the binding potential among coronaviruses. 
Three viruses, previously unknown to bind human receptors, were identified: Bat coronavirus 
BtCoV/133/2005 and Pipistrellus abramus bat coronavirus HKU5-related (both MERS related viruses), 
and Rhinolophus affinis coronavirus isolate LYRa3 (a SARS related virus). We further analyze the 
binding properties of BtCoV/133/2005 and LYRa3 using molecular dynamics. To test whether this 
model can be used for surveillance of novel coronaviruses, we re-trained the model on a set that 
excludes SARS-CoV-2 and all viral sequences released after the SARS-CoV-2 was published. The results 
predict the binding of SARS-CoV-2 with a human receptor, indicating that machine learning methods 
are an excellent tool for the prediction of host expansion events.

Most novel viral human diseases, particularly those that have caused recent epidemics, are known to have origi-
nated in non-human animal hosts1–3. Host expansion, the ability of a virus to cross species, is a key step in the 
evolution of such viruses3–5. COVID-19 is a recent example of a disease caused by a host expansion event that 
permitted SARS-CoV-2, a SARS-related coronavirus, to propagate from a yet unknown non-human animal to 
humans5. Alpha and beta coronaviruses affect a wide range of animals interacting with humans, including farm 
animals and camels, thus facilitating zoonotic transmission6, 7. Moreover, all seven human coronaviruses belong 
to either the alpha or beta coronavirus genus7. While several studies have confirmed bats and rodents as natural 
hosts for the alpha and beta coronaviruses affecting humans, there is evidence of intermediate hosts that facilitate 
evolutionary events, leading to strains that eventually propagate in humans1, 6, 8. Determining which non-human 
animal viruses may infect humans remains a challenge.

Experimental evidence is still the gold standard used to determine whether a virus can infect a host9, 10. 
However, the complete host range of a virus is often unknown. Recent studies have used diverse in-silico tech-
niques to predict viral hosts and host expansion events, including qualitative expert analysis11, probabilistic12 
and machine learning (ML)13–17models.

The problem of host prediction is commonly addressed using similarity analysis of viral genomes, where 
similar genomes are more likely to share the same hosts10, 18. Host prediction through genome similarity can be 
achieved by alignment-based or alignment-free approaches17, 19. Computational efficiency of alignment-based 
approaches decreases with the product of the lengths of the sequences being aligned19, 20 and are sensitive to 
genome rearrangements19–21. These observations suggest alignment-free approaches may be preferred when 
datasets are very large or sequences in the dataset are the product of recombination events. However, most 
alignment-free approaches disregard the relative position of the residues along the sequence14.

Some alignment-free studies aimed at predicting the host of a specific species of virus13, 14, while others15–17 
created models to uncover signals common to different viruses (e.g. Zika, influenza, coronavirus) affecting a 
large group of hosts such as Chordata (vertebrates and others)15, 17. Although common signals between com-
pletely different families of viruses are useful for host prediction, these studies include only a limited number 
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of representatives of each taxa across hosts and disregard the specific properties of the virus, preventing further 
mechanistic analysis of host expansion pathways.

In this work, we study the potential of alpha and beta coronaviruses to cause human infection. In particular, 
we aim at predicting whether the spike (S) protein of a coronavirus binds a human receptor. The S protein deco-
rates the exterior of the viral envelope and is key in host expansion since its binding to the host receptor protein 
triggers the infection process22–24. Starting with a collection of amino acid sequences from the S protein, we build 
a machine learning model that predicts binding to a human host receptor. We propose a skip-gram model which 
uses a neural network to transform the sequences into vectors. These vectors encode the relationship between 
neighboring protein sequences of length k (i.e. k-mers). A classifier uses these vectors to score each sequence 
according to its binding potential to a human receptor. We call this score the human-binding potential (h-BiP). 
We use a dataset consisting of 2,534 unique spike sequences from alpha and beta coronaviruses spanning all 
clades and variants (see “Methods”). The classifier is highly accurate, and its h-BiP score is highly correlated 
with sequence identity against human viruses. Moreover, the proposed h-BiP score also discriminates the bind-
ing potential in cases with similar sequence identity and detects binding in cases of low sequence identity. We 
identify three viruses, Bt13325, Pipistrellus abramus bat coronavirus HKU5-related (HKU5r)26 and LYRa327, 
with high h-BiP values and yet unknown human binding properties. Consistent with this finding, a phylogenetic 
analysis shows that Bt133, HKU5r and LyRa3 are related to non-human viruses known to bind human recep-
tors. Furthermore, a multiple sequence alignment of the receptor binding motifs (RBM) of Bt133 and of LYRa3 
with their related viruses revealed that they conserve the contact residues with the human receptor. Molecular 
dynamics (MD) of the receptor binding domain (RBD) validates binding and identifies contact residues with 
human receptors. Finally, we test whether this model can be used for the surveillance of host expansion events. 
We emulate the conditions prior to SARS-CoV-2 emergence by excluding from the training set all coronavirus 
sequences published after December 31st, 2019 and find that the re-trained model predicts binding of the wild 
type of SARS-CoV-2 to a human receptor.

Results
h‑BiP: a machine learning approach for scoring human‑binding potential of coronavirus 
sequences.  We propose a human-Binding Potential (h-BiP) score that assigns a value between 0 and 1 to 
spike proteins of alpha and beta coronaviruses. The outline of the method to obtain h-BiP is shown in Fig. 1, and 
a full description is available in “Methods” section. First, we partitioned each protein sequence as a sequence 
of trimers, which we used to produce trimer embeddings in a high-dimensional Euclidian space. We selected a 
skip-gram model28 to ensure that each trimer embedding was informed by neighboring trimers within a context 
window. Next, an embedding for the entire protein sequence was generated by adding all of its trimer embed-
dings. Each coronavirus, together with all its available variants in the dataset, was labeled as positive or negative 
according to its published binding annotation to any, known or unknown, human receptor (Table 1). To produce 
the h-BiP score, we built a logistic regression classifier on the sequence embeddings to predict binding. Viruses 
with h-BiP score of 0.5 or higher were classified as likely to bind a human receptor.
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Figure 1.   Methodological workflow of the human Binding Potential (h-BiP) score. Left: preprocessing 
sequences from alpha and beta coronaviruses. Top: whether the S protein was available from annotation or by 
extraction from whole-genome, the dataset consists of 2534 unique S protein sequences. Each protein sequence 
is transformed into a trimer (3 amino acid) representation by sliding a window one amino acid at a time. 
Bottom: we curated the host field and annotated the sequences according to their binding status to human 
receptors. Regardless of the host, a virus is considered positive for binding if there is experimental evidence of 
binding to a human receptor. Right: a skip-gram model uses a neural network to generate trimer embeddings 
of a fixed dimension (d = 100). These trimer embeddings are numerical vectors that encode information 
from all neighboring trimers within a context window in the protein sequence. Next, we compute the final 
sequence embedding (d = 100) by adding up all of its trimer embeddings. The scatterplot shows a visualization 
for the embeddings from all viruses after using t-distributed stochastic neighbor embedding (tsne) to reduce 
dimensionality. Finally, all sequence embeddings feed a classifier (logistic regression) to produce the h-BiP score 
that learns from the binding information of alpha and beta coronaviruses. An h-BiP score greater than or equal 
to 0.5 flags the virus as likely for human binding.
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The h‑BiP score is highly accurate in predicting binding to human receptors for alpha and beta 
coronaviruses.  We split the data into training (85%) and testing sets (15%). Human coronaviruses account 
for 61% of the dataset and 50% of the non-human coronaviruses correspond to Porcine epidemic diarrhea virus. 
To ensure that training and test dataset have a similar composition we stratified by the following groups: hCoV-
OC43, hCoV-HKU1, MERS, SARS-CoV-1, SARS-CoV-2, hCoV-NL63, hCoV-229E, other MERS-related, other 
Sarbecovirus, other Betacoronavirus, porcine epidemic diarrhea virus, other Alphacoronavirus.

Table 2 shows the prediction results for the full data set. The method achieved 99% accuracy, 99% sensitiv-
ity and 99% specificity in the test data set (see Supplementary Fig. S1). A total of 805 sequences had an h-BiP 
score less than 0.5. Of these, 796 were true negatives. While binding status was unknown for most of these 
sequences, viruses such as BM48-31 and Rf1 for which experimental studies found no evidence of binding to a 
human receptor38 were confirmed as non-binding by h-BiP (i.e. h-BiP score < 0.5). Three viruses with unknown 
binding status had an h-BiP score ≥ 0.5, suggesting they may potentially bind human receptors. Bat coronavirus 
BtCoV/133/2005 (Bt133), Pipistrellus abramus bat coronavirus HKU5-related (HKU5r) and Rhinolophus affinis 
coronavirus isolate LYRa3. Nine viruses were classified as false negatives (see Table 3). The h-BiP scores of these 
viruses ranged from 0.13 to 0.44.

The h‑BiP score is consistent with sequence identity and expands viral classification.  We veri-
fied that the proposed model, while consistent with sequence alignment results, provides additional information. 
Percent sequence identity (% identity) of a newly detected virus with known human viruses10, 18 is often used to 
assess human infectivity. We computed the pairwise % identity between each of the 7 human coronaviruses and 
the S protein sequences in our dataset and selected the maximum for each sequence. All cases with 93 or higher 
protein % identity with known human coronaviruses had a h-BiP score greater than 0.5. Furthermore, the Pear-

Table 1.   Viruses with evidence of binding to a human receptor. Dataset includes all variants from each of 
these coronaviruses.

Alpha and beta coranaviruses that bind to a human receptor

 RaTG1329, 30, LYRa1129, 31, WIV18, 29, 32, WIV168, 32, RsSHC01429, 31, Rs423131, Rs408431, 33, Rs487434, Rs732734, Rs423134, Khosta-135, 
Khosta-235, Ty-HKU424, 36, PCoV30, A022G32, SZ332, B039G32, DcCoV HKU2337, BCov isolate Alpaca44, HKU2536, YN2018B33, 
Rs940133, Rs336733, Rs408138, As652638, Rs423738, Shaanxi 201138, Yunnan 201138, HKU3-1338, NeoCoV39, HKU540, PDF218039

Human coronaviruses found in non-humans hosts

 SARS-CoV-2 in multiple animals, hCov-229E: camel alphacoronavirus, hCoV-OC43 in chimpanzee, MERS Middle East strain in 
camelids41, hCov-229E: 229E-related bat CoV, hCov-229E: Alpaca respiratory CoV, SARS-CoV in minks, SARS-CoV-2 in minks, 
SARS-CoV civet, MERS African strain in camelids42

Human coronaviruses found in humans hosts

 HEC, hCoV-229E, hCoV-HKU1, hCoV-NL63, hCoV-OC43, MERS, SARS-CoV, SARS-CoV-2

Table 2.   Confusion matrix for h-BiP on alpha and beta coronaviruses. TN true negatives, FN false negatives, 
FP false positives, TP true positives.

h-BiP

Binds to human receptor

TotalNegative/unknown Positive

Negative (h-BiP < 0.5) TN = 796 FN = 9 805

Positive (h-BiP ≥ 0.5) FP = 3 (unknown) TP = 1726 1729

Total 799 1735 2534

Table 3.   Viruses known to bind human receptors for which h-BiP is smaller than 0.5 (false negatives).

Accession Virus Human receptor h-BiP score

JX993987 Bat coronavirus Rp/Shaanxi2011 0.163

KY417142 Bat SARS-like coronavirus isolate As6526 0.146

KY417147 Bat SARS-like coronavirus isolate Rs4237 0.221

GQ153548 Bat SARS coronavirus HKU3-13 0.208

KY417143 Bat SARS-like coronavirus isolate Rs4081 0.129

MZ190138 Bat SARS-like coronavirus Khosta-2 ACE2 0.444

ACJ35486 Human enteric coronavirus 4408 9–0-acetylated sialic acid 0.244

ACT11030 Human enteric coronavirus 4408 9–0-acetylated sialic acid 0.261

ABI93999 Bovine coronavirus isolate Alpaca N-acetyl-9-O-acetylneuraminic acid 0.176
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son correlation between these maximum % identities and our proposed h-BiP score was 0.96 (Fig. 2). Hence, we 
conclude that our method is consistent with standard sequence identity approaches.

Our study identified 26 bat viruses with maximum % identity < 83% and an h-BiP ≥ 0.5. There is experimental 
evidence that these viruses bind to a human receptor, except for Bt133 and HKU5r (Table 1). A protein BLAST43 
against all coronaviruses confirmed that Bt133 and HKU5r have a low % identity with any human coronavirus. 
The h-BiP score also discriminates between viruses that have similar % identity. For instance, the spike proteins 
from bovine and pangolin coronaviruses have % identities that range from 90 to 92% (see Fig. 2). The h-BiP 
scores for pangolin coronaviruses and bovine coronaviruses are greater than 0.97 and less than 0.4, respectively. 
This finding agrees with current experimental results that show binding of pangolin coronaviruses to human 
receptors30. To our knowledge, only the alpaca isolate from Bovine coronaviruses44 has been reported for human 
infections.

The h‑BiP score predicts that the S protein of viruses Bt133, HKU5r and LYRa3 bind to human 
receptors.  Our method assigned a h-BiP score > 0.5 to Bt133, HKU5r and LYRa3, suggesting that these three 
viruses with unknown human binding status may bind to a human receptor. Bt133 is a beta coronavirus from the 
Merbecovirus subgenus, and it is phylogenetically related to Ty-HKU4 (see Fig. 3a), a bat coronavirus for which 
there is experimental evidence of binding to human receptor dipeptidyl peptidase 4 (hDPP4)24, 36. HKU5r also 
belongs to the Merbecovirus subgenus and it is phylogenetically related to HKU5 (Fig. 3a). While experimental 
evidence shows that HKU5 binds human cells, it is known that it does not bind hDPP424. In fact, the specific 
human receptor of HKU5 still remains unknown40. LYRa3 is a beta coronavirus from the Sarbecovirus subgenus, 
and it is phylogenetically related to Rhinolophus affinis coronavirus isolate LYRa1127 (see Fig. 3b), which binds 
human receptor angiotensin-converting enzyme 2 (hACE2)29, 31. Host recognition and cell entry is mediated by 
the S protein22–24. The high sequence identity (97%) that the S protein of Bt133 shares with that of Ty-HKU4 
suggests that Bt133 binds to hDPP4. Similarly, a 99% S protein sequence identity between LYRa3 and LYRa11 
suggests that LYRa3 binds to hACE2. The S protein of HKU5r has a 93% sequence identity with that of HKU5. 
This high % sequence identity between HKU5 and HKU5r together with the high h-BiP value, suggests that 
HKU5r binds a human receptor different from hDDP4.

The S protein binds to the human receptor through the receptor binding domain (RBD). The RBD is com-
posed of a core domain and the receptor binding motif (RBM) that comes in direct contact with the host 
receptor24. A multiple sequence alignment of Bt133 with typical members of the Merbecovirus subgenus at the 
RBM (see Fig. 4a) revealed that Bt133 conserves all 8 contact residues used by Ty-HKU4 to bind hDPP424, 36. 
Thus, suggesting that Bt133 binds hDPP4. Figure 4a also shows a region of the HKU5 genome that aligns with the 
RBM of Ty-HKU4. When compared to Ty-HKU4, this region of HKU5 shows two deletions and different amino 
acids at the contact residues. These observations are consistent with the lack of binding of HKU5 to hDPP4.

LYRa3 and LYRa11 are phylogenetically related to SARS-CoV Tor2, and both share 89.7% sequence identity 
at the S gene. A multiple sequence alignment for related viruses within the Sarbecovirus subgenus shows that 
LYRa11 and LYRa3 are identical at the RBM except at residue H441. Twelve of the 17 contact residues that 
SARS-CoV Tor2 uses to bind to hACE2 are conserved (see Fig. 4b). In contrast, experimental studies from bat 

Figure 2.   Comparison of sequence % identity and h-BiP score for alpha and beta coronaviruses. The x-axis 
represents the maximum % identity computed from a particular virus against the seven known human 
coronaviruses. The y-axis shows the h-BiP score. Each point in the graph represents a sequence in the dataset. 
Regardless of their host, red crosses depict sequences of viruses known to bind a human receptor, and grey 
points represent those viruses not known to do so. Points above the blue dashed horizontal line have a h-BiP 
score greater or equal than 0.5 (i.e. positive for binding). The blue dashed vertical line is the 97% identity 
reference line. The spike protein of bat coronavirus RaTG13 (depicted with a red star) is known to bind to 
human receptor hACE2 and it has a 97.46% amino acid identity against SARS-CoV-2 and a 0.999 h-BiP score. 
Three viruses with h-BiP ≥ 0.5 and yet unknown binding, Bt133, HKU5r and LYRa3 are highlighted.
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Figure 3.   Phylogenetic tree for viruses related to Bt133, HKU5r and LYRa3 at the S gene. Pruned version 
of maximum-clade-credibility tree generated from 424 alpha and beta coronaviruses (full tree available in 
Supplementary Fig. S2). Each leaf shows the host, the name of the virus and the binding status separated by a 
pipe symbol. Non-human viruses with published binding annotation to a human receptor and human viruses 
have a binding status of 1 (0 otherwise). Solid gray triangles at the left of a leaf represent multiple variants in 
the particular leaf. (a) Phylogenetic tree for the Merbecovirus subgenus. Bat coronavirus Bt133 and HKU5r 
are phylogenetically related to Ty-HKU4 and HKU5r respectively. (b) Phylogenetic tree for the Sarbecovirus 
subgenus. LYRa3 is phylogenetically related to LYRa11.

Figure 4.   Multiple sequence alignment for phylogenetically related viruses at the RBM. Multiple sequence 
alignment was performed with MUSCLE68 and produce visualizations with Jalview69. A darker shade shows 
residues conserved in at least 50% of the sequences. (a) Comparison of viruses related to Bt133 within the 
Merbecovirus subgenus. Ty-HKU4 and MERS are viruses known to bind human receptor hDPP4. Experimental 
studies found no evidence of binding from HKU5 to hDPP4. Bt133 conserves all contact residues used by 
Ty-HKU4 to bind hDPP4 in 24 (marked with a pink asterisk). MERS uses four of the same contact residues36 
than Ty-HKU4 (indicated by a blue triangle). HKU5, the only virus in the list unable to bind hDPP4, does not 
share any of the 8 contact residues from Ty-HKU4, and it shows several deletions at the RBM. (b) Comparison 
of viruses related to LYRa3 within the Sarbecovirus subgenus. LYRa11 is phylogenetically related to SARS-CoV 
and there is experimental evidence of binding from both to human receptor hACE2. LYRa11 conserves 12 (out 
of 17) of the contact residues used by SARS-CoV29, 31 (marked with a pink asterisk). At the RBM, LYRa3 differs 
from LYRa11 only at H441, which is not a contact residue used by SARS-CoV. Experimental studies found no 
evidence of binding from ZC45 to hACE2. ZC45 conserves only 2 out of the 17 contact residues from SARS-
CoV, and it shows several deletions at the RBM.
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coronavirus ZC4545 did not find evidence of binding to hACE229, 31. When compared to SAR-CoV Tor2, ZC45 
shows three deletions at the RBM and different amino acids at all locations of the contact residues of SAR-CoV 
Tor2, except for one at Y449. These results suggest that LYRa3 binds to hACE2.

Molecular dynamics confirm binding of S to human receptors for coronaviruses Bt133 and 
LYRa3.  Phylogenetic analysis, alignment results and the h-BiP score suggest that bat coronaviruses Bt133 
and LYRa3 potentially bind to human receptors and are, therefore, candidates for host expansion to humans. 
We then used molecular dynamics simulations (MD) to validate binding in silico and to determine their contact 
residues. Three-dimensional structures of the receptor binding domain (RBD) bound to their corresponding 
human receptor for Lyra3 and Bt133 were obtained from crystal structure data and molecular modeling (see 
“Methods”).

The S protein of LYRa3 shares 99% identity with LYRa11 with one single point mutation at the RBD. Since 
LYRa11 is known to bind hACE229, 31, we expect LYRa3 to have similar binding properties. Results from three 
independent simulations showed that the average H-bond count between the RBD of LYRa3 and hACE2 was 
5.1 (see Table 4). Similarly, the average number of H-bonds between the RBD of LYRa11 and hACE2 was 5.8 
H-bonds. The difference in the number of H-bonds between LYRa3 and LYRa11 was not statistically significant 
(p-value: 0.2947), suggesting that they have comparable binding energies. Two different estimations for the bind-
ing free energy (see “Methods”) of both complexes confirmed that the difference was not statistically significant 
(HawkDock p-value: 0.7599). A breakdown of the different types of interactions is available at Supplemen-
tary Table S1 (PRODIGY46) and Supplementary Table S2 (HawkDock47). The contact residues for LYRa3 were 
unknown. Therefore, we identified all of its contact residues during the course of the simulation (Supplementary 
Table S3). Our simulations revealed that contact residues G492, N477, T490, G486 and Y485 were present in at 
least 45% of the sampled conformations. A comprehensive list of all the bonds and their respective frequencies 
are available in (Supplementary Table S3).

Next, we analyzed the interaction between the S protein of Bt133 and hDPP4. Despite containing 13 muta-
tions in its RBD, alignment at the RBM showed that the contact residues of Ty-HKU4 are also present in Bt133. 
Results from three independent simulations showed that the average count of H-bonds was 5.4 for Bt133 and 
6.0 for Ty-HKU4 (Table 4). The difference in average values was not statistically significant (p-value: 0.3780), 
suggesting that Bt133 and Ty-HKU4 have comparable binding energies when bound to hDPP4. The binding 
free energy from the two estimations of both complexes (Supplementary Tables S1 and S2) confirmed that the 
difference was not statistically significant (HawkDock p-value: 0.6009).

Our simulations confirmed all reported contact residues between Ty-HKU4 and hDPP424 except for Q544. 
Our simulations also revealed contact residues N468, S465 and Y460, which have not been previously reported 
(Supplementary Table S4). Figure 5 shows contact residues for both Ty-HKU4 (a) and Bt133 (b). Only two con-
tact residues were frequently observed in both viruses. A bond between E518 (magenta) in the RBD and Q344 

Table 4.   Average H-bonds between RBD and human receptor. Average number of H-bonds between the RBD 
and the human receptor by MD simulation (Sim1, Sim2, Sim3). The average was computed from all available 
sampled conformations after reaching equilibrium (4 ns). The average number of H-bonds of the three 
simulations and corresponding standard error is also shown. A t-test was performed to compare the means 
between LYRa11 and LYRa3 and between Ty-HKU4 and Bt133. The p-value corresponds to the two tailed test.

Virus Sim1 Sim2 Sim3 Average (n = 3) Std. error p-value

LYRa11 6.6 5.8 5.1 5.8 0.75

LYRa3 4.3 5.5 5.5 5.1 0.73 0.2947

Ty-HKU4 6.4 5.6 6.1 6.0 0.41

Bt133 6.6 4.8 4.8 5.4 1.03 0.3780

Figure 5.   Most frequent contact residues for Ty-HKU4 and Bt133. The RBD is shown in light blue and the 
DPP4 human receptor in grey. Residues involved in frequent (average ≥  45% in Supplementary Tables S4 and 
S5) H-bonds are depicted in different colors. (a) Frequent contact residues for Ty-HKU4 are E518 (magenta), 
N514 (red), K506 (purple) and K547 (orange). (b) Frequent contact residues for Bt133 are E518 (magenta), 
N514 (red) and Q515 (yellow).
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in hDPP4, and between N514 (red) in the RBD and R317 in hDPP4, were present in at least 94% of the sampled 
conformations. Two additional contact residues were present in at least 50% of the sampled conformations from 
Ty-HKU4: K506 (purple) and K547 (orange). However, these two contact residues were present in less than 39% 
sampled conformations of Bt133 (Supplementary Table S5). Instead, only one additional contact residue was 
present for Bt133 in more than 70% of the sampled conformations: Q515 (yellow).

The h‑BiP score predicts binding of viruses that do not use the canonical receptor.  Some coro-
naviruses are known not to bind canonical receptors24, 39. For instance, two recently reported MERS-related 
coronaviruses PDF2180 and NeoCoV have been shown to bind human ACE2 instead of hDPP439. The h-BiP 
scores for these two betacoronaviruses were 0.95 and 0.88 respectively. These results combined with an h-BiP 
score of 0.98 for HKU5 (positive for binding) indicates that h-BiP can properly classify binding of coronaviruses 
to human receptor independently of the receptor preference of the virus.

The h‑BiP score predicts binding of SARS‑CoV2 to hACE2.  We explored whether the proposed 
method can be used to detect potential human-infection of novel coronaviruses. To test this hypothesis, we 
repeated the study and computed a h-BiP score for SARS-CoV-2 after excluding all SARS-CoV-2 viruses and all 
viral sequences uploaded to the database after Dec. 31, 2019 from the training set. This new data set consisted of 
1272 viruses with 540 labeled as positive for binding to a human receptor. In this case the h-BiP value of SARS-
CoV2 was 0.62. The model had sensitivity and specificity values of 99%. We conclude the proposed method 
would have predicted binding of SARS-CoV-2 to a human receptor in the early stages of the pandemic.

Discussion
The COVID-19 pandemic has demonstrated the need to develop tools to predict spillover events. At the cellular 
and molecular level, three key steps, which are yet to be fully understood, are required for a spillover event: the 
evasion of the host’s immune system by the virus4, the infection of the cell by the virus23, 24 and the replication 
of the virus in the new host cell4, 23. In coronaviruses, the infection event is mediated by the binding of the viral 
spike (S) protein to the host receptor23, 24. The vast abundance of recently collected S protein data opens the 
way for machine learning (ML) methods that will help accelerate the pace of discovery of virus candidates for 
spillover events.

Here, we propose a new machine learning approach to predict the binding of alpha and beta coronaviruses to a 
human receptor. We call this model the human-Binding Potential (h-BiP). As an alignment-free approach, h-BiP 
overcomes limitations associated with multiple sequence alignment (msa) methods, such as the lack of robustness 
against genomic rearrangements or low computational efficiency (O(nm) for msa)19. While most alignment-free 
approaches rely on k-mer counts, which disregards their relative position in the genome14, h-BiP uses a neural 
network to create k-mer embeddings through a context window. These embeddings encode information about 
their neighboring k-mers in the sequence, and the resultant classifier is highly accurate.

Viruses with known human receptor are overrepresented in the group of viruses labeled as having evidence of 
binding and consequently the method has an inherent bias to correctly classify those viruses with known human 
receptor. To account for this bias, we included viruses with unknown human receptor. Our method benefits from 
this information which is in contrast with msa and biophysical methods that require knowledge on the position 
of the RBM or binding residues.

The h-BiP score is highly correlated with % identity against human coronaviruses. Yet, the classifier discrimi-
nates among viruses with similar % identity and identifies viruses with low % identity that may bind to human 
receptors. Such is the case of bat coronavirus LYRa3, which has a similar % identity value to other viruses with 
unknown binding status to human receptor such as HKU14; and the cases of Bt133 and Pipistrellus abramus 
HKU5-related virus (HKU5r), with low % identity (67.2% and 64.1% resp.). However, the three of them have an 
h-BiP score greater than 0.5. The method suggests that these viruses with previously unknown binding status 
may bind to a human receptor. Phylogenetic analysis revealed that they are closely related to viruses known to 
bind human receptors. A pairwise alignment between the RBDs of Ty-HKU4 and Bt133 revealed that Bt133 
conserves all 8 contact residues used by Ty-HKU4 to bind hDPP4 despite having 13 mutations in the RBD. On 
the other hand, with the exception of residue 441, the protein sequences of LYRa3 and LYRa11 are identical at 
the RBM. These findings suggest that Bt133 and LYRa11 bind to hDPP4 and hACE2, respectively.

We detected HKU5r, with a h-BiP score of 0.99. HKU5r has a 93% identity in the S protein with HKU5. 
Interestingly, HKU5 is a Merbecovirus for which the human receptor is unknown and it has been shown not 
to bind to hDPP424. This is one example on how the prediction of our method improves when we add viruses 
for which the only information known is whether they bind or not to any human receptor. The absence of a 
known human receptor for HKU5 limits the possibility of further biophysical studies of binding hence we did 
not pursue them here.

We confirmed binding of Bt133 and LYRa3 in silico through a combination of structural modeling and 
molecular dynamics simulations. The average number of contact residues from the simulations of both viruses 
was not statistically different from that of Ty-HKU4 and LYRa11, respectively. We used HawkDock and PROD-
IGY to estimate binding energies. We selected HawkDock’s molecular mechanics/generalized Born surface 
area (MM/GBSA) for the calculations. MM/GBSA overestimated the magnitude of binding free energy but the 
obtained values correlate well with H-bond counts48. While PRODIGY results provided closer estimates for 
binding energies measured in in-vitro studies48, it did not discriminate well among variants. The binding energy 
estimation from Bt133 and LYRa3 was not statistically different from that of Ty-HKU4 and LYRa11, respectively. 
These results suggest they have comparable binding energies. We identified all contact residues of Bt133 and 
Ty-HKU4 (Supplementary Tables S4 and S5). Only contact residues E518 and N514 were frequently used (> 94% 
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of sampled conformations) by both viruses to bind to the human receptor. Contact residue E518 is also known 
to be relevant for binding of MERS24, 36 to hDPP4. Our simulations also revealed three previously unreported 
contact residues from Ty-HKU4 (N468, S465 and Y460). Our study also identified the contact residues of LYRa3 
(Supplementary Table S3).

As expected with any classifier, h-BiP produced a few false negatives in our dataset. Such is the case of HKU3-
13 (h-BiP = 0.2), which is the only known member from the HKU3 clade experimentally confirmed for human 
binding in our dataset. Interestingly, HKU3-8 has been reported not to bind human receptors38.

We also tested the proposed method under the scenario for the emergence of a novel virus. In particular, we 
asked whether h-BiP would predict the binding of a novel coronavirus such as SARS-CoV-2. In the absence of 
all SARS-CoV-2 viruses and any viral sequence uploaded after its publication, the h-BiP score for the wild type 
of SARS-CoV-2 was 0.62, demonstrating that h-BiP may be a valuable tool to detect the potential of a virus to 
cross species and originate an epidemic.

Methods
Datasets.  On 11/05/2020, we downloaded 28,368 RNA spike protein sequences of all alpha and beta coro-
naviruses from the NCBI Virus49 database. Compared to the number of full nucleotide sequences, the number 
of annotated sequences for the Sarbecovirus genus (excluding SARS-CoV-2) was limited. On 07/26/2021, we 
downloaded all available nucleotide sequences and extracted the S protein (see section “Extracting the S protein 
from full sequences” for details), expanding the data from 78 to 194 unique sequences from the Sarbecovirus 
genus (excluding SARS-CoV-2). To reduce the impact of an unbalanced dataset, we randomly removed 50% of 
SARS-CoV-2 (under-sampling), preserving reference sequences. The final alpha and beta coronavirus dataset 
consisted of 2,534 amino acid sequences. We curated the host field by combining information from isolation 
source, submission notes and the related publication. We also removed 7 viruses that were genetically modified 
(Accessions: FJ882951, FJ882957, HQ890538, FJ882942, HQ890534, MT782114, MT782115) as well as a draft 
virus from a pangolin (MT084071). Sequences in the data set were annotated as positive or negative for human 
binding. Human coronaviruses, and viruses from non-human animal hosts with published binding evidence to 
a human receptor, were labeled as positive for binding (n = 1735). Viruses from non-human hosts reported as 
unable to bind human receptors, and those for which the binding condition was unknown, were labeled as nega-
tive for binding (n = 799). A comprehensive list of viruses with confirmed binding status is available in Table 1. 
The final dataset, according to binding status, is available in Table 5.

Extracting the S protein from full sequences.  On 07/26/2021, we downloaded all available nucleotide 
(nt) sequences from the Sarbecovirus genus (excluding SARS-CoV-2) for a total of 643 sequences with at least 
1603 nt of length. The S protein contains two subunits: the S1 subunit containing the receptor-binding-domain, 
and the S2 subunit, which mediates membrane fusion50, 51. Prior to SARS-CoV-2 emergence, a highly conserved 
domain across all coronaviruses (SFIEDLLFNKVTLADAGF, NCBI accession cl40439) was found in the S2 
subunit51. In order to extract the S protein from the full RNA sequence, we first translated it into the three pos-
sible reading frames. Next, we located the conserved domain by searching for the “SFIEDLLFN” motif (allowing 
for at most one substitution). The final putative S protein was the sequence enclosed by the start and stop codons, 
which contained the “SFIEDLLFN” motif. A total of 554 S proteins (194 unique) were found and included in the 
final dataset. We tested different motif lengths and number of substitutions to locate the conserved domain, but 
9 amino acids, and 1 substitution, were found to be optimal.

Training and test sets.  The final dataset of 2,534 sequences was split into a training (85%) and test set 
(15%), stratified by the following groups: hCoV-OC43, hCoV-HKU1, MERS, SARS-CoV-1, SARS-CoV-2, 
hCoV-NL63, hCoV-229E, other MERS-related, other Sarbecovirus, other Betacoronavirus, porcine epidemic 
diarrhea virus, and other Alphacoronavirus.

Sequence embedding.  In order to generate n-dimensional vectors from the protein sequences, we first 
built “words” of 3 letters (trimers) with 3 contiguous amino acids. We considered all possible trimers by sliding a 
window one amino acid at a time as shown in Fig. 1. To produce trimer embeddings, we used a skip-gram with 
negative sampling (vector-size = 100, context-size = 25, negative samples = 1) as in 52. Finally, each sequence was 
represented as the sum of vectors from all of its trimers. That is, if a particular sequence (seqk) consisted of n 
trimers {w1, w2, …, wn}, and each trimer was represented by a 100-dimensional vector wi = [xi_1, xi_2, …, xi_100], 
then the final sequence embedding was calculated from Eq. (1).

(1)seqk =
∑n

i=1
wi

Table 5.   Final dataset by binding condition to human receptor.

Host Negative/unknown Positive Total

Human 0 1530 1530 60.4%

Non-human 799 205 1004 39.7%

Total 31.5% 68.5% 2534
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Classification.  In order to classify the sequences according to their potential to bind a human receptor, we 
labeled them as positive or negative for human binding as described in “Datasets” section. Normalized sequence 
embeddings of the training set were used to create a logistic regression model. The model used a ridge classifier 
with C = 1.5 inverse regularization strength and the limited memory BFGS (L-BFGS) optimization algorithm. A 
virus was classified as positive for binding if the score was 0.5 or higher. The final classifier was invariant to the 
threshold value (see Supplementary Fig. S1).

Phylogenetic tree.  A phylogenetic tree for the S protein of alpha and beta coronaviruses was generated 
from a subset of 424 sequences (out of 2534) from the original dataset. This subset includes all reference viruses 
from both genera, several members from each of the 7 human coronaviruses and all viruses from non-human 
hosts with positive or negative published human binding annotation (see Table 1). A comprehensive list is avail-
able in Supplementary Table S4. A multiple sequence alignment (msa) of all sequences in the subset was gener-
ated with BBMap53. We used BEAST54 on the msa to reconstruct multiple phylogenetic trees with a log-normal 
distributed relaxed molecular clock and a non-parametric coalescent prior. The final tree shown in Supple-
mentary Fig. S2 corresponds to the maximum-clade-credibility tree. We used iTOL55 for tree visualization and 
annotation.

Candidate structures for molecular dynamics.  The starting RBD structures for molecular dynamics 
(MD) simulations were obtained using PDB file 4QZV24 of Ty-HKU4- hDPP4 complex. At the RBD, Bt133 dif-
fers from Ty-HKU4 in 13 residues. These mutations were added to PDB 4QZV24 using YASARA​56. The starting 
RBD structures for the RBD of LYRa3 and LYRa11 were generated using AlphaFold57 (implemented within 
the ColabFold suite58). Due to the absence of experimentally determined LYRa3-hACE2 and LYRa11-hACE2 
complexes, we used the SARS-CoV-hACE2 complex (PDB 2AJF59) as a template in AlphaFold. The resulting 
structures were aligned to SARS-CoV using the MUSTANG60 method in YASARA​56. These alignments were in 
strong agreement (< 2.0A) and used as starting structures in our simulations.

Molecular dynamics.  To simulate protein–protein interactions, we used the molecular-modelling package 
YASARA​56 to substitute individual residues and to search for minimum-energy conformations on the resulting 
modified candidate structures. For all structures, we carried out an energy minimization (EM) routine, which 
included steepest descent and simulated annealing minimization (until free energy stabilizes to within 50  J/
mol) to remove clashes. All MD simulations were run using the AMBER14 force field61 for solute, GAFF262 and 
AM1BCC63 for ligands and TIP3P63 for water. The cutoff was 8 Å for Van der Waals forces (AMBER’s default 
value64), and no cutoff was applied for electrostatic forces (using the Particle Mesh Ewald algorithm65). The 
equations of motion were integrated with a multiple timestep of 1.25 fs for bonded interactions and 2.5 fs for 
non-bonded interactions at T = 298 K and P = 1 atm (NPT ensemble) via algorithms described in 67. Prior to 
counting the RBD’s hydrogen bonds and calculating the free energy, we carried out several pre-processing steps 
on the structure, including an optimization of the hydrogen-bonding network66 to increase the solute stability 
and a pKa prediction to fine-tune the protonation states of protein residues at the chosen pH of 7.467. Insertions 
and mutations were carried out using YASARA’s BuildLoop and SwapRes commands67, respectively.

Structure conformations from the simulations were collected every 100 ps after 4 ns of equilibration time 
as determined by the solute root mean square deviations (RMSDs) from the starting structure. For all bound 
structures, we ran the simulations for at least 10 ns post equilibrium and verified stability of time series for 
RBD-receptor hydrogen bond counts and root mean square deviation (RMSD) from these starting structures. 
Hydrogen bonds (H-bonds) were counted and tabulated using a distance and an angle approximation between 
donor and acceptor atoms as described in 66. It is important to note in this approach, salt bridges of proximate 
residues are effectively counted as H-bonds between basic side chain amide groups and acidic side chain carboxyl 
groups. Therefore, ionic interactions are also included in the H-bond count. In a previous publication, we show 
that the H-bond count, as defined here, correlates well with binding free energy estimates that were obtained 
using the molecular mechanics/generalized Born surface area method.

Average number of H‑bonds.  In previous studies, we have shown that the average number of H-Bonds 
correlates well with binding energy48. Therefore, for each MD simulation, we recorded the number of H-bonds 
formed between protein–protein interactions (including ionic bonds) at each sampled conformation (snap-
shots). The average number of H-bonds was computed from all available sampled conformations after reaching 
equilibrium (4 ns). We performed three independent MD simulations from each complex and determined the 
grand average and standard error. Results are available in Table 4.

H‑bond frequencies (%).  At each sampled conformation (snapshot) from a MD simulation, we tracked 
every H-bond (including ionic bonds) and recorded the participant amino acids from the ligand and receptor. 
We computed the frequency for each pair dividing the number of sampled conformations where the pair was 
present by the total number of sampled conformations (double bonds are not considered in this count) and 
multiplied by 100. H-bond frequencies (%) from every simulation are available in the Supplementary Informa-
tion S1.

Prediction of binding affinity.  To estimate the binding free energy for each of the RBD-receptor com-
plexes we used the energy-minimized structures on HawkDock47and PRODIGY46 servers. We selected the 
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molecular mechanics/generalized Born surface area (MM/GBSA) method in HawkDock. For every simulation 
on RBD-receptor pairs we average over 3 snapshots of equilibrium conformations.

Human and animal subjects.  No human or animal subjects were directly involved in this study.

Data availability
The datasets and corresponding GenBank accessions used to create h-BiP, together with the resultant scores, are 
available at https://​github.​com/​Arsua​ga-​Vazqu​ez-​Lab/h-​BiP.

Code availability
The h-BiP package and Python source code are available at https://​github.​com/​Arsua​ga-​Vazqu​ez-​Lab/h-​BiP.
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