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Immunogenic cell death‑related 
classifications guide prognosis 
and immunotherapy 
in osteosarcoma
Yuan Zong 1, Yu Cao 2, Ding Zhang 1, Xiaoqing Guan 1, Fengyi Zhang 1, Zhubin Shen 1 & 
Fei Yin 1*

Immunogenic cell death (ICD) is a form of cell death that stimulates the immune system to produce 
an immune response by releasing tumour‑associated antigens and tumour‑specific antigens and is 
considered to play an important role in tumour immunotherapy. In the present study, we identified 
two ICD‑related subtypes in osteosarcoma (OS) by consensus clustering. The ICD‑low subtype was 
associated with favourable clinical outcomes, abundant immune cell infiltration, and high activity 
of immune response signalling. We also established and validated an ICD‑related prognostic model, 
which could not only be used to predict the overall survival of OS patients but was also found to be 
closely related to the tumour immune microenvironment of OS patients. Overall, we established a new 
classification system for OS based on ICD‑related genes, which can be used to predict the prognosis of 
OS patients and to select appropriate immunotherapy drugs.

Abbreviations
ICD  Immunogenic cell death
OS  Osteosarcoma
RCD  Regulated cell death
TAA   Tumour-associated antigen
TSA  Tumour-specific antigen
DAMPs  Damage-associated molecular patterns
GEO  Gene Expression Omnibus
DEGs  Differentially expressed genes
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
RS  Risk score
KM  Kaplan‒Meier
HMGB1  High mobility group box 1

During chemotherapy for tumours, drugs can inhibit tumour growth by inducing apoptosis or another pro-
grammed death mode of tumour  cells1. Apoptotic tumour cells have long been believed to be nonimmunogenic 
and immune  tolerant2,3, but a large number of recent studies have shown that some apoptotic tumour cells are 
also immunogenic, that is, immunogenic cell death (ICD)4,5. ICD is a specific variant of regulated cell death 
(RCD) driven by  stress6. ICD stimulates the immune system to produce an immune response by releasing 
tumour-associated antigens (TAAs) and tumour-specific antigens (TSAs) and is characterized by the release and/
or increased expression of damage-associated molecular patterns (DAMPs), precursor antigens, inflammatory 
cytokines, and inflammatory  mediators7,8. Therefore, whether it can induce the immunogenic death of tumour 
cells is one of the important factors affecting the therapeutic effect.

Osteosarcoma (OS) is the most common malignant bone tumour, and its high-incidence population is 
mainly teenagers, accounting for approximately 5% of the total number of paediatric  tumours9,10. Although 
great advances have been made in the 5-year survival rate of OS patients, the outcomes of advanced OS patients 
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remain unsatisfactory, which results from chemotherapy resistance and cancer cell  metastasis11,12. Chemotherapy 
is a conventional treatment for OS, and it plays an important role in the treatment of OS patients with local bone 
pain and recurrence as well as those who cannot be operated on or refuse  surgery13,14. However, the sensitivity of 
OS cells to chemotherapy drugs is poor, so some patients with OS develop chemotherapy resistance, which greatly 
affects the effect of chemotherapy and has become a key factor affecting the treatment efficacy and prognosis of 
OS  patients13,14. Therefore, further study on the prediction of the sensitivity to chemotherapy drugs in OS cells 
is urgently needed, which is significant for improving the overall survival of patients with OS.

Recently, with the rapid development of bioinformatics technology, bioinformatics has become increasingly 
popular in studying the molecular mechanism of diseases and discovering disease-specific biomarkers, which 
are increasingly used for the accurate diagnosis and treatment of diseases. Some recently published articles 
describe the establishment of new cancer classification systems based on ICD-related classification by analys-
ing the transcriptome expression profile dataset of cancer tissues in public databases, including head and neck 
squamous cell  carcinoma15 and intracranial  aneurysms16. This ICD-related classification can be used to predict 
the prognosis and drug sensitivity of cancer patients.

In this study, we aimed to identify an ICD-related gene-based risk assessment model that is beneficial for 
assessing the immune microenvironment, overall survival, and response to treatment in patients with OS, which 
can help physicians make important decisions about the treatment of OS patients.

Results
Consensus clustering identifies two subtypes associated with ICD. Thirty-four ICD-related genes 
have been reported by many studies, and we cross-checked the abnormally expressed genes of OS samples in 
the Target database with these 34 ICD-related genes. As shown in Fig. 1A, the Venn diagram showed that there 
were 33 intersecting genes between the OS-expressed genes. Next, prognostic evaluation of the 33 identified 
ICD-related genes by univariate Cox analysis showed that 13 genes were associated with the prognosis of OS 
patients (Fig. 1B), including CASP1, CD8A, CXCR3, EIF2AK3, FOXP3, IFNG, IFNGR1, IL-10, LY96, MYD88, 
NLRP3, PRF1 and TLR4. In addition, we performed Kaplan‒Meier survival analysis of the 13 ICD-related genes 
identified in OS patients and found that they were all significantly related to the survival of OS patients (Fig. 1C). 
We next identified OS clusters associated with ICD using consensus clustering. Two clusters in the target cohort 
were identified as having distinct ICD gene expression patterns after k-means clustering (Fig. 2A,B). In conclu-
sion, clusters 1 and 2 showed low (ICD-low subtype) and high (ICD-high subtype) ICD-related gene expression 
levels, respectively (Fig. 2C). Moreover, the survival analysis results showed that the ICD-high subtype had a 
better prognosis (Fig. 2D).

Identification of differentially expressed genes and signalling pathways. We identified differen-
tially expressed genes (DEGs) and critical pathways for the ICD-low and ICD-high subtypes. Figure 3A shows 
the 414 DEGs that were identified between the two subtypes. Functional enrichment analysis indicated that the 
DEGs were enriched in immune-related activity, including cytokine‒cytokine receptor interaction, Th17 cell 
differentiation, Th1 and Th2 cell differentiation, adaptive immune response, B-cell-mediated immunity, and 
immune receptor activity (Fig. 3B,C). Furthermore, we performed gene set enrichment analysis (GSEA) to iden-
tify relevant signalling pathways for the two subtypes. GSEA revealed that the DEGs were related to immune 
pathways, such as B-cell-mediated immunity, defence response, human immune response, lymphocyte-medi-
ated immunity, and antigen processing and presentation (Fig. 3D).

Tumour microenvironment landscapes of the ICD‑high and ICD‑low subtypes. ICD affects 
the activation of certain antitumour immune responses. We analysed the composition of the tumour micro-
environment in the ICD-low and ICD-high subtypes, and the results showed that compared with the ICD-low 
subtype, the ICD-high subtype had a higher stromal score, immune score, and ESTIMATE score but a lower 
tumour purity (Fig.  4A). Then, we assessed differences in the immune infiltration of multiple immune cells 
between the two subtypes using single-sample GSEA (ssGSEA) and EPIC methods and found that patients with 
the ICD-high subtype had higher proportions of B cells, CD4 T cells, CD8 T cells, endothelial cells and mac-
rophages (Fig. 4B,C). In addition, many immune checkpoints (Fig. 4D) and human leukocyte antigen (HLA) 
genes (Fig. 4E) were upregulated in the ICD-high subtype, suggesting that the ICD-high subtype is associated 
with the immunothermal phenotype.

Construction and validation of the ICD risk signature. The results of univariate Cox analysis showed 
that a total of 4 ICD-related genes were significantly associated with OS (Fig. 5A). Twelve ICD-related genes 
were tested and selected for the prediction model in the least absolute shrinkage and selection operator (LASSO) 
regression analysis (Fig. 5B). In addition, we investigated the relationship between the risk score and the survival 
status of OS patients and found that low-risk patients had a better survival status (Fig. 5C). Both the target cohort 
and the Gene Expression Omnibus (GEO) cohort showed that the survival rate of the low-risk group was sig-
nificantly higher than that of the high-risk group (Fig. 5D). In addition, receiver operating characteristic (ROC) 
curve analysis showed that the diagnostic performance of the risk model for prognosis was good in the target 
cohort and the GEO cohort (Fig. 5E).

Correlation of the ICD risk signature with the OS tumour microenvironment. We analysed the 
composition of the tumour microenvironment in the high-risk and low-risk groups, and the results showed that 
compared with the high-risk group, the low-risk group had higher stromal scores, immune scores and ESTI-
MATE scores but lower tumour purity (Fig. 6A). We analysed the correlation of the ICD risk signature with the 
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OS tumour microenvironment and found that the risk score was negatively correlated with endothelial cells, B 
cells, CD4 T cells, CD8 T cells, and macrophages (Fig. 6B). We also analysed the correlation between the expres-
sion of ICD-related genes and these immune cells in the risk model, and the results showed that the expression 
of the high-risk gene EIF2AK3 was negatively correlated with the degree of macrophage infiltration, while the 
expression of the low-risk genes FOXP3, IFNGR1 and TLR4 was positively correlated with these immune cells 
(Fig. 6C). The results of univariate and multivariate Cox analyses showed that the risk score could be used as 
an independent predictor of prognosis in OS patients (Fig. 6D–F). Finally, we compared the sensitivity of OS 
patients in the high-risk and low-risk groups to immunotherapy drugs. The results showed that the low-risk 
group patients had better sensitivity and lower half-maximal inhibitory concentration (IC50) values for XAV939 

Figure 1.  Identification of 13 ICD-related genes associated with OS patient prognosis. (A) Venn diagram 
showing that there were 33 intersecting genes between the OS-expressed genes in the Target database and the 
34 known ICD-related genes. (B) Of the 33 intersecting genes, 13 prognosis-related genes were screened out by 
univariate Cox analysis. (C) Kaplan‒Meier survival analysis curves of 13 genes in patients with OS.
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(Fig.  7A), GSK2606414 (Fig.  7B), leflunomide (Fig.  7C), AZ960 (Fig.  7D), PF-4708671 (Fig.  7E), AZD8055 
(Fig. 7F) and ribociclib (Fig. 7G), while the high-risk group patients had better sensitivity and lower IC50 val-
ues for RO-3306 (Figure 7H), BI-2536 (Fig. 7I), afuresertib (Fig. 7J), NVP-ADW742 (Fig. 7K) and SB505124 
(Fig. 7L).

Discussion
OS has the highest incidence among primary malignant bone tumours, but its overall incidence is low (4–5/
million)17,18. Although OS has lower morbidity and mortality rates, it is worth noting that more than half of 
OS patients die from tumour cell metastasis and chemotherapy  resistance19,20. Chemotherapy is the main treat-
ment for OS and can kill metastatic cancer cells, but OS cells are less sensitive to chemotherapy drugs, and 
many patients develop resistance to  chemotherapy19,20. Therefore, new treatment protocols are important for OS 
patients. Recently, an increasing number of studies have confirmed that ICD is expected to provide new ideas 
and strategies for antitumour immunotherapy due to its characteristics of immunogenicity, immune activation 
in tumours, and release of multiple tumour antigens.

In 2020, a new drug, belantamab mafodotin, developed based on the definition of ICD was approved by 
the FDA for the treatment of adult patients with relapsed or refractory multiple myeloma, indicating that ICD 
research is of great significance for the development of new drugs for the treatment of  OS21,22. In this study, 
we identified two ICD-related subtypes in OS by consensus clustering and found that the ICD-low subtype is 
associated with favourable clinical outcomes, abundant immune cell infiltration, and high activity of immune 
response signalling. In addition, we established and validated an ICD-related prognostic model, which could not 
only be used to predict the overall survival of OS patients but was also found to be closely related to the tumour 
immune microenvironment of OS patients.

When tumour cells die due to external stimuli, the process of transforming from nonimmunogenic to immu-
nogenic to mediate the body’s antitumour immune response is called  ICD23,24. When tumour cells develop ICD, 
they produce a series of signalling molecules called DAMPs, mainly involving calreticulin exposed on the cell 

Figure 2.  Consensus clustering was used to identify ICD-related subtypes. We plotted the results with the R 
software (version 4.2.2 https:// cran.r- proje ct. org/ src/ base/R- 4/). (A) Heatmap depicts consensus clustering 
solution (k = 2) for 13 genes in 85 OS samples. (B) Delta area curve of consensus clustering indicates the relative 
change in the area under the cumulative distribution function (CDF) curve for k = 2 to 10. (C) Heatmap of 
the expression of 13 ICD-related genes in different subtypes. Red and blue represent high and low expression, 
respectively. (D) Kaplan–Meier curves of OS in the ICD-high and ICD-low subtypes.

https://cran.r-project.org/src/base/R-4/
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surface, high mobility group box 1 (HMGB1) secreted by tumour cells to the outside world, ATP molecules 
released by cells, and heat shock proteins (HSP70 and HSP90)6. DAMPs released during the ICD process can 
bind to pattern recognition receptors (PRRs) on the surface of DCs to initiate a series of cellular responses 
that ultimately activate innate and adaptive immune  responses7,8. ICD can be caused by a variety of different 
stressors, including but not limited to (1) intracellular pathogens; (2) traditional chemotherapy drugs such as 
anthracyclines, DNA damaging agents and proteasome inhibitors; (3) targeted anticancer drugs; and (4) a variety 
of physical  therapies8,25. Based on this evidence, our study identified two ICD subgroups by consensus clustering, 
and the ICD-low subgroup was associated with the immune-hot phenotype, while the ICD-high subgroup was 
associated with the immune-cold phenotype.

It has been found that chemotherapy drugs, radiotherapy and photodynamic therapy can induce the immu-
nogenic death of tumour cells, and an increasing number of chemotherapeutic drugs will be found to induce 
the immunogenic death of tumour cells as research  progresses26,27. Taking full advantage of these treatments 
will lead to more effective treatments for cancer. In the present study, we found that OS patients with different 
risk scores had different susceptibilities to various drugs, which indicated that our OS risk score model based 
on ICD could help clinicians select optimal therapeutic drugs.

Figure 3.  Identification of DEGs and signalling pathways in different ICD subtypes. We plotted the result with 
the R software (version 4.2.2 https:// cran.r- proje ct. org/ src/ base/R- 4/). (A) Volcano plot shows the quantified 
DEG distribution between the ICD-high and ICD-low subtypes (log2-fold change > 1 or log2-fold change < − 1, 
P < 0.05). (B) Circos plot shows the GO signalling pathway enrichment analysis results. (C) Circos plot presents 
the KEGG pathway enrichment analysis results. The size of the dot represents the gene count, and the colour of 
the dot represents the − log10 (p. adjust value) value. (D) GSEA identified potential signalling pathways between 
the ICD-high and ICD-low subtypes.

https://cran.r-project.org/src/base/R-4/
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Overall, our study highlights that OS classification based on ICD-related genes is closely related to changes 
in the immune tumour microenvironment, and these observations can be used not only to predict the clinical 
prognosis of OS patients but also to help clinicians choose appropriate treatment protocols.

Methods
Database. The RNA sequencing (RNA-seq) transcriptomic information and clinical information of 85 
osteosarcoma (OS) patients from the Target database (https:// ocg. cancer. gov/ progr ams/ target) were used as the 
training set. The RNA-seq and clinical information of 53 OS patients (GSE21257) from the Gene Expression 
Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE21 257) database were used as the 
validation set.

Statistical analysis. All data processing and analysis was done using R software (version 4.2.2). The t test 
was used to compare the two groups with continuous variables and to assess the statistical significance of nor-
mally distributed variables. The independent and the differences between non-normally distributed variables 
were analysed using the Mann–Whitney U test (i.e. the Wilcoxon rank sum test). For comparison and analysis 
of statistical significance between two groups of categorical variables, the chi-square test or Fisher’s exact test 
was used. Correlation coefficients between different genes were calculated using Pearson correlation analysis. 

Figure 4.  Immune microenvironment of different ICD subtypes. (A) Box plot showing the stromal score, 
immune score and ESTIMATE score of different ICD subtypes analysed by ESTIMATE. *** indicates 
P < 0.001. The stromal score captures the presence of stroma in tumour tissue, the immune score represents 
the infiltration of immune cells in tumour tissue, the ESTIMATE score indicates tumour purity, and the 
Tumor purity was calculated from the three scores mentioned above. (B,C) ssGSEA (B) and EPIC (C) analyses 
showed significantly different immune cells between different ICD subtypes. –P > 0.05, *P < 0.05, **P < 0.01 and 
***P < 0.001. (D) Box plots present the differential expression of multiple immune checkpoints (D) and HLA 
genes (E) between different ICD subtypes. *P < 0.05, **P < 0.01 and ***P < 0.001.

https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
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The t test was used to compare the values of the mean between two groups of samples. P < 0.05 was considered 
statistically significant.

Consensus clustering. Immunogenic cell death (ICD)-related genes were coclustered using the Consen-
susClusterPlus function in R to identify ICD molecular subtypes, followed by evaluation of the ideal number of 
clusters between K = 2–10 to ensure stability of the results after no less than 1000 replicates.

Screening of differentially expressed genes. We used the R/Bioconductor package limma (https:// 
bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ limma. html) to analyse the data and plotted the results (volcano 
maps) with the R package ggplot (https:// cran.r- proje ct. org/ web/ packa ges/ ggplo t2/ index. html). The differen-
tially expressed gene (DEG) screening criteria were as follows: adjusted P < 0.05 and |fold change| > 1.

Functional enrichment analysis. The R/Bioconductor software package ClusterProfiler (https:// bioco 
nduct or. org/ packa ges/ relea se/ bioc/ html/ clust erPro filer. html) was used to perform Gene Ontology (GO) anno-
tation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs 
obtained in the above steps. P < 0.05 indicated a significant difference.

Construction of a prognosis‑related gene model. Risk values were calculated for all patients based 
on a combination of the gene expression levels and their respective coefficients obtained from multivariate Cox 

Figure 5.  Construction and verification of the ICD risk signature. (A) Four ICD-related genes were found to 
be significantly associated with OS in univariate Cox analysis. (B) LASSO Cox analysis identified 12 genes most 
associated with OS in the Target and GEO datasets. (C) Risk score distribution and survival status for each 
patient in the Target and GEO databases. (D) Kaplan‒Meier analysis demonstrates the prognostic significance 
of the risk model in the Target and GSE21257 cohorts. (E) ROC demonstrates that the diagnostic performance 
of the risk model for prognosis is good in the Target and GSE21257 cohorts.

https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html


8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9118  | https://doi.org/10.1038/s41598-023-35745-w

www.nature.com/scientificreports/

regression analysis, namely, the risk score (RS). We calculated the RS of each patient according to the above 
formula and divided the patients into high-risk and low-risk groups using the median RS as the cut-off point.

Independence of the prognostic model from other clinical features. To further determine 
whether the prognostic model was independent of other clinical characteristics, such as age, sex, and metastasis, 
we assessed the RS model for OS patients using univariate and multivariate Cox regression analyses. To further 
illustrate the relationship between the different variables, we also plotted a nomogram and its associated calibra-
tion curve. All tests were statistically analysed using R language software, and P < 0.05 indicated a significant 
difference.

ESTIMATE algorithm to assess the tumour immune microenvironment. ESTIMATE (Estima-
tion of STromal and Immune cells in MAlignant Tumor tissues using Expression data) (https:// bioin forma tics. 
mdand erson. org/ estim ate/ index. html) is a tool for predicting tumour purity and the presence of infiltrating 
stromal/immune cells in tumour tissues using gene expression  data28. We evaluated the tumour immune micro-
environment in patients with OS from the Target dataset using the computational methods provided on this 
website. The stromal score captures the presence of stroma in tumour tissue, the immune score represents the 
infiltration of immune cells in tumour tissue, the ESTIMATE score indicates tumour purity, and the Tumor 
purity was calculated from the three scores mentioned above.

Figure 6.  Correlation of the ICD risk signature with the OS tumour microenvironment. (A) Violin plots 
showing the stromal score, immune score, ESTMATE score and tumour purity in the high-risk and low-
risk groups. ***P < 0.001. (B,C) Scatter plot (B) and heatmap (C) showing the correlation of the risk score 
with immune cell infiltration in the OS tumour tissue microenvironment. (D,E) Results of univariate and 
multivariate Cox analyses (D) and nomogram (E) assessing the independent prognostic value of the ICD risk 
signature in OS patients. (F) The calibration curve shows that the performance of the nomogram is good.

https://bioinformatics.mdanderson.org/estimate/index.html
https://bioinformatics.mdanderson.org/estimate/index.html
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EPIC. EPIC (https:// epic. gfell erlab. org/) is a method that is used to calculate the ratio of immune cells to 
cancer cells from a large amount of tumour gene expression  data29. This is done by fitting gene expression refer-
ence profiles from the main non-malignant cell types and simultaneously accounting for an uncharacterized cell 
type without prior knowledge about it (e.g. cancer cells in solid tumors samples). We used the EPIC algorithm 
to calculate the degree of immune cell infiltration in the osteosarcoma microenvironment and to evaluate the 
association of the constructed ICD gene with immune cells.

Evaluation of drug sensitivity. The training and test expression data were quantile normalized separately 
using the R package pRRophetic (http:// genem ed. uchic ago. edu/ ,pgeel eher/ pRRop hetic) and then combined by 
normalizing the mean and variance of each gene using an empirical Bayesian approach. Removal of genes with 
low variability between samples. A ridge regression model is fit to the training expression data using all remain-
ing genes as predictors and the drug sensitivity (IC50) values (of the drug of interest) as the outcome variable. 

Figure 7.  Boxplots showing the association of the ICD risk score with the response to different drug treatments. 
(A) XAV939; (B) GSK2606414; (C) leflunomide; (D) AZ960; (E) PF-4708671; (F) AZD8055; (G) ribociclib; (H) 
RO-3306; (I) BI-2536; (J) afuresertib; (K) NVP-ADW742; and (L) SB505124.

https://epic.gfellerlab.org/
http://genemed.uchicago.edu/,pgeeleher/pRRophetic
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This model was applied to the processed, standardized, filtered clinical tumour expression data, yielding a drug 
sensitivity estimate for each patient. Through this algorithm, we screened out sensitive chemotherapy drugs that 
can be used to treat patients with osteosarcoma.

Survival analysis. Kaplan‒Meier (KM) analysis was performed using the survminer and survival packages 
in R to compare overall survival in patients with OS in different groups, including the ICD-high and ICD-low 
groups and the high-risk score and low-risk score groups. P < 0.05 indicated a significant difference.

Ethics approval and consent to participate. The GEO database is a public database. Users can down-
load relevant data for free for research and publish relevant articles. Our study is based on open source data, so 
there are no ethical issues.

Data availability
The datasets for this study can be found in the Target (https:// ocg. cancer. gov/ progr ams/ target) and GEO (https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE21 257) databases.
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