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Explainable automated pain 
recognition in cats
Marcelo Feighelstein 1,7, Lea Henze 3,7, Sebastian Meller 3, Ilan Shimshoni 1, Ben Hermoni 2, 
Michael Berko 2, Friederike Twele 3, Alexandra Schütter 3, Nora Dorn 3, Sabine Kästner 3, 
Lauren Finka 4, Stelio P. L. Luna 5, Daniel S. Mills 6, Holger A. Volk 3,8 & Anna Zamansky 1,8*

Manual tools for pain assessment from facial expressions have been suggested and validated 
for several animal species. However, facial expression analysis performed by humans is prone to 
subjectivity and bias, and in many cases also requires special expertise and training. This has led to an 
increasing body of work on automated pain recognition, which has been addressed for several species, 
including cats. Even for experts, cats are a notoriously challenging species for pain assessment. 
A previous study compared two approaches to automated ‘pain’/‘no pain’ classification from cat 
facial images: a deep learning approach, and an approach based on manually annotated geometric 
landmarks, reaching comparable accuracy results. However, the study included a very homogeneous 
dataset of cats and thus further research to study generalizability of pain recognition to more realistic 
settings is required. This study addresses the question of whether AI models can classify ‘pain’/‘no 
pain’ in cats in a more realistic (multi-breed, multi-sex) setting using a more heterogeneous and thus 
potentially ‘noisy’ dataset of 84 client-owned cats. Cats were a convenience sample presented to the 
Department of Small Animal Medicine and Surgery of the University of Veterinary Medicine Hannover 
and included individuals of different breeds, ages, sex, and with varying medical conditions/medical 
histories. Cats were scored by veterinary experts using the Glasgow composite measure pain scale 
in combination with the well-documented and comprehensive clinical history of those patients; 
the scoring was then used for training AI models using two different approaches. We show that in 
this context the landmark-based approach performs better, reaching accuracy above 77% in pain 
detection as opposed to only above 65% reached by the deep learning approach. Furthermore, we 
investigated the explainability of such machine recognition in terms of identifying facial features that 
are important for the machine, revealing that the region of nose and mouth seems more important 
for machine pain classification, while the region of ears is less important, with these findings being 
consistent across the models and techniques studied here.

According to the International Association for the Study of Pain (IASP), pain is an “unpleasant sensory and 
emotional experience associated with, or resembling that associated with, actual or potential tissue damage”1. It 
is particularly important to recognize that “verbal description is only one of several behaviors to express pain; 
inability to communicate does not negate the possibility that a human or a nonhuman animal experiences pain”. 
However, in the absence of verbal indications from patients, the accurate assessment of an individual’s pain relies 
upon the inferences made by clinicians. Given the lack of standardised and objectively applicable tools to assess 
pain in such  contexts2, this process is inherently challenging and a ubiquitous problem regarding non-human 
animals due to their non-verbal  status3. Surveys in the veterinary profession clearly indicate that the lack of such 
tools may well interfere with an accurate assessment and classification and thus appropriate treatment of pain. 
For instance, a study of attitudes and beliefs of Queensland veterinarians in relation to postoperative pain and 
preoperative analgesia in dogs revealed that nearly one-fifth of respondents doubted their confidence in their 
knowledge about post surgical pain; 42% acknowledged difficulties recognising pain, and nearly one-quarter were 
unsure or negative about the capacity of veterinarians to recognise  pain4. These findings were also supported in 
a study investigating the attitudes of veterinary practitioners in New Zealand to pain and analgesia in cats and 
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dogs, where only 58% of respondents considered their knowledge in the area of assessment and treatment of 
pain to be  adequate5. Another study of UK veterinarian’s attitudes to chronic pain in dogs identified difficulties 
with pain assessment as a major barrier to adequate treatment of chronic  pain6.

Despite the inherent challenges of pain assessment in non-human animals, species-specific pain scales which 
focus on changes in animal’s facial features such as their expressions can provide useful practical instruments 
for proxy pain assessment. A decade ago, the first grimace scales were developed for rodents and similar scales 
are now validated for many mammalian  species7, including  rats8,  rabbits9,  horses10,  pigs11,  sheep12,  ferrets13 and 
 cats14,15.

Cats are one of the most challenging species in the context of pain assessment and management due to a vari-
ety of factors, including reduced physiological tolerance and adverse effects to common veterinary  analgesics16, a 
lack of strong consensus over key behavioural pain  indicators17 and human limitations in accurately interpreting 
feline facial  expressions18. These factors may contribute to cats being prescribed less analgesic drugs by veterinar-
ians compared to dogs, even when the predicted degree of pain experienced between both species is  similar19–21.

Three different manual pain assessment scales have been developed and validated in English for domestic 
cats: the UNESP-Botucatu multidimensional composite pain scale (MCPS)22, the Glasgow composite measure 
pain scale (CMPS),23 and the Feline Grimace Scale (FGS)15. The latter was further used for a comparative study 
in which human’s assignment of FGS to cats during real time observations and then subsequent FGS scoring of 
the same cats from still images were compared. It was shown that there was no significant difference between the 
scoring  methods24, indicating images can be a reliable medium from which to assess pain, compared to direct, 
real-time observations.

However, even though there is a good demonstrated agreement between FGS scorers with different experi-
ences and  backgrounds25, there are potentially other less explored factors that might influence the reliability and 
validity of these types of manual scoring methods that rely on the subjective judgements of humans. This leads to 
the need for the development of more objective methods for scoring and assessing pain which are less susceptible 
to human bias. A step in this direction was taken by Finka and  colleagues26, who used geometric landmarks to 
identify and quantify facial shape changes associated with pain. Images of 29 domestic short-haired female cats 
undergoing ovariohysterectomy were (reliably) manually annotated using 48 landmarks specifically chosen for 
their relationship with underlying facial musculature and their relevance to cat-specific facial action units. A 
significant relationship was found between pain-linked Principal Components related to facial shape variation 
and the UNESP-Botucatu MCPS  tool22.

These results served as a starting point for our previous exploration of automated detection of pain in  cats27, 
where two different approaches were compared: a manually annotated facial landmark-based (e.g.26) approach 
and a deep learning approach. While both approaches reached comparable accuracy of approximately 72%, a 
significant limitation was that the study population was highly homogenous, limited to young, adult female cats 
of a single breed and submitted to only one type of postoperative pain condition.

Factors such as  breed28,29,  age30 and potentially their  interaction31, as well as  sex32 and particularly neuter 
status in adult males (e.g.33) may all affect craniofacial morphology in cats, and thus potentially the nature of 
pain-related facial information extractable from associated images. Establishing generalizability of our developed 
 approaches26,27 with broader cat characteristics across more heterogeneous populations is therefore a crucial step 
on the path towards accurate automated cat pain recognition.

The contribution of this study is twofold, addressing the following research questions: 

1. To what extent can a machine recognize pain in cats in a more naturalistic or ‘noisy’ population (e.g. varia‑
tions in breed, sex and painful conditions)? We address this question by repeating and expanding the scope 
of the comparative study outlined  in27 using two approaches to the automatization of cat pain recognition 
(landmark-based and deep learning based) on a new dataset of 84 client-owned cats presented to the Depart-
ment of Small Animal Medicine and Surgery of the University of Veterinary Medicine Hannover. Different 
breeds with varying age, sex, and medical history were included; the cats were also scored using the Glasgow 
composite measure pain scale (CMPS) by veterinarians to provide an indication of degree to which pain was 
present using this previously validated behaviour based tool.

2. Which facial features are most important for the machine in relation to pain recognition performance? We 
address this question by using explainable AI  (XAI34) methods to investigate the roles played by different 
cat face regions: ears, eyes, mouth, and nose in machine pain recognition.

Results
For narrative purposes we preface our results with essential and practical aspects to improve understanding for 
those less familiar with AI methods, presenting a high-level overview of the used approaches, as well as with 
the dataset description.

Overview. Figure 1 presents a high-level overview of the two pipelines for the deep learning (DL) and land-
mark-based (LDM) approaches used in this study. Both of the pipelines start with cat facial alignment, using the 
method described in Feighelstein et al.27, which is based on manual landmark annotations. The aligned images 
are then fed to the deep learning models as is, while the landmark-based approach uses the XY locations of 
the 48 landmarks, which serve as cat face “abstractions”. These landmarks are then used to create multi-vectors 
according to cat facial regions capturing ears, nose/mouth, eyes, as described in Feighelstein et al.27. These vec-
tors form the final input to the machine learning models (Multilayer Perceptron and Random Forest are used 
here).
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Dataset. Owners provided written informed consent to provide data that can be used for research, regulated 
by the law and regulations for research in Lower Saxony, Germany. All experiments were performed in accord-
ance with relevant guidelines and regulations. The current protocol was reviewed and approved by the Ethical 
Committee of the Medical University of Hannover; the Ethical Committee of the University of Haifa waived 
ethical approval.

Our dataset included images of 84 client-owned cats presented between May 2021 and April 2022 to the 
Department of Small Animal Medicine and Surgery of the University of Veterinary Medicine Hannover. Cats 
were recorded in a cage, where they were free to move (and hide themselves), having also free access to water and 
food during the whole hospitalisation period, as well as to a litter box inside their cage. The cats were captured 
using a mobile phone video recorder using a self-developed app, from which the best frames (recording distance 
approximately 10 cm with cat facing camera) were extracted. Example images are presented on Figure 2. Any 
presented cat was in principle eligible for the study. Cats of different breeds, ages, sex, and medical history were 
included. Brachycephalic cats, who have an extreme facial conformity (compared to mesocephalic cats), as well 
as cats with facial wounds or patients with neurological diseases that affect the facial expression were excluded.

Figure 1.  High-level overview of the comparative study: deep learning (DL) and landmark-based (LDM) 
approaches.

Figure 2.  Example images. Top row: cats from Class 2 (‘no pain’) (CMPS scoring < 4 and no reason to suspect 
pain); Bottom row: cats from Class 1 (‘pain’) (CMPS scoring ≥ 5 and clinical reason for pain).
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The cats were scored during clinical examination using the CMPS-feline  instrument23 in their cage at least 
half an hour after the last clinical examination, in order to enable a rest period and to reduce scoring bias. The 
CMPS-feline instrument includes seven categories, referring to changes in the cat’s behavior as well as in the 
cat’s face. A total maximum of 20 points is possible, with scores ≥ 5 considered an intervention  threshold23. 
In this study, the images were divided into two classes henceforth referred to as ‘pain’ and ‘no pain’. Cats with 
CMPS scores of 4 were excluded to allow a clearer distinction between ‘pain’ and ‘no pain’ classes. Moreover, 
cats with CMPS scores of ≥ 5 which had no clinical reason to suspect pain were also excluded. This led to Class 
1 (‘pain’) including 42 cats satisfying the following two conditions: (i) with CMPS scores of ≥ 5, and (ii) with 
clinical reasons to suspect pain. The clinical reasons for suspected pain of the cats in Class 1 are listed in Table 2. 
The most frequent reasons for presentation were various bone fractures (e.g. of the femur, pelvis or humerus), 
followed by gastrointestinal foreign bodies and surgery and problems concerning the urinary tract. Class 2 (i.e. 
‘no pain’) was balanced with 42 cats using random undersampling and included cats who satisfied the following 
two conditions: (i) CMPS scores of <4, and (ii) with no known clinical reason to suspect pain. Only one sample 
frame of an individual was included in each of the two classes (see Fig. 4).

Tables 1 and 2 present the list of the participants in the two classes, presenting demographic information 
including sex, neuter status, breed, age and clinical condition which was the reason for presentation at the clinic.

For the LDM approach, the images were manually annotated with 48 landmarks, following the approach 
in Finka et al. and Feighelstein et al.26,27, which were specifically chosen for their relationship with underlying 
musculature, and relevance to cat-specific facial Action Units  (catFACS35). For the specific location of each 
landmark, see Fig. 3.

Model performance. For measuring performance of models, we use standard evaluation metrics of accu-
racy, precision, recall (see, e.g., Lencioni et al36 for further details). As a validation  method37, we use 10-fold cross 
validation with no subject overlap. This method is  recommended38 whenever the dataset contains no more than 
one sample of each individual.

Table 3 presents the results of the comparison of the performance of different models (two types for each 
approach), with and without alignment and augmentation, which are techniques of data pre-processing that 
can potentially improve performance. It can be seen that the landmark-based approach performs better, with 
the Random Forest (RF) model reaching accuracy above 77% in pain/no pain classification as opposed to only 
above 65% reached by the ResNet model.

Facial parts importance. Explainable AI methods can be roughly divided into two  types39,40, as demon-
strated on Fig. 4: data-focused and model-focused.

Data‑focused explainability.  In this approach, the idea is to occlude information on different facial regions 
from the model, exploring the impact of different regional occlusions on model classification accuracy. In the 
context of the importance of cat facial parts, we define the following general notions for occlusion configurations 
for a particular face region:

• ‘Full information’: the model is trained and tested using information from all regions; R
• ‘Reveal only R’: the model is trained and tested on information f from only one specific region; R
• ‘Hide R’: the model is trained and tested on information from all regions, excluding one specific region.

Figure 5 demonstrates the occlusion configurations for each of the three regions (ears, eyes, mouth). It should 
be noted, however, that the relationships between the accuracies in the two configurations are not linear: hav-
ing a good performance in a model exposed only to ears, does not necessarily imply having low performance 
when exposed to eyes and mouth only. Another thing that should be noted is that if we extend the notion of 
these configurations from single region to sets of regions, then there is a direct link between the two configura-
tions: e.g., ‘hide’ configuration for eyes is equivalent to ‘reveal only’ configuration for ears and mouth. It should 
also be noted that in the LDM approach the input to the model is derived from manually annotated landmark 
information based on XY coordinates, while in the DL approach it is raw image pixel-based information. Thus 
the “occlusion” processes applied to these two different models are performed on different units of information.

The LDM approach The units of information here are vectors (ordered pairs of (x,y) coordinates of the land-
marks) in different facial regions, and ‘occlusion’ is achieved by excluding vectors belonging to a certain facial 
region. Tables 4 and 5 present the classification results using different occlusion configurations for the Random 
Forest and MPL classifiers respectively. There is agreement between the two classifiers that hiding ears gives very 
good (roughly as “all”) accuracy, while using only ears has low accuracy. Moreover, there is also agreement that 
using only mouth gives good accuracy, while by hiding mouth accuracy drops (compared to “all”).

The DL approach The units of information here are raw pixels, and ‘occlusion’ is achieved by hiding different 
combinations of face mask regions (ears, eyes and mouth). As the dataset is aligned, having all eye centers located 
on same image position, we identify the eye mask area for all images as the area captured between the minimal 
and maximal y coordinate of any eye landmark. The ear mask region starts at the upper border of the image and 
ends at the top of the eye region. The mouth mask region starts at the bottom of the eye band and ends on the 
bottom of the image. We decided to use general masks for all the images instead of tailoring different regional 
masks per image according to their landmarks, in order to prevent that the deep learning model will obtain any 
information from the particular location of the tailored masks.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8973  | https://doi.org/10.1038/s41598-023-35846-6

www.nature.com/scientificreports/

Table 6 presents the classification results using different occlusion configurations. As in the LDM approach, 
in DL hiding ears still gives good (relative to “all”) accuracy, while using only ears has lower accuracy. Moreover, 
using only mouth also gives good (relative to “all”) accuracy, while by hiding mouth accuracy drops (compared 
to “all”).

Model-focused explainability. These methods are based on extracting information from the model itself, 
e.g. information on feature relevance such as using back-propagation algorithms in neural networks, or feature 
importance rating in tree-based models.

The LDM approach In this approach the use of Random Forest models allows for extracting information 
on feature  importance41 for each of the landmarks. More specifically, we utilize the Gini Importance or Mean 
Decrease in Impurity (MDI)  metric42 that calculates each feature importance as the sum over the number of 
splits (accross all trees) that include the feature, proportionate to the number of samples it  splits43. Once the 

Table 1.  Participant demographics - class ‘no pain’. *CMPS scoring performed at check-up examination after 
recovery and/or successful treatment.

Id Sex Neutered Breed Age Clinical condition CMPS score Pain?

1 m Yes European short haired cat 18 months Foreign body 2 No*

2 f Yes European short haired cat 92 months Anemia 0 No

3 m Yes Maine Coone 22 months Azotemia 1 No

4 m Yes European short haired cat 58 months Anemia 1 No

5 f Yes European short haired cat 96 months Anemia 2 No

5 m Yes British short haired cat 164 months Intoxication 2 No

7 m Yes British short haired cat 68 months Anemia 2 No

8 m Yes British short haired cat 20 months Pneumothorax 0 No*

9 m No British long haired cat 7 months Paraneoplastic syndrome 2 No

10 m Yes Maine Coone 84 months Otitis externa 1 No

11 f Yes European short haired cat 15 months Seizures 1 No

12 m No British short haired cat 8 months Paraparesis 0 No

13 m Yes European short haired cat 152 months Hyphema 0 No

14 m Yes Sibirian forest cat 10 months Vomiting 0 No

15 m Yes European short haired cat 40 months Diaphragmatic rupture 1 No*

16 m Yes European short haired cat 19 months Ataxia 2 No

17 f Yes European short haired cat 163 months Vomiting 2 No

18 m Yes European short haired cat 156 months Corneal ulcer 0 No

19 f Yes Maine Coone 69 months Anemia 2 No

20 m No Maine Coone 58 months lack of appetite 3 No

21 f No European short haired cat unknown Fracture of the humerus 1 No*

22 m Yes European short haired cat 139 months Avulsion of the tail 0 No*

23 m Yes Ragdoll 55 months Pulmonary edema 0 No

24 m Yes Maine Coone 29 months Intestinal invagination 1 No

25 m Yes European short haired cat 79 months Vomiting 0 No

26 m Yes Bengal cat 9 months Vomiting 1 No

27 m Yes Ragdoll 115 months Anemia 2 No

28 m No British short haired cat 72 months Pulmonary edema 2 No

29 m Yes European short haired cat 56 months Vomiting 0 No

30 f Yes Russian blue cat 165 months Planned surgery on the eye 0 No*

31 f Yes Exotic short haired cat 67 months Anemia 0 No

32 f Yes Norwegian forest cat 140 months Intestinal tumor 2 No*

33 m Yes European short haired cat 168 months Seizures 0 No

34 m Yes Maine Coone 46 months Pleural effusion 1 No

35 f Yes European short haired cat 192 months Pleural effusion 0 No

36 f Yes European short haired cat 103 months Vomiting 0 No

37 m Yes British short haired cat 45 months Enteral foreign body 3 No*

38 f No British short haired cat 8 months Lymphoma 1 No

39 m Yes European short haired cat 19 months Lymphoma 0 No

40 m Yes European short haired cat 19 months Cystitis 2 No*

41 f Yes European short haired cat 134 months Dyspnea 1 No

42 m Yes European short haired cat 113 months Anemia 2 No
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model is trained, we calculate the individual landmark importance as the sum of the feature importance of its 
input coordinates x and y. Figure 6 presents the feature importance of all the 48 landmarks (aggregated over all 
images), with red colors indicating more important landmarks and the deepness of the red color reflecting rela-
tive importance, with the majority of most important landmarks appearing in the mouth area.

The DL approach In the DL approach, we employ one of the most commonly used approaches is the GradCAM 
 method44,45 to visualize heatmaps, showing the ‘attention’ areas of the trained ResNet50 network. The availability 
of landmark annotations from the LDM allows also for a more sophisticated quantitative analysis of the heatmaps, 
quantifying the degree of attention (heat) of the model per landmark (Fig. 7) and per face region (Fig. 8). This 
shows mouth and eyes are clearly more “informative” for the classifer than ears.

Table 9 presents a summary of indications consistent across both LDM and DL approaches, showing that the 
mouth is most important, and ear are the least important facial part for the classifiers.

Figs. 9 and 10 present examples of GradCAM heatmaps extracted from images within our dataset. The hotter 
(deeper red) the pixel appears to be in a heatmap, the more attention is given to it by the model for pain/no pain 
classification. The colder (more blue) pixels are those receiving less attention from the model.

Table 2.  Participant demographics - class ‘pain’.

Id Sex Neutered Breed Age Clinical condition CMPS Score Pain?

43 f Yes Birman cat 105 months Pyometra 5 Yes

44 f No Siamese cat 24 months Fracture of the femur 5 Yes

45 m Yes British short haired cat 15 months Dislocation of the tarsal joint 6 Yes

46 f Yes Russian blue cat 101 months Monoparesis 8 Yes

47 f Yes European short haired cat 130 months Polytrauma 10 Yes

48 f Yes British short haired cat 19 months Coprostasis 9 Yes

49 f Yes European short haired cat 156 months Urolithiasis 5 Yes

50 m Yes European short haired cat 36 months Cholecystopathy 7 Yes

51 m Yes British short haired cat 72 months FLUTD 5 Yes

52 m Yes European short haired cat 19 months Trauma after car accident 7 Yes

53 m Yes British short haired cat 27 months Avulsion of the tail 5 Yes

54 f Yes European short haired cat 51 months Pelvic fracture 5 Yes

55 m Yes European short haired cat 120 months Lower jaw symphysiolysis 8 Yes

56 m Yes Russian blue cat 61 months Pelvic fracture 8 Yes

57 m Yes European short haired cat 19 months FLUTD 8 Yes

58 m Yes European short haired cat 144 months Pleuroperitoneal hernia 6 Yes

59 m Yes British short haired cat 86 months Fracture of the humerus 5 Yes

60 f No European short haired cat unknown Avulsion of the tail 7 Yes

61 m Yes European short haired cat 115 months Intestinal invagination 5 Yes

62 m Yes Maine Coone 29 months Polytrauma 5 Yes

63 m Yes European short haired cat 60 months Corneal ulcer 7 Yes

64 m Yes European short haired cat 56 months Pelvic fracture 6 Yes

65 m Yes British short haired cat 32 months Fracture of the femur 6 Yes

66 f Yes Norwegian forest cat 18 months Fracture of the femur 7 Yes

67 f Yes Norwegian forest cat 18 months FLUTD 5 Yes

68 m Yes European short haired cat 88 months FLUTD 5 Yes

69 m Yes European short haired cat 31 months Fracture of radius and ulna 6 Yes

70 m Yes Bengal cat 67 months Pelvic fracture 7 Yes

71 m Yes European short haired cat 18 months Lameness 5 Yes

72 f Yes European short haired cat 74 months Polytrauma 5 Yes

73 m Yes European short haired cat 132 months FLUTD 6 Yes

74 m Yes European short haired cat 168 months Meningoencephalytis 7 Yes

75 m No British long haired cat 7 months Coprostasis 5 Yes

76 m Yes Sibirian forest cat 26 months Pancreatitis 5 Yes

77 m Yes European short haired cat 127 months Pelvic fracture 6 Yes

78 f No European short haired cat 14 months Pelvic fracture 10 Yes

79 f No European short haired cat 10 months Fracture of the femur 5 Yes

80 f Yes European short haired cat 60 months Fracture of the femur 5 Yes

81 f Yes European short haired cat 124 months Penis necrosis 7 Yes

82 m Yes European short haired cat 50 months Peritonitis 11 Yes

83 f Yes European short haired cat 141 months Fracture of the femur 7 Yes

84 m No European short haired cat 16 months Polytrauma 5 Yes
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Discussion
Feighelstein et al.27 showed that the LDM and DL approaches performed comparably well on a single-breed, 
single-sex, single condition data set, with both models reaching accuracy above 72%. The current study provides 
further indication for the success of the LDM approach, reaching an improved performance rate of above 77% 
on a more heterogeneous data population. The DL approach, on the other hand, is less successful on this more 
diverse dataset, reaching only around 65% accuracy. This drop in performance of the DL approach is however 
most likely due to the current dataset being much smaller than that of Feighelstein et al.27 (464 images in the 
previous study as opposed to 84 here), given that deep learning approaches tend to be data-hungry. Thus investi-
gating whether the performance of the DL approach is improved by enlarging the dataset is an immediate priority 
for future research. Landmark-based approaches are by their nature better able to directly measure and thus better 
account for variability in morphology of the cat faces (as opposed to DL approaches which use raw pixel data and 
may be “confused” by this variability), which could explain their robustness on this dataset. Another important 
difference between the study of Feighelstein et al.27 and this study is the ground truth labelling of pain/no pain 
classes. Broomé et al.38 reviews labelling methods in the context of automated recognition of animal affect and 
pain, dividing into two main ways: behavior-based or stimulus-based state annotations. The former are purely 
based on the observed behaviors, and are usually scored by human experts. For the latter, the ground-truth is 
based on whether the data were recorded during an ongoing stimulus or not. In Feighelstein et al.27, the time 

Figure 3.  Mirror image of a cat’s face, depicting placement of the 48 facial landmarks from Finka et al.26. 
Landmarks appear contralateral to their origin, as they would when directly observing the cat’s face.

Table 3.  Performance comparison between landmark-based (LDM) and deep learning (DL) approaches; bold 
shows the best accuracy in both approaches.

Approach Align Augment Model Accuracy Precision Recall

LDM

No No MPL 0.6806 0.7071 0.7

No No RF (Max Depth: 7; Trees: 61) 0.7152 0.7898 0.73

No Yes
(Rep=10, M=0.1) MPL 0.7166 0.8121 0.585

No Yes
(Rep=10,M=0.1) RF (Max Depth: 20; Trees: 221) 0.775 0.7583 0.835

Yes No MPL 0.6639 0.7121 0.685

Yes No RF (Max Depth: 4 ; Trees: 121 ) 0.7611 0.7848 0.775

Yes Yes
(Rep=10,M=0.05) MPL 0.6861 0.7317 0.575

Yes Yes
(Rep=10,M=0.05) RF (Max Depth: 1; Trees: 141) 0.7138 0.755 0.725

DL

No No

ResNet50

0.6514 0.6726 0.715

No Yes 0.5694 0.6005 0.55

Yes No 0.6361 0.6414 0.635

Yes Yes 0.5917 0.7267 0.435
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points when the images were taken provide a stimulus-based method, as the participant’s images were captured 
after ovariohysterectomy at different time points corresponding to varying (controlled) intensities of pain (i.e. pre 
or post op and pre and post rescue analgesia). In the current study however, images of cats’ faces were recorded 
in a real-life veterinary context where pain was naturally occurring rather than clinically induced/controlled and 
‘pain/no pain’ labelling was derived from a subsequently conducted behavior-based assessment method, (the 
CMPS-feline23, based on real-time human-inferences of cat behavioural elements and facial changes.

On the more technical side, in the current study augmentation did not significantly improve model perfor-
mance, which is in line with the findings in Feighelstein et al.27. Using Random Forest as a base model improved 
performance as compared to using MPL in the LDM approach. The use of multi-region vectorization led to 
improved performance in the LDM approach. The vectors were defined based on the cat face regions as defined 
by the  FGS15, and thus they seem to “guide” the model in “looking” within each region separately, without linking 
anatomically unrelated landmarks. In this way the vectors can be efficient in holistically capturing the outputs of 
subtle differences in the relative positioning of underlying facial musculature that may occur as a consequence 
of the micromovements of the muscle contractions in cats’ faces. Vector based approaches thus provide a more 
efficient geometric morphometric representation of the cat face for pain recognition than just using the set of 
landmarks with no connections between them.

To summarize, our first findings suggest that in relation to pain/no pain discrimination accuracy, the annota-
tion approach using landmarks is potentially more robust for use on noiser more naturalistic populations and 
where resulting datasets are of a modest size. However, the downside of taking this route is the resource and effort 
needed for landmark annotation given this is currently required to be completed manually. Thus one natural 
direction for future research is the automation of detection and annotation of cat facial landmarks. While a 

Figure 4.  Demonstration of the different explainability approaches used in this study relevant for the 
landmark-based (LDM) and deep learning (DL) approaches examined.

Figure 5.  Occlusion configurations hide/reveal only for ears, eyes and mouth regions of the cat face.
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vast body of work addresses this problem for human faces (see Wu and  Ji46 for a review), the topic of landmark 
localization for animal faces is currently understudied. Development of such methods for cats will provide an 
essential step toward accurate automated cat pain recognition in clinical and other practical settings and may 
pave the way for subsequent cross-species application.

A further important finding of this study is summarized in Table 9, showing a striking consistency across 
approaches (LDM vs. DL, RF vs. MPL) with respect to occlusion experiments: using only information on the ears 
leads to low performance, while using only information on the mouth still delivers high performance. Moreover, 
hiding ears improves performance, while hiding the mouth decreases performance. This is further strengthened 
by the feature importance information extracted both in LDM and DL approaches (Table 7): features related to 
the ears appear to be the least important, while features related to the mouth appear to be the most important 
in both cases.

While a possible interpretation of this finding might be that the cat’s mouth is more expressive than other 
facial regions, in Evangelista et al.15 the cat’s ears were reported as a more reliable visual indicator during human 
FGS scoring compared to the eyes (i.e., the ears had better internal consistency). Thus, an alternative and more 
probable explanation could be that the mixed-breed dataset used in the current study introduced greater baseline 
noise concerning the general shape and size of ears (i.e., Finka et al.29) than could be handled by the machine 

Table 4.  Occlusion study: mirror image, LDM approach, Random forest, not aligned, augmented, depth=20, 
trees= 221.

Region Config Visualization Accuracy Precision Recall

All 0.7722 0.763 0.805

Ears

Reveal only 0.412 0.442 0.385

Hide 0.75 0.7716 0.775

Eyes

Reveal only 0.7013 0.7225 0.755

Hide 0.6903 0.7333 0.66

Mouth

Reveal only 0.7167 0.7366 0.695

Hide 0.6722 0.6633 0.715
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learning approaches in order to use these features to reliably classify images based on pain presence/absence. 
However, low performance of the ears could also be attributed to other features associated with the specific 
dataset used in this study such as the way images were collected (i.e. the angle of the camera relative to the cat, 
or lighting conditions etc). The potential impact of such factors should be investigated in future studies. Another 
point worth noting is that this finding could also be related to the static (image-based) analysis performed in 
this study; in future investigations it should be checked whether it is also preserved in video-based approaches. 
One immediate research priority is therefore to investigate whether it is indeed the case that the machine “sees” 
pain differently to humans. One way to proceed would be to compare machine classification to human expert 
performance using methods such as face masking, similar to the idea used in the  works47–49.

A limitation of the current study that should be mentioned is the size of the dataset used, as well as a major-
ity of male (two thirds) cats in it. Another limitation is the use of photos, which capture just one momentary 
facial expression. As already mentioned above, the use of video data in the development of AI models can enable 
the analysis of both facial expressions and behavioral indicators of pain by taking into account the temporal 
dimension. As such approaches tend to be significantly data-hungry38, expanding the available datasets on cat 
pain from images to videos should be a priority for the development of AI models suitable for clinical settings.

The results presented in this study further support the indication from Feighelstein et al.27 that AI-assisted 
recognition of negative affective states such as pain from cat faces is feasible.

Table 5.  Occlusion study: LDM approach, MPL, not aligned, augmented.

Region Config Visualization Accuracy Precision Recall

All 0.6933 0.7565 0.607

Ears

Reveal only 0.4309 0.3832 0.2925

Hide 0.7055 0.7683 0.5955

Eyes

Reveal only 0.6154 0.6314 0.541

Hide 0.6677 0.7508 0.5555

Mouth

Reveal only 0.7183 0.7883 0.6225

Hide 0.6027 0.6581 0.498
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However, negative affective states can also be associated with other distressful conditions (e.g., anaemia, nau-
sea). In order to differentiate pain from these conditions, further data acquisition with appropriate diagnostics is 
necessary. For this reason, the correlation of sampled footage with the corresponding clinical records is essential 
for the development of clinically supportive and multifaceted tools to differentiate painful and non-painful condi-
tions causing a negative affective state. Due to the lack of verbal communication in animals, further development 
and optimization of these tools can be an important contribution to the adequate treatment of pain in cats. For 

Table 6.  Occlusion study - DL approach.

Region Config Visualization Accuracy Precision Recall

All 0.6361 0.6414 0.635

Ears

Reveal only 0.6083 0.655 0.53

Hide 0.6153 0.6483 0.495

Eyes

Reveal only 0.525 0.5829 0.556

Hide 0.5989 0.6539 0.5996

Mouth

Reveal only 0.6107 0.7067 0.4004

Hide 0.5708 0.6571 0.535

Table 7.  Summary of data-driven explainability results.

Approach

Reveal only Hide

Highest Lowest Highest Lowest

LDM RF Mouth ears Ears Mouth

MPL Mouth ears Ears Mouth

DL ResNet Mouth eyes Ears Mouth
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this purpose, further data are necessary in order to guarantee appropriate generalizability of automated pain 
recognition especially among different cat breeds, medical conditions, technical possibilities, and environments. 
However, AI systems should be seen as a complement to and not a replacement of clinical judgement skills, with 
the potential to increase awareness of cases requiring greater attention and care.

Methods
Reliability of annotation. To establish the reliability of the landmark annotation process, a second person 
manually annotated more than 10% of images from the dataset, using the same annotation instructions. Images 
used for reliability analysis were selected pseudo randomly, so that contributions were balanced across indi-
viduals and conditions. At the point of annotation, both annotators were blinded to the condition from which 
each image was drawn. Inter-annotator reliability for the 96 XY coordinates was determined via the Inter Class 

Figure 6.  LDM approach, Random Forest. Landmark importance was min-max normalized to values between 
0 and 1. A landmark appears in red if its relative importance is greater or equal to 0.5.

Figure 7.  DL approach, mirror image. Average heat for landmarks, min-max normalized to values between 0 
and 1. A landmark appears in red if its relative importance is greater or equal to 0.5.
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Figure 8.  DL approach. Average heat for face parts.

Figure 9.  Example heatmaps. Top: correctly classified as ’pain’.; Bottom: correctly classified as ’no pain’.

Figure 10.  Example heatmaps. Top: incorrectly classified as ’pain’.; Bottom: incorrectly classified as ’no pain’.
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Correlation Coefficient ICC2 (a measure of absolute agreement between  raters50), and reached the threshold for 
ICC2 acceptability.

Model training. 

• DL The approach was as per Feighelstein et al.27, we apply transfer learning on a Resnet50 model pre-trained 
on ImageNet, adding a new sub network compound on top of the last layer with the parameters specified in 
this  study27.

• LDM The approach was as per Feighelstein et al.27, we trained a Multi Layer Perceptron neural network 
(MLP), consisting of an input layer containing 96 neurons (one for each x and y coordinate obtained via 
the 48 landmarks) with the parameters specified in this  study27. Additionally, due to its supporting feature 
importance  extraction41, we trained also a Random Forest model, optimizing accuracy while ranging maximal 
depth (MaxDepth) of trees between 1 and 40 and number of estimators (Trees) from 1 to 250 in intervals of 
5. Optimal parameters MaxDepth and Trees for each input configuration are specified in Table 3.

Average heat calculation. To calculate the average heat per face region (see Table 8 and Fig. 8), we took 
advantage of the availability of landmark annotations of the dataset. We calculate for all cat face images the aver-
age heat of every landmark on their corresponding heatmaps. More formally, let I be an image and I(x, y) - the 
pixel of I with coordinates (x, y). Denote by (R, G, B)[p] the (R,G,B) color component of pixel p. Denote by 
(xIL, y

I
L) the coordinates of landmark L on image I. Then the heat of L on I is defined by Heat(L, I) = (R,G,B)[p] , 

where p = I(xIL, y
I
L) . The average heat of a landmark L is obtained by averaging over all I in the dataset. We then 

normalize this by dividing the result by the maximal value of the color components of all landmark and mul-
tiplying by 255. To compare heat across face regions, we further aggregated the average heat over each region.

Data availability
 The dataset is available from the corresponding authors upon request.
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