
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10144  | https://doi.org/10.1038/s41598-023-35821-1

www.nature.com/scientificreports

Prediction of prostate cancer 
biochemical recurrence by using 
discretization supports the critical 
contribution of the extra‑cellular 
matrix genes
Laura Marin 1,2 & Fanny Casado 2*

Due to its complexity, much effort has been devoted to the development of biomarkers for prostate 
cancer that have acquired the utmost clinical relevance for diagnosis and grading. However, all of 
these advances are limited due to the relatively large percentage of biochemical recurrence (BCR) 
and the limited strategies for follow up. This work proposes a methodology that uses discretization 
to predict prostate cancer BCR while optimizing the necessary variables. We used discretization 
of RNA-seq data to increase the prediction of biochemical recurrence and retrieve a subset of ten 
genes functionally known to be related to the tissue structure. Equal width and equal frequency data 
discretization methods were compared to isolate the contribution of the genes and their interval of 
action, simultaneously. Adding a robust clinical biomarker such as prostate specific antigen (PSA) 
improved the prediction of BCR. Discretization allowed classifying the cancer patients with an 
accuracy of 82% on testing datasets, and 75% on a validation dataset when a five-bin discretization by 
equal width was used. After data pre-processing, feature selection and classification, our predictions 
had a precision of 71% (testing dataset: MSKCC and GSE54460) and 69% (Validation dataset: 
GSE70769) should the patients present BCR up to 24 months after their final treatment. These results 
emphasize the use of equal width discretization as a pre-processing step to improve classification for a 
limited number of genes in the signature. Functionally, many of these genes have a direct or expected 
role in tissue structure and extracellular matrix organization. The processing steps presented in this 
study are also applicable to other cancer types to increase the speed and accuracy of the models in 
diverse datasets.

Gleason score, a long-established approach to determine the aggressiveness of prostate cancer, relies exclusively 
on the architecture and morphological variance of tissue structures with the purpose of proposing suitable 
therapeutic strategies. However, using the same approach to monitor after therapy and during remission might 
not be as informative. Indeed, about 20% to 30% of men will relapse and experience biochemical recurrence 
(BCR) with varied courses of action available1. Latest advancements on RNA-sequencing have improved our 
understanding of cancer biology, and certain genes have been proposed to predict the chance of presenting 
biochemical recurrence. Zhang H et al.2 worked with the expression of one single gene, the RABEX- 5; and its 
implication in the biochemical recurrence. Meanwhile, Chu et al.3 used the expression of eight genes to detect 
patients with high risk of biochemical recurrence. Comparably, Zhao L4 constructs a model to predict BCR with 
the three following genes CA14, LRAT, and MGAT5B. Nonetheless, finding clinically relevant biomarkers has 
been proven to be highly complex for prostate cancer, mostly due to limited robustness5.

Discrete genetic expression has improved tremendously the performance of machine learning algorithms and 
can address the current limitations to isolate the genes responsible for recurrence, and to confine the expression 
of the genes into intervals for a better understanding of prostate cancer mechanisms. Data discretization, while 
not widely used in studies of prostate cancer and risk of biochemical recurrence, is a prominent tool in Statistics. 
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In Ref.6, equal frequency binning discretization of RNA-seq data was employed to classify four known subtypes 
of glioblastoma multiform and improved significantly the classification by creating a more robust model with a 
reduced number of variables in the final signature. For the purpose of predicting the recurrence of contrasting 
types of cancer in a five-year time-lapse, Shoon7 reports a machine learning based approach operating on a pre-
selected and entropy minimization discretized microarray. The suggested procedure, with an average accuracy 
of 98.9% in predicting recurrence, demonstrates the efficiency and cost-effectiveness of a discretized microarray.

By definition, discretization transforms a continuous-valued variable into a discrete one by creating a set 
of contiguous intervals cut-points spanning the range of the values of the variable of interest. Converting con-
tinuous biological data into discrete data with finite values, decreases the degrees of freedom of the data, while 
enhancing the overall interpretability of the results, creating a more accurate model8. Discrete values facilitate 
the comprehension of the variables while boosting the correlation between the attributes and the target variable9. 
Linear machine learning models benefit from discretization, by reducing the representation bias generated 
when dealing with non-linear datasets, and enabling the deduction of several decision boundaries within a 
single model10. Discretization optimizes the learning process and it enhances knowledge reduction because 
noise presented in extensive datasets is diminished11. Given the different discretization approaches to choose 
when developing a method, our work focuses on minimizing information loss during the transition to discrete 
values from previously continuous normalized gene expression values of prostate cancer samples. The main 
goal of this study is to evaluate the application of discretization in prostate cancer genomics by comparing two 
unsupervised discretization approaches, with the purpose to deduce the optimal number of intervals for each 
gene. This study suggests a model capable of determining with high accuracy a reduced subset of genes and the 
prostate-specific antigen (PSA) levels responsible for the early and advanced biochemical recurrence, by isolating 
the genes responsible for the recurrence in contrast to overall expression. The final gene signature may improve 
the quality of life of patients by predicting the risk of presenting biochemical recurrence within the two-years 
after their final treatment.

Results
Patient status classification with optimal number of intervals for discrete data with small 
number of genes.  Across the log2 normalized TCGA genome, some expression levels did not vary between 
cases. Attributes with a coefficient of variation below 1.5 were removed. We prospected a distinct number of bins 
with the remaining 7800 normalized from [0,1] genes, according to the rules from Table 1. Then, a subset of 
genes was selected in the TCGA dataset according to their correlation with the target status. The logistic regres-
sion was then trained with the specific genes template, tested with GSE54460 and MSKCC and the final signature 
was validated using the GSE70769 dataset.

Overall, equal width discretization proffered classification with higher accuracy with a limited number of 
genes as displayed in the Tables 2 and 3. It was difficult to choose the appropriate discretization as demonstrated 
above since an equal width discretization of eight and eleven, delivered inferior results than without discrete 
variables.

A five equal width discretization, achieved the best classification of the patient status with an 82% accuracy, 
and a ten-genes signature. Out of the 51 patients with BCR in the GSE54460 testing dataset, 47 were classified 
correctly, by the model according to the Eq. (1). Classification reached 75% when applied to an unfamiliar vali-
dation dataset (GSE70769).

From the gene signature in 1, ZFHX3, NFIB, PCCA, WDR5 are predominantly over-expressed in patients 
without BCR, while AIDA is under expressed. On the other hand, under expression of SLC25A30 and ITPR1 
evidences risk of BCR. The probability for the patient to present BCR is displayed in the signature below. When 
the genes expression of the patients falls into the designated range, their associated weights are summed and 
final score pass through the following formula.

Probability of BCR = efinal score/ (efinal score + efinal score)

Table 1.   Table of methods to estimate the number of discretization.
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(1)

Class Progressed : 1.5 +
[

ZFHX3 =
′ (0.8− 1)′

]

×− 0.73 +
[

EMP2 =
′(0.6− 0.8]′

]

× − 0.49 +
[

ITPR1 =
′(0.2− 0.4]′

]

× 0.66 +
[

NFIB =
′(0.6− 0.8]′

]

× − 0.57 +
[

PCCA =
′(0.6− 0.8]′

]

× − 0.73 +
[

RGS2 =
′(0.4− 1)′

]

× − 1.06 +
[

WDR5 =
′(0.8− 1)′

]

× −1.15 +
[

SRGAP2 =
′(0.2− 0.4]′

]

× −0.48 +
[

AIDA =
′(0.4− 1)′

]

× 0.57 +
[

SLC25A30 =
′ (0− 0.2]′

]

× 0.84.

Table 2.   Comparison of methods to estimate patient status with the smallest number of genes and higher 
accuracy with equal WIDTH discretization.

Rules Number of bins Accuracy Precision Number of genes

Without discretization 0 75% 75% 19

Square root 12 77% 79% 31

Cencov 5 82% 82% 10

Rice 10 77% 75% 7

Terrell-Scott 6 79% 79% 26

Sturge 8 71% 74% 21

Brooks- Carruthers 11 73% 79% 29

Freedman-Diaconis Dynamic 73% 74% 37

Scott Dynamic 72% 74% 42

Table 3.   Comparison of methods to estimate patient status using the smallest number of genes and higher 
accuracy with equal FREQUENCY discretization.

Rules Number of bins Accuracy Precision Number of genes

Square root 12 75% 77% 31

Cencov 5 77% 77% 38

Rice 10 71% 71% 16

Terrell-Scott 6 78% 78% 39

Sturge 8 75% 76% 41

Brooks-Carruthers 11 77% 77% 37

Freedman-Diaconis dynamic 71% 72% 77

Scott dynamic 72% 73% 63

Figure 1.   Genes and their respective intervals associated with weights involved in the logistic regression 
signature to predict the risk of BCR.
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Predicting time of recurrence with optimal number of intervals for discrete data using a small 
number of genes.  To predict the time of recurrence for patients with BCR through the 10 confirmed genes 
the TCGA patients were divided into two equals groups (35 samples with BCR two years after treatment, and 36 
without) and the 10 discretized genes expression (Fig. 1). These data were passed through logistic regression and 
tested on the remaining 83 BCR patients. Nonetheless, prediction of BCR proved to be a much more complex 
task. In consequence, beside genetic expression, the PSA levels were also added to the equation shown in Fig. 2.

The ten-genes signature with PSA levels predicted early BCR with an accuracy of 71% in the testing data-
set and 69% on the validation dataset as disclosed in Table 4. Furthermore, a PSA level below 0.38 ng/ml was 
predominantly associated with a risk of BCR within a two-years time-lapse. From both gene signatures, EMP2, 
ITPR1, AIDA and SLC25A30 can be identified as evident predictors of recurrence. Genes ITPR1 and SLC25A30 
are under-expressed in both gene signatures, whereas AIDA is over expressed. Also, high expression of EMP2 
exhibits low risk of recurrence, as displayed in Fig. 2.

Figure 2.   Genes and their respective intervals associated with weights involved in the logistic regression 
signature to predict the risk of BCR within a two-years time-lapse.

Table 4.   Results obtained when adding the PSA level to the 10 discretized genes expression.

Model evaluation

Testing group Validation group

0–24 months  > 24 months 0–24 months  > 24 months

Precision 0.711 0.733 0.687 0.675

ROC area 0.68 0.64

Figure 3.   Kaplan–Meier curves to estimate the patients’ recurrence from the 10 genes signature for the 
validation test.
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The probabilities for patients in the validation test to present BCR are displayed in the Kaplan–Meier plots 3 
(Fig. 3), where high risk versus low risk groups are divided according to the risk score from the genes signature. 
High risk is defined for patients who did not present BCR during the study, or a disease free time over 24 months.

Methods
Training, testing and validation datasets.  Prostate genetic expression is accessible to the public from 
the Program The Cancer Genome Atlas (TCGA) data portal. We used the Prostate Adenocarcinoma (TCGA, 
PanCancer Atlas) dataset published at https://​www.​cbiop​ortal.​org/​study/​summa​ry?​id=​prad_​tcga_​pan_​can_​
atlas_​2018. Along with the genomics expression, clinical information including age, race and disease- free time 
as well as whole slide images from 500 patients are available in the platform. Out of the 500 patients, 81 patients 
present BCR information, however only 71 were retained since they included complete clinical information. 
From the 419 patients that do not present recurrence, 72 were selected to compensate the dataset since an unbal-
anced cohort would affect negatively the final model. To choose patients without BCR in the dataset, patients 
with similar time to recurrence were kept. We assumed that by working with patients with different diagnosis 
but similar time to BCR, a more accurate signature genes to predict the recurrence of the prostate cancer can 
be found. Altogether, the training dataset from TCGA includes 143 patients, 72 of them do not present recur-
rence, while 71 present a BCR. In addition, a testing dataset was established with data from the Memorial Sloan 
Kettering Cancer Center (MSKCC) https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​032 containing 
information from 36 patients with recurrence, and 104 without BCR. Finally, data from the GSE54460 https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE54​460 was incorporated to include 45 additional patients 
with recurrence. A validation data set was created incorporating 93 patients, their corresponding PSA level and 
time of recurrence.

The following Table 5 summarizes conformation of the datasets.
The raw TCGA dataset comprising the expression of more than 20,000 genes was first normalized by applying 

the base 2 log. Once normalized, genes with a variation above 1.5 are retained, with a final set of 7800 genes. The 
same genes were selected in the testing datasets. To ensure the equity of each attribute, normalization is applied 
to the training and testing dataset, where the minimum Emin value gets converted to 0, the highest Emax to 1 and 
the gene expression in the n row follows

Discretization.  Different studies to estimate the ideal number of bins have used the formula (1). Out of the 
eight rules, the first six are stable since they only depend on the number of attribute n. Concurrently, Freedman 
and Scott include the difference between the maximum and minimum values or the range of the dataset (R). The 
interquartile range (IQR) describes the middle 50% of values from the lowest to the highest one and σ represents 
the standard deviation of each attribute. The following table shows the discretization approaches considered in 
this study.

Normalized (valuen) =
en − Emin

Emax − Emin
.

Table 5.   Number of patients included in the training and testing datasets.

Training group Testing group

TCGA​ MSKCC GSE54460

With BCR 71 36 55

Without BCR 72 104 0

Median follow-up

 Time (months) 44.7 45.5 23.0

Age (years)

  ≤ 65 101 117 0

  > 65 42 23 0

 Not available 0 0 45

Gleason score (%)

  ≤ 7 72 127 36

  > 7 71 13 9

PSA level (ng/mL)

  ≤ 10 5 114 18

  > 10 138 24 26

 Not available 0 2 1

Tumor stage (%)

 T1/T2 47 86 25

 T3/T4 126 54 20

https://www.cbioportal.org/study/summary?id=prad_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=prad_tcga_pan_can_atlas_2018
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21032
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54460
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54460
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Equal frequency binning, divides the attributes into n number of intervals, containing the same number of 
values. Equal width subtracts the maximum value from the minimum value of each feature, divides it by the 
number of bins,

to create intervals of equal size.

Feature selection.  We selected a subset of relevant discrete attributes associated with logistic regression 
to reduce the risk of over-fitting, and therefore to improve computational efficiency by removing irrelevant 
features embodying noise in the models12. Feature selection algorithms established on the correlation between 
the patient status and their attributes was used to retrieve the most favorable gene template for the prediction.

The Correlation-based Feature Selection (CFS) algorithm rank the features according to their correlation 
with the target attribute. With this intent, the merit score of S subset including l feature is calculated by Merit 
score =  ltc√

l+l(l−l)tf
 where tf the correlation score between 2 features, and tc the correlation value between features 

and patient group. Genes with a merit score above 0.60 are retained to train the model, while the rest are removed 
from the dataset.

Logistic regression.  Logistic regression alone was considered in the methodology because it may confer 
fewer variables in the end signature, a desirable characteristic when minimizing diagnostic cost and traceability. 
While a decision tree might have increased the overall classification, the summation of the nodes may complicate 
the interpretability of the results13. However, logistic regression favored the comprehension of the influence of 
each variable to the final model of patient outcome. Additionally, higher accuracy can be reached by training 
neural networks, nonetheless, the different layers of neuron may prevent the proper analysis of the genes respon-
sible for the recurrence14.

Our approach focused on binary logistic regression in order to classify the patient as recurrent or non-
recurrent or with a time of recurrence above or below 24 months.

Logistic regression, like the linear regression represented by

was represented as an equation15. Each input values was combined using weights (w and b in the equation) to pre-
dict the output y. In the case of logistic regression, the model is represented by: y= e(b0+ b1× x)/

(

1 + e(b0+ b1× x)
)

 
with y being the output value, x the input one and b0 and b1 the associated weights. The main goal is to determine 
the b weights, with sigmoid cost function, in order to predict correctly the output value. L2 regularization is 
tuned to shrink the weights towards zero, thus reducing the variance of the model and avoiding over-fitting in the 
training set, and the solver liblinear enforced. The logistic regression can be also used on a case of a classification 
by replacing the nominal value by numeric value.

Model evaluation.  The logistic models were evaluated with a ratio between the number of instances cor-
rectly classified, divided by the total number of instances, a concept also known as accuracy. Additionally, the 
precision, defined as how close the model prediction is to real observations, was calculated as explained here:

The Receiver Operating Characteristic (ROC) curve is a graphic summarizing the performance of the model 
by representing the true positives and the true negatives. The Area Under the Curve (AUC) was also calculated, 
where a higher score imply superior classification; nevertheless, Area under the score of 1, may also indicate 
over-fitting.

Ethical compliance.  This research did not involve studies involving animal or human participants. Public 
datasets were employed. No specific permissions were required for corresponding locations.

Discussion
We propose a machine learning algorithm, data pre-processing and features selection to classify if and when 
prostate cancer patients will present BCR, while highlighting the range of gene expression accountable for the 
recurrence. In the final model, equal width binning outperformed equal frequency and normalized datasets 
in both accuracy and number of variables. The five- bins discretization provided the best model to classify the 
patients according to their status, and predict recurrence within the first two-years after last treatment.

Predicting the actual genes responsible for the recurrence of the cancer can be a heavy task due to the char-
acteristic of the genes. However, by discretizing the data, and gathering patients with similar biochemical recur-
rence time, we might be able to provide better care and treatment to the patients, through ten-genes signature: 
ZFHX3, EMP2, ITPR1, NFIB, PCCA, RGS2, WDR5, SRGAP2, AIDA, SLC25A30 selected with an accuracy of 
82%. Studies such as Ref.16 achieved a four-genes signature classification with 83% of accuracy, meanwhile the 
investigation led by Ref.17, isolated twelve genes overexpressed in patients with BCR. Equivalently, the multivari-
ate cox Regression from Ref.18, showed a five-genes signature and displays an Area Under the Curve of 0.62 for 
validation cohort, correlating positively the genes ORM1, DDC and LINC01436 to BCR, while the remaining 
two genes from the signature, AOC1 and PAH were negatively associated with BCR. Even though different sets of 
genes were found in these different studies, altogether they share functional roles related to extracellular matrix 

width = (maximumvalue − minimumvalue)/number of bins,

Z = wx + b,

Precision = True Positives / (True Positives + False Positives).
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(ECM) and cell proliferation. This is consistent with ECM´s role to provide a structured environment for the 
tissue, warranting the organization of the glands, modulating cell migration and proliferation. Changes in its 
composition have been associated with tumor cell migration and presence of metastasis19,20.

This work contributes with new evidence of a link between changes in expression of certain genes and recur-
rence of prostate cancer using discretization approaches. The biological plausibility of our results is supported 
by previous data showing diverse relationships between prostate cancer and some of these genes. Rui21 devel-
oped a ten-genes signature based on tumor- adjacent normal tissue. The isolated genes were directly linked to 
cell-to-cell signaling, a component of the extracellular matrix22. Furthermore, the level of WDR5 expression is 
higher in prostate cancer than healthy prostate tissue; its interaction with androgen signaling, infers its purpose 
in the acceleration of prostate cancer cell proliferation23. Patients with greater levels of ZFHX3 correlate with 
better survival24, as loss of ZFHX3 increased cell proliferation25. Previous experimentation performed in mice 
demonstrated that ZFHX3 acted as a tumor suppressor in prostate cancer, as its reduced expression disrupts the 
proper organization of the glands, affecting the layer of muscle between the stromal and epithelial cells25. ITPR1 
although not frequently mentioned in prostate cancer, directly affects the process of apoptosis in colorectal can-
cer and ovarian cancer26. Its depletion can increase the loss of apoptotic control, hence prolonging the survival 
time of cancer cells. Reduced NFIB expression causes prostate hyperplasia, due to prostate gland enlargement27, 
while not directly associated with prostate cancer, they can be understood as a consequence of a disturbed ECM.

Cohorts from available datasets commonly comprise more patients without BCR. An unbalanced dataset can, 
as a matter of fact, create a bias towards majority class samples28. Most prostate cancer relapsing prediction either 
overlooks this issue4,29 or employs balancing techniques such as oversampling, under-sampling or hybrid30–32. 
Oversampling implies copying minority classes, discarding variant expression, while under-sampling might 
delete useful information. Integration of multiple types of data, not only adds more variables to the study, but 
also aims for higher accuracy, robustness and greater statistical power, while assessing results from the model. 
Thus, our approach takes into consideration molecular changes, and PSA levels across patients.

The implementation of discretization allows the prediction of the actual time of recurrence within two-years 
time period while isolating a template of ten-genes. The quantitative expression of the genes can therefore be 
analyzed, and acknowledged as biomarkers. Within the experiment, the number of genes involved in the sig-
nature varied and their accuracy was related to the chosen number of bin and discretization strategies. Due to 
their complexity, correlation between the gene expression and their target might be indiscernible for the model. 
Lower bin numbers simplify the dataset and its interrelationship, but they may overlook functional informa-
tion, enlisting alternatives of genes to compensate the loss. In contrast, an elevated bin number prevents the 
recollection of said interdependence. In summary, the power of the model to predict varies according to the 
discretization approach applied.

While our results focus on patients classified by our methodology with higher risk of BCR within the two 
years after being declared free of cancer33,34, classified the patients between low to high risk, with a variation in 
between the class that can vary from three to five years. Increased prediction precision will benefit the patients, 
and increase their overall life expectancy, hence maintaining them under active surveillance. Biomarkers can then 
be established not solely for the risk of showing recurrence, but additionally for the early signs of BCR. The gene 
signature to predict the time of recurrence relies exclusively on the same ten genes, suggesting their extensive 
importance in the recurrence and manifest the role of the ECM, while PSA was evidenced as a powerful variable 
in BCR prediction. The importance of the ECM in BCR, was only recently settled35, but causal research remains 
at its early stages. Additional work needs to focus on the phenotype of the biomarkers expressed by the outlined 
genes in order to narrow down the interval of prediction, and strengthen the ECM components responsible for 
BCR, along with proposing indicators of the aggressiveness of the cancer.

Data availability
The datasets analysed during the current study are available in the The Cancer Genome Atlas (TCGA) data por-
tal: the Prostate Adenocarcinoma, https://​www.​cbiop​ortal.​org/​study/​summa​ry?​id=​prad_​tcga_​pan_​can_​atlas_​
2018; the Prostate Cancer dataset from the Memorial Sloan Kettering Cancer Center (MSKCC), https://​www.​
cbiop​ortal.​org/​study/​summa​ry?​id=​prad mskcc; and datasets published at the National Center for Biotechnology 
Information (NCBI) portal with accession number GSE54460, and GSE70769 https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​acc.​cgi?​acc=​GSE54​460; https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE70​769.
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