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Hopf physical reservoir computer 
for reconfigurable sound 
recognition
Md Raf E. Ul Shougat 1,5, XiaoFu Li 2,5, Siyao Shao 3,4,5, Kathleen McGarvey 3,5 & 
Edmon Perkins 2,5*

The Hopf oscillator is a nonlinear oscillator that exhibits limit cycle motion. This reservoir computer 
utilizes the vibratory nature of the oscillator, which makes it an ideal candidate for reconfigurable 
sound recognition tasks. In this paper, the capabilities of the Hopf reservoir computer performing 
sound recognition are systematically demonstrated. This work shows that the Hopf reservoir 
computer can offer superior sound recognition accuracy compared to legacy approaches (e.g., a Mel 
spectrum + machine learning approach). More importantly, the Hopf reservoir computer operating as a 
sound recognition system does not require audio preprocessing and has a very simple setup while still 
offering a high degree of reconfigurability. These features pave the way of applying physical reservoir 
computing for sound recognition in low power edge devices.

There are ubiquitous methods of audio signal classification, particularly for speech recognition1,2. However, 
machine learning suffers several drawbacks that hinder its wide dissemination on the Internet of Things (IoT)3. 
First, machine learning, especially deep neural networks (DNNs), rely on the cloud infrastructure to conduct 
massive computation for both model training and inference. State-of-the-art (SOTA) deep learning models, 
such as GPT-3, can have over 175 billion parameters and training requirements of 3.14 × 1023 FLOPS (floating 
operations per second)4,5. The training of the SOTA speech transcription model, Whisper, used a word library 
that had as many words as one person would continuously speaks for 77 years6. None of these mentioned techni-
cal requirements could be fulfilled by any edge devices for IoT; thus, the cloud infrastructure is a necessity for 
DNN tasks. Second, reliance of cloud computing for machine learning poses great security and privacy risks. 
Over 60% of previous security breaches happened during the raw data communication between the cloud and 
the edge for machine learning7. Further, each breach carries an average $4.24 million loss, and this number is 
continuously growing8. The privacy concern causes distrust among smart device users and drives the abandon-
ment of smart devices9,10. Third, the environmental impact of implementing DNN through a cloud infrastructure 
is often overlooked but cannot be neglected. Training a transformer model with 213 million parameters will 
generate carbon dioxide emissions equaling four times of a US manufacturer’s vehicle over its whole lifespan11. 
Therefore, the next generation of smart IoT devices needs to possess sufficient computational power to operate 
machine learning or even deep learning on the edge.

Among efforts to bring machine learning to edge devices, reservoir computing, especially physical reservoir 
computing, has generated early success over the last two decades. Originating from the concepts of liquid state 
machines and echo state networks, researchers demonstrated that the sound-induced ripples on the surface of a 
bucket of water could be used to conduct audio signal recognition12. In a nutshell, reservoir computing exploits 
the intrinsic nonlinearity of a physical system to replicate the process of nodal connections in a neural network 
to extract features from time series signals for machine perception13,14. Reservoir computing directly conducts 
computations in an analog fashion by using the physical system, which largely eliminates the necessity of separate 
data storage, organization, and machine learning perception. Notably, reservoir computing is naturally suited 
for audio processing tasks, which are a subset of time series signals.

Researchers have explored many physical systems to operate as reservoir computers for temporal signal pro-
cessing. These systems include the field-programmable gate array (FPGA)15, chemical reactions16, memristors17, 
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superparamagnetic tunnel junctions18, spintronics19, attenuation of wavelength of lasers in special mediums20, 
MEMS (microelectromechanical systems)21, and others13,22. Though these studies have demonstrated that 
reservoir computing could handle audio signal processing, the physical system for computing is usually very 
cumbersome20, and they all require preprocessing of the original audio clips using methods such as the Mel 
spectrum, which largely cancels the benefits of reducing the computational requirements of machine learning 
via reservoir computing. More importantly, to boost the computational power, conventional reservoir comput-
ing techniques use time-delayed feedback achieved by a digital to analog conversion23, and the time-delayed 
feedback will hamper the processing speed of reservoir computing while drastically increasing the envelope of 
energy consumption for computing. We suggest that the less-than-satisfactory performance of physical reservoir 
computing is largely caused by the insufficient computational power of the computing systems chosen by the 
previous works.

Recently, we have discovered that the Hopf oscillator, which is a common model for many physical processes, 
has sufficient computational power to conduct machine learning. Although this is a very simple physical system, 
computing can be achieved without the need of additional data handling, time-delayed feedback, or auxiliary 
electrical components24–27. Interestingly, the nonlinear activation of a neural network can also sometimes be 
captured by the physical reservoir, which can further simplify the physical reservoir computer’s architecture (e.g., 
a shape memory alloy actuator physical reservoir computer28). The performance of the Hopf oscillator reservoir 
computer on a set of benchmarking tasks (e.g., logical tasks, emulation of time series signals, and prediction 
tasks) is exceptional compared to much more complex physical reservoirs.

This paper is an extension of previous work to further demonstrate the outstanding capabilities of the Hopf 
reservoir computer for audio signal recognition tasks. The Hopf oscillator acts as a nonlinear filter, but also 
some portion of the computational task is off-loaded to the Hopf physical reservoir computer. Based on our 
previous work, the Hopf oscillator both performs computation and stores information in its dynamic states24,25. 
Fundamentally, the nonlinear response of the oscillator is a type of nontraditional computing, which is unlocked 
through machine learning. Further, the oscillator’s dynamic states act as a type of local memory, as no additional 
memory was introduced through delay lines. In this previous work on the Hopf oscillator, a single readout layer 
was trained to perform a battery of tasks. Here, the single readout layer is replaced with a relatively shallow neural 
network for more difficult tasks, such as sound recognition. These results point to the efficacy of using this type 
of reservoir computer for edge computing, which could pave the way to obtaining edge artificial intelligence and 
decentralized deep learning in the foreseeable future.

Hopf oscillator and reservoir
The forced Hopf oscillator is represented in Eq. (1)27,29:

In the above equations, x and y refer to the first and second states of the Hopf oscillator, respectively. The ω0 term 
is the resonance frequency of the Hopf oscillator. The µ parameter affects the radius of the limit cycle motion. 
For example, without external forcing, the Hopf oscillator would have a limit cycle of radius µ , and it would 
oscillate at a frequency of ω0 . This parameter also loosely correlates with the quality factor of the oscillator. A is 
the amplitude of a sinusoidal force.

For the oscillator to classify audio signals, an external forcing signal that contains the audio signal, a(t) is 
constructed, which is shown in Eq. (2); this is then used as input to the Hopf oscillator. The modified Hopf oscil-
lator as a reservoir is represented by Eqs. (3) and (4):

The external signal, f(t), is composed of a DC offset and the audio signal, a(t). The DC offset ensures that 
the radius parameter is non-negative. This external signal is injected into both the radius parameter, µ , and the 
sinusoid, A sin(�t) . The Hopf oscillator dynamically responds to the audio signal, and the x state corresponds 
to the audio features for the machine learning audio classification task. The y state, although not explicitly used 
in the classification task (as depicted in Fig. 1), likely stores information and aids in the computational task. 
Unlike the original form of the Hopf oscillator reservoir computer, we use the Hopf oscillations to extract audio 
features for classification instead of directly using the two state outputs for time series signal prediction24. As 
such, several changes are made in the computational scheme of the Hopf oscillator reservoir computer. First, this 
formulation of the reservoir does not include the typical procedure of multiplication of inputs with the masking 
function, as no masking function is included. Conventional reservoir computing uses a preset mask multiplying 
the reservoir outputs to create neurons in the reservoir system. The training of the mask equates to updating 
parameters when training the digitally realized neural networks. However, this method is memory expensive 
and inefficient for audio signal processing, since the length of the mask should be sufficient to cover the length 
of audio clip and the nodal connections necessary for the signal classification. Instead of training masks, we use a 
more efficient multiple layer convolutional neural network readout to directly feed forward the reservoir outputs 
and train the connections between each layer as the parameters. Second, Gaussian noise is not multiplied with 
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the audio signal, as the audio signals already have background noise. This noise mask was used in a previous 
Hopf reservoir computer study to highlight its robustness24. Third, instead of using a pseudo-period to guide the 
training of the machine learning readout, we use the number of samples collected for classification to control the 
nodal connections within each collected feature point generated from the reservoir processing 1D audio data. 
N virtual nodes mean that for each sampling point of the original audio, the reservoir will generate N − 1 nodal 
connections in 1D for each reservoir state for classification. For example, with N virtual nodes, a sampled audio 
data point is processed by the physical node (i.e., x in Fig. 1) N − 1 times, which creates N feature points from 
one audio sample and N − 1 nodal connections in these N feature points. In the current paper, we set N to 100 for 
audio processing. This method hinders the sampling speed of the audio signals. Thus, we resample the original 
full resolution audio data to ensure that we operate experiments within a relatively short period of time. It is 
worth noting that the length of the audio clips for each classification event effectively builds the pseudo-period 
in the traditional context of the reservoir computing via time-delayed feedback loops (i.e., a fixed length of the 
audio will produce one classification result with details provided later). The eventual nodal connection of the 
Hopf reservoir computer and output handling could be conceptualized as Fig. 1.

Here, the Hopf reservoir computer is used to compute feature maps, with several representative examples 
shown in Fig. 2. “VN#” refers to the virtual node number, and the time scale for the other axis is defined such 
that the step size is the reciprocal of the sampling rate. The value of the feature map is rescaled from 0 to 1. Con-
secutive convolutional layers, followed by the flattened layer and fully-connected layers depicted in Fig. 12, con-
struct the machine learning readout for processing the audio signal outputs from the reservoir, which is further 
described in “Methods” Section. Note that a similar approach is applied in the SOTA urban sound recognition 
on edge devices30, though we eliminate the computationally expensive preprocessing of the Mel spectrogram by 
offloading feature extraction to the reservoir computer. More importantly, our approach could use a very coarse 
sampling (4000 Hz was used here) instead of the Mel spectrogram applied in30 to capture the granularity of the 
audio signals. A detailed comparison is provided in the subsequent section to demonstrate the superior feature 
extraction from the Hopf reservoir computer.

Results
Results for urban sound recognition dataset.  First, we present the results of the Hopf reservoir com-
puter for an urban sound recognition task. As shown in Fig. 3 in the left column, the audio features from the Mel 
spectrum operations (as calculated on the audio clips with a 44.1 kHz sampling rate) show drastic differences 
between the three examples; using the top example as a reference, the average pointwise Euclidean distance 
between the reference and the other two are higher than 25. In comparison, the audio features from the Hopf RC 

Figure 1.   A schematic showing the nodal connections within a Hopf oscillator for reservoir computing. The 
original signal, f(t), is sent to the two states of the oscillator (i.e., two physical nodes). Each physical node 
generates N virtual nodes in time series. The digital readout layers (i.e., machine learning algorithm) will read n 
samples from the node x of the oscillator (note that we only use one node for audio classification in the present 
paper). n0 corresponds to the number of samples from the original audio signal, and N refers to the number 
of virtual nodes controlled by the readout mechanisms. The signal from the reservoir is then sent to a neural 
network, which is indicated by the blue dashed arrow; this neural network is described in Fig. 12. The digital 
readout will classify the n samples corresponding to one audio clip to its class.
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Figure 2.   Sample feature maps generated by the Hopf oscillator corresponding to different audio events. Each 
audio clip has a length of 1 sec sampled at 4000 Hz. The x-axis follows the arithmetic order of the virtual nodes, 
and the y-axis is the time. The reservoir is set to have 100 nodes for the test. The grayscale value (from 0 to 1) of 
each pixel corresponds to the signal strength of each data point (i.e., feature point of the audio signal). (a) Air 
conditioner. (b) Car horn. (c) Children playing. (d) Dog barking. (e) Drilling. (f) Engine idling. (g) Gunshot. (h) 
Jackhammer. (i) Siren. (j) Street music.

Figure 3.   The Mel spectrum is compared with the Hopf RC for the urban sound recognition task. From the top 
to the bottom, three examples of the siren class are presented. In the left column, the energy of the Mel spectrum 
is shown, where the horizontal axis is time and the vertical axis is frequency. The Mel spectrum operation 
is conducted upon samples that are four seconds long with a 44.1 kHz sampling rate. The total number of 
frequency bands is set to be 100, and the time step is set to be 0.025 seconds. In the right column, the audio 
features extracted from the Hopf reservoir computer for the same samples, such that each 1 second audio clip is 
downsampled to 4000 Hz and the number of virtual nodes is set to 100. Notably, the Mel results and the Hopf 
reservoir results do not look similar to each other, but the information conveyed by each process is internally 
consistent, which is highlighted by the classifier’s performance.
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are shown in the right column of Fig. 3; all three examples have a much higher similarity for these three examples 
(e.g., Euclidean distance < 12). The average Euclidean distance for the samples between classes is:

where c(x, y) is the amplitude of the Hopf reservoir computer at time x and virtual node number y. Here, i is 
indexed over class I, j is indexed over class J, α is indexed over all the values of x, and β is indexed over all the 
values of y. The average Euclidean distances are presented in Fig. 4. The diagonal has the minimal value for each 
column and row, which demonstrates that the Hopf oscillator is capable of separating the classes, even without 
the neural network.

(5)�i,j

( �α,β

√

(

ci(xα ,yβ )−cj(xα ,yβ )
)2

(

N(number of seconds)(sampling rate)
)

)

(

(samples in class I)(samples in class J)
)

Figure 4.   The average Euclidean distances are presented in this symmetric matrix for the ten urban sound 
classes. The average Euclidean distances were calculated between all the samples within a single class (diagonal 
elements) and between all the samples from two classes (off-diagonal elements).

Figure 5.   The robustness of the Hopf RC audio extraction is compared with the Mel spectrum for various 
signal-to-noise ratios (SNRs). For visualization, the siren example shown in the top of Fig. 3 is used with 
different levels of noise. From the top to the bottom, three different amounts of noise were added to the original 
siren audio example. In the left column, the energy of the Mel spectrum is shown. Note that the result starts 
to lose low frequency information when the SNR drops to 20. In the right column, the audio features that are 
extracted using the Hopf RC are shown. Note that the result remains largely the same for all noise levels, even 
when the SNR is equal to 20.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8719  | https://doi.org/10.1038/s41598-023-35760-x

www.nature.com/scientificreports/

The robustness of the audio classification is also of high importance for real-world applications. To highlight 
this, the Mel spectrum results are compared with the Hopf RC results for three different noise levels. Using the 
example in the top row of Fig. 3, white noise is added to the original signal to create different signal-to-noise 
ratios (SNRs); the audio features of these three new signals are computed with the Mel spectrum (using 44.1 kHz 
audio sampling rate) and the Hopf reservoir computer (using 4000 Hz audio sampling rate). The output audio 
features are shown in Fig. 5. It is clearly shown that the Mel spectrum-based audio features lose low frequency 
information when the SNR is reduced to 20, while the features generated by the Hopf reservoir computer main-
tain a similar structure with the original audio counterpart, with the Euclidean distance < 5 for an SNR of 20.

The confusion matrix for the urban sound recognition task is shown in Fig. 6. The proposed audio recogni-
tion approach based on the Hopf reservoir computer has a 96.2% accuracy. This accounts for a 10% accuracy 
improvement compared to30, with a reduction of > 94% of the FLOPS (floating operations per second) for high 
sampling rate readout and Mel spectrum computation and ∼ 90% of the audio pieces for training.

Results for Qualcomm voice command dataset.  Using the machine learning model trained from the 
previous test case (i.e., the urban sound recognition task) as the baseline, we test the Qualcomm voice command 
dataset to demonstrate the reconfigurability of the Hopf reservoir computer audio recognition system. In this 
experiment, we purposefully reduce the number of epochs to 20 and freeze the CNN portion of the machine 
learning model to reconfigure the process of the audio recognition system from the urban sound detection task 
to a voice command task. In the left portion of Fig. 7, representative audio features of the four classes are shown, 
which have significant differences compared to the features of the urban sound events (Fig. 2). The audio recog-
nition yields a > 99% accuracy, with the confusion matrix depicted in the right portion of Fig. 7. Note that the 
number of parameters trained for this experiment is about 35,000, which accounts for about 300 KB dynamic 
memory for 8-bit input with a batch size of 531,32, demonstrating the feasibility of running the training of the 
machine learning readout on low-level edge devices consuming Li-Po battery level of power.

Results for spoken digit dataset.  The spoken digit dataset is used to compare the performance of the 
Hopf reservoir computer for audio recognition with other reservoirs (e.g.,15–22.). As shown in Fig. 8, the Hopf 
reservoir computer produces an approximately 97% accuracy for the spoken digit classification task. This result 
retains the state-of-the-art recognition accuracy on this dataset while only using one physical device (i.e., one 
consolidated analog circuit) and two physical nodes (x and y states). As a comparison, the best performing 
reservoir17 employed 10 memristors and preprocessing of the original audio clips to yield a similar accuracy. 
We suggest that the vibratory nature of our reservoir largely contributes to the simplicity of the proposed sound 
event detection system, and the activation of the reservoir using sinusoidal signals boosts the feature extraction 
of the audio signal using Hopf oscillations (details described later).

Further, we increase the strength of the activation signal (term A in Eq. 1) and discard the inverse hyperbolic 
tangent activation (Eq. 6) before the machine learning readout. The yielded results, which are shown in Fig. 9, 
have a 96% accuracy compared to the case using Eq. (6) before sending the x state to the machine learning read-
out. This suggests that this Hopf reservoir computer can be reconfigured by its digital readout, similar to other 
physical reservoir computers. Additionally, the Hopf oscillator’s computational power could also be drastically 
enhanced by changing the oscillator’s internal physical conditions.

Figure 6.   For the urban sound recognition task, the confusion matrix is presented with the recognition 
accuracy labeled for the ten different audio events. Note that the class labels in this figure are the same as the 
class labels of Fig. 2.
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Conclusions
This Hopf physical reservoir computer architecture is proposed for real-world edge computing applications, such 
as audio recognition. Although speech recognition is a relatively simple task for deep neural networks running 
on the cloud, it is a difficult task for edge computers due to their limited computational power. The proposed 
architecture effectively uses the strengths of both analog and digital devices by splicing an analog oscillator to 
a digital neural network. Moreover, the Hopf oscillator can be readily fabricated from commercial off the shelf 
electrical components.

The Hopf physical reservoir computer architecture discussed in this paper has several distinct differences 
from other similar physical reservoir computers. Most prominently, this Hopf oscillator is paired with a neural 
network rather than using a simple ridge regression. By increasing the complexity of the neural network, the Hopf 
physical reservoir computer is able to perform more difficult tasks. As the neural network is straightforward, it 
can be easily implemented. The architecture employed in this paper does not use any preprocessing of the original 

Figure 7.   Summary of the results of the Hopf reservoir computer for the Qualcomm voice command task. 
Left: Examples of the feature maps of different wake words generated by the Hopf reservoir computer. Right: 
The confusion matrix of the proposed sound recognition system processing Qualcomm wake words. Each label 
corresponds to: (a) “Hi, Galaxy”, (b) “Hi, Lumia”, (c) “Hi, Snapdragon”, and (d) “Hi, Android”.

Figure 8.   Summary of the results of Hopf reservoir computer conducts spoken digits recognition task. The 
confusion matrix of the proposed sound recognition system processing spoken digits dataset with original 
activation strength and inverse hyperbolic tangent before machine learning readouts.
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audio data, which significantly reduces the computational costs of the recognition task. Instead, it follows the 
activation signal to construct the feature maps by matrix reshape and inverse tanh. Usually, the Mel spectrum 
is used for this type of task, which can account for more than half of the computational load33. Most nonlinear 
oscillator-based physical reservoir computers must use time-delayed feedback, which is cumbersome as it would 
require digital-to-analog and analog-to-digital converters. However, the Hopf oscillator is capable of storing 
enough information in its dynamic states to avoid this24,25. Moreover, the presented architecture is robust to noise 
because of the Hopf oscillator’s nonlinearity, which is important for real-world audio processing applications.

The proposed architecture has several key advantages. First, the computational load for the proposed approach 
is significantly reduced. The computations involved in the construction of the feature maps are matrix reshape, 
normalization, and inverse tanh. These operations only consume around 10% of the computational power com-
pared to the Mel spectrogram for a sampling rate of 4,000 Hz. An estimate of the computational load draws the 
conclusion that similar operations on Cortex-M4 (Arm, San Jose, California) edge devices yields only about  5 
ms of the latency running this algorithm. Second, the proposed method can be paired with different machine 
learning models. Though the paper uses the CNN as the machine learning readout, the feature map yielded 
from the proposed method can be replaced by common image processing methods, including but not limited 
to transformer(34), structure similarity index(35), feedforward neural network(36), and Euclidean distance(37), 
etc. Third, compared to the Mel spectrogram, physically implemented limit cycles can generate features that 
are robust to both noise and low audio quality. It is worth noting that the audio used for the experiments is a 
downsampled version, which is about half of the sampling rate used by the Mel + CNN approach, while still 
achieving an audio recognition accuracy that is approximately 10% higher. As an example of this robustness, the 
feature map generated from the audio with additional noise (Fig. 5) retains its distinctive features even under 
extremely low signal-to-noise ratio (< 20).

Summary of results.  In this paper, we present the results of sound signal recognition using reservoir com-
puting technology consisting of a Hopf oscillator24,25. Instead of employing computationally expensive preproc-
essing (e.g., Mel spectrum) commonly used in other studies15,17,20,30, we directly take the outputs from the Hopf 
circuit to process the normalized audio signal for machine learning recognition. We anticipate that this Hopf 
reservoir computing can be directly implemented to microphones to achieve a future processing-on-the-sensor.

In “Results” Section, we systematically demonstrate that our Hopf reservoir computing approach yields a 10% 
accuracy improvement on a diverse 10-class urban sound recognition compared to the state-of-the-art results 
using edge devices30, whereas we use a surprisingly simple preprocessing by just normalizing the original signal. 
The wake words recognition results in > 99% accuracy using the exact readout machine learning algorithm by 
only retraining the MLP. This implies that the Hopf reservoir computer will enable inference and reconfiguration 
on the edge for the sound recognition system. Additionally, compared to other reservoir computing systems 
(e.g.,15–17,22), the spoken digit dataset yields superior performance without the need of using complex preproc-
essing, multiple physical devices, or mask functions; in addition, we have also conducted our benchmarking 
experiments on far more realistic datasets (i.e., the 10-class urban sound recognition dataset and the 4-class wake 
words dataset). We demonstrate boosted performance of audio signal processing by changing the activation signal 
strength of the Hopf oscillator, which implies that there are more degrees of freedom for reconfiguring physical 
reservoir computers as compared to other reservoir implementations.

Lastly, we carefully crafted the algorithms and preprocessing of the data for sound recognition tasks to keep 
overall energy consumption, including the digital readout, less than 1 mW based on FLOPS operations and 

Figure 9.   Summary of the results of Hopf reservoir computer conducts spoken digits recognition task. The 
confusion matrix of the proposed sound recognition system processing spoken digits dataset with 10 times 
increase of activation strength and without inverse hyperbolic tangent before machine learning readouts.
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the analog sampling rate. The computational load, which uses less than 700 sound clips of a 10-class dataset 
for training machine learning models, is well below the envelope of the computational resources possessed by 
consumer electronic devices. As such, the sound recognition devices using a Hopf reservoir computer could 
have an effortless integration with devices with untraceable computational load increases.

Analysis on the physical mechanisms of the Hopf reservoir computer sound recognition.  Three 
elements play important roles in the audio signal recognition. The limit cycle system creates an oscillation signal 
in the temporal domain with a sinusoidal form, which continuously convolves with the incoming audio signal. 
This convolution is reminiscent of the Fourier transform, and the Hopf oscillator generates unique patterns for 
audio recognition (e.g., Fig. 2). Interestingly, this process largely replicates the process of the cochlea in extract-
ing the sound signal features perceptible by the neurons. The nonlinear oscillation of the Hopf oscillator in the 
temporal direction creates nodal connections of the reservoir computer, corresponding to the neuron connec-
tions in DNN. Additionally, the nonlinearity of the Hopf oscillator causes it to respond differently to signals 
possessing various characteristic features of the audio in a broadband fashion, which produces clean separation 
of features (Figs. 2 and 7a).It is worth noting that some recent studies38,39 have demonstrated that the cochlea 
and its directly-connected neurons create a limit cycle system using the previous audio signals as activation to 
dynamically enhance the performance of the cochlea in performing audio signal feature extraction. The physical 
model of the inner ear can be modeled as a Hopf oscillator with a time-delayed feedback loop using the signals 
from previous time instants to activate the limit cycle oscillations. The audio signal recognition actually happens 
in the inner ear instead of in the brain. An interesting future extension of this work is to explore different activa-
tion signals to create an artificial ear, which is capable of on-membrane audio recognition. In the meantime, the 
two states of the Hopf oscillator affect each other with a time delay, which enhances the memory effects essential 
to the time series signal processing.

Discussion and future work.  The unique advantages of the Hopf reservoir computer demonstrated in 
this paper pave the way for the next generation of smart IoT devices that exploit the unused computational 
power in sensor networks. Specifically, the physical mechanisms backing reservoir computing also happen in the 
microphone membrane with carefully crafted activation signals38. One could imagine that future microphones 
directly operate sound signal recognition using sensor mechanisms instead of dedicated processing rigs. In addi-
tion, as shown in Fig. 2, the feature map of sound signals consists of unique patterns that are recognized by a 
convolutional neural network commonly used for visual signal processing. An extension of the present work will 
explore the correlations of audio signal feature maps, visual signal feature maps, and other types of time series 
data features. As such, reservoir computing could be used as a backbone for multi-modal machine learning 
in smart IoT paradigms, including sensor fusion, audio video signal combination, and decentralized machine 
learning. The extremely small amount of training data required for the machine learning operation and clear 
feature separation described in “Results” Section could offer surprisingly satisfactory results, which is essential 
for many use cases without the luxury of unlimited sizes of datasets (e.g., soft user identification) or with noisy 
environments (e.g., a mix of different signals). One example is shown in Fig. 10: a eight-second long audio signal 
consisting of multiple different (i.e., car horn, drilling, and siren) is used to demonstrate the proof-of-concept of 
Hopf reservoir computer on mixed signal processing. The first four seconds of the audio clip only have car horn 
and drilling sound. For the last four seconds, the siren sound is added with a higher amplitude. As shown in the 
figure, the audio features generated from the Hopf reservoir computer has a clearly dominant class on the second 
half of the data and exhibits visually high correlation with the audio features generated by a clean siren sound 

Figure 10.   A noise resistance test using audio features generated from the urban sound recognition task. 
During the first four seconds of this eight second clip, drilling and car horn sounds are mixed, and the last 
four seconds contains the siren sound with a high amplitude (two times larger as compared to other two audio 
classes) is added to the mixed data. As shown in the figure, the latter four seconds of audio features shows high 
similarity compared to the reference siren sound.
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with the same Hopf reservoir computer (an Euclidean distance less than 8). We anticipate a pattern matching 
algorithm originating from computer vision applications could be employed in this type of audio event separa-
tion and processing.

The implementation of this convolutional neural network adopts the same machine learning approach pro-
posed by30. Using the same urban sound recognition task, this allows a direct comparison of the features extracted 
from the physical reservoir computer as well as the spectrogram technique that is normally applied. Using the 
same machine learning readout but without computationally expensive preprocessing of the audio, the physical 
reservoir computing architecture employed in this paper achieved a 10% accuracy improvement compared to30. 
In realistic applications for the Internet of Things, this machine learning method can be applied using dedicated 
neural processors, such as the Syntiant ND101. This particular chip could deploy approximately 60,000 neural 
cores, well above the requirement of the machine learning model used in the paper ( ∼40,000 neural cores). As an 
alternative approach, the features generated from the reservoir computer could be further engineered to compress 
the amount of the data for audio recognition, such that the models can be deployed on low-level edge processors.

There are still limits in the reservoir computing method using the Hopf oscillator in its current form. First, 
the high accuracy sound event recognition requires many virtual nodes to generate diverse features for machine 
perception. However, increasing the virtual nodes leads to exponential growth of the sampling rate to read 
high quality audio data. We are actively seeking solutions to separate audio features from the original signal for 
recognition and recording, which could decrease the required sampling rate. Second, the current circuit-based 
physical reservoir separates the process of signal mixing and activation of the circuit. Redesigning the circuit is 
necessary to simplify signal reading for future system deployment. However, the ultimate version of the Hopf 
reservoir using MEMS will solve this problem, since the computing will happen on the audio sensing mecha-
nisms. Lastly, the signal processing still relies on a digital readout. Though the algorithm is remarkably simple, 
a microcontroller unit is needed. We anticipate that the short-term solution will be deploying the optimized 
machine learning model as firmware (consuming less than 1 MB size of static memory without optimization and 
less than 256 KB dynamic memory for training upgraded machine learning models). A future goal should be 
using an analog circuit that could detect the spike signals for audio recognition (similar to neurons) to achieve 
a fully analog computer on edge devices40.

Methods
The Hopf physical reservoir computer is realized through a proprietary circuit design proposed by24. Follow-
ing the schematic given in Fig. 11, the circuit is implemented using TL082 operational amplifiers and AD633 
multipliers. The input audio signal is first normalized to the range from −1 to +1 and mixed with the sinusoidal 
forcing signal in MATLAB, then it is sent to the circuit by a National Instrument (NI) cDAQ-9174 data I/O 
module. The outputs from the circuit, referred to as the x and y states of the Hopf oscillator, are collected with a 
sampling rate of 105 samples/s by the same NI cDAQ-9174 for later machine learning processing.

Three datasets are employed in the sound recognition experiments. These consist of urban sound recogni-
tion, Qualcomm voice command, and spoken digits. The urban sound recognition dataset consists of 873 audio 
clips of 10 classes, which are high quality urban sound clips recorded in New York City41. Each audio clip is four 
seconds long with a sampling rate of at least 44.1 kHz. Compared to commonly available datasets, we have an 
extremely small number of samples.

Figure 11.   A simplified circuit schematic of the Hopf reservoir computer.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8719  | https://doi.org/10.1038/s41598-023-35760-x

www.nature.com/scientificreports/

To demonstrate reconfigurability of the Hopf reservoir computer for audio processing, the Qualcomm voice 
command dataset is also used. This dataset consists of 4270 audio clips with each clip lasting 1 second, which are 
four wake words that are collected from speakers with diverse speaking speeds and accents42. From the dataset, 
we use 1000 clips for experiments. Compared to the previous urban sound recognition case, the only difference 
in the processing algorithm is the retraining of the output portion (i.e., after convolution layers) of the machine 
learning readout (details are discussed in the later part of the methodology section and results section of the 
paper). To compare the proposed Hopf reservoir with other reservoirs, we also conduct an experiment of spoken 
digits recognition, which serves as the standard benchmarking test for reservoir computing. The spoken digits 
dataset consists of 3000 audio clips, which are spoken by five different speakers43. As with the Qualcomm voice 
command dataset, the total number of audio clips for the experiments is set to be only 1000.

For the sake of processing speed, we resample each audio clip with a sampling rate of 4000 Hz and normalize 
the data to the range from −1 to +1 before sending to the analog circuit. 80% of the outputs from the circuit are 
used for training the machine learning model with the remaining 20% used for testing.

In Fig. 1, the nodal connections of the Hopf physical reservoir computer are shown. Although we only col-
lect a 1D data stream from the Hopf circuit, the data stream consists of both input signals and the response 
from the virtual nodes defined by the sampling speed of the signals44. We follow this principle of arranging 
and manipulating signals by their virtual nodes. The output from the circuit reservoir is first activated using an 
inverse hyperbolic tangent function24,45:

Subsequently, the activated output is rearranged by the order of the virtual nodes as the feature maps for the 
machine perception. A sample feature map rendering consisting of 10 different classes of urban sound is shown 
as Fig. 2. The Hopf reservoir computer produces this feature map as described in “Hopf oscillator and reservoir” 
Section, which is then used as an input to the neural network shown in Figure 12. Effectively, the Hopf reser-
voir computer is offloading the costs of the computationally expensive Mel spectrum. A Swish activation46 is 
employed to boost the performance of the machine learning model on processing sparse neuron activation (i.e., 
dead neuron problems) and the overall accuracy of the machine learning model processing audio data. Note that 
a future version of the machine learning software using skipped connection (generating residual networks)47 
will further boost the robustness of the software for large set of data. Each 1 second clip of the outputs is further 
skip-sampled to a 200 (number of time samples) × 100 (number of virtual nodes) for machine learning process-
ing (as labeled in Fig. 12). The machine learning algorithm is implemented using Keras48 with a TensorFlow 
backend. The training is conducted on an Nvidia RTX 2080Ti GPU and uses an Adam optimizer with the default 

(6)xfeature = tanh−1 x

Figure 12.   A schematic showing the convolutional neural network-based machine learning readout for 
classification of the audio events using the Hopf reservoir computer. The light blue boxes in the figure 
correspond to the feature maps generated from each machine learning operations. The arrows are the different 
machine learning operations. The numbers above the light blue boxes are the depth of feature maps, and the 
bottom numbers are the length and the width of the feature maps, respectively. A max pooling with a size of 
(2,2) is also operated after two consecutive convolutions to reduce the dimension of the feature maps. Note for 
the length and width, we only label the dimensions that are changed after machine learning operations.
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learning rate of 0.00149. The loss function is cross entropy50. The batch size during training is 5; the epochs is 100 
for urban sound recognition dataset, 20 for Qualcomm voice command dataset, and 100 for the spoken digits.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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