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Deep reinforcement learning 
for data‑driven adaptive scanning 
in ptychography
Marcel Schloz 1*, Johannes Müller 1, Thomas C. Pekin 1, Wouter Van den Broek 1, 
Jacob Madsen 2, Toma Susi 2 & Christoph T. Koch 1

We present a method that lowers the dose required for an electron ptychographic reconstruction by 
adaptively scanning the specimen, thereby providing the required spatial information redundancy in 
the regions of highest importance. The proposed method is built upon a deep learning model that is 
trained by reinforcement learning, using prior knowledge of the specimen structure from training data 
sets. We show that using adaptive scanning for electron ptychography outperforms alternative low‑
dose ptychography experiments in terms of reconstruction resolution and quality.

Ptychography is a coherent diffractive imaging (CDI) method that has found use in light, X-ray and scanning 
transmission electron microscopies (STEM). The method combines diffraction patterns from spatially overlap-
ping regions to reconstruct the structure of a specimen for arbitrarily large fields of  view1, with many advantages 
over other imaging  methods2–5. The development of new  hardware6,7 and reconstruction  algorithms8,9 has led 
to ptychography becoming a mature electron microscopy  technique4. Current research to further improve it is 
driven by the desire to investigate thick  samples10–14 as well as to lower the required electron  dose15–18. In order 
to lower the dose, researchers have tried to vary various experimental parameters while preserving information 
redundancy through overlapping probes. One approach involves a defocused probe rastered across the speci-
men with a less dense scan pattern. This uses a lower dose than focused probe ptychography, but introduces 
additional complications for the reconstruction algorithm due to an increased need to account for partial spatial 
coherence in the illuminating  probe18. Another approach is simply to scan faster by lowering the dwell time per 
probe position, an overall decrease in dose can be realized. However, this comes with its own challenges, as the 
physical limits of the electron source, microscope, and camera all must be considered. Finally, a third approach is 
the optimization of the scan pattern, deviating from a raster grid in favour of a generally more efficient  pattern19. 
This approach can, however, only yield a limited improvement in reconstruction quality as it is not capable of 
taking into account the structure of the specimen in the scan pattern.

In this work we present an approach particularly tailored for electron ptychography that enables reduction of 
the electron dose through adaptive scanning. It is based upon the idea that, at atomic resolution, ptychography 
requires an increased information redundancy through overlapping illuminating beams only in regions that 
contain the atomic structure of the scanned specimen. We present here a workflow that scans only the regions 
with the highest information content in order to strongly improve the ptychographic reconstruction quality 
while keeping low the total number of scan positions, and therefore the total dose. The scan positions are pre-
dicted sequentially during the experiment and the only information required for the prediction process is the 
diffraction data acquired at previous scan positions. The scan position prediction model of the workflow is a 
mixture of deep learning models, and the model training is performed with both supervised and reinforcement 
learning (RL). A schematic of the workflow is given in Fig. 1. The synergy of deep learning and RL has already 
shown strong performance in various dynamic decision-making problems, such as tasks in  robotics20,21 or visual 
 recognition22–24. The success of this approach, despite the complexity of the problems to overcome, can be attrib-
uted to the algorithms’ ability of learning independently from data. Similarly, the proposed algorithm here solves 
a sequential decision-making problem by learning from a large amount of simulated or, if available, experimental 
ptychographic data consisting of hundreds to thousands of diffraction patterns. Here, the focus of the learning 
is specifically designed to maximize the dynamic range in the reconstruction for each individual scan position. 
The algorithm then transfers the learned behaviour it developed offline to a realistic experimental environment.
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Our approach is conceptually related to the subfield of computer vision that focuses on identifying relevant 
regions of images or video sequences for the purpose of classification or recognition. However, there are fun-
damental differences not only in the purpose, but also in the solution strategy for our application in contrast to 
computer vision tasks. Differences include a lack of direct access to images (updated real space information is 
only accessible through a highly optimized reconstruction algorithm), non-optimal parameter settings of the 
reconstruction algorithm and experimental uncertainties such as imprecise scan positioning of the microscope 
or contamination of the specimen requiring pre-processing of the reconstructed image, and the necessity of 
a much larger number of measurements requiring methods that improve the performance of the sequential 
decision making process. Work in adaptive scanning for X-ray fluorescence  imaging25 and for scanning probe 
 microscopy26 has also recently been reported. However, the work in Ref.25 is more closely related to previous 
work in scanning electron microscopy that divides the measurement into a low-dose raster scan and a subsequent 
high-dose adaptive  scan27. For the latter work in Ref.26, it has been reported that its model suffers in performance 
as it lacks prior knowledge of the domain structure, which can be compensated by including a deep learning 
model with domain specific knowledge. Our proposed approach is the first application of adaptive scanning to 
ptychography, and is further unique in that the scan pattern is predicted using prior knowledge about the sample 
in the form of a pre-trained deep neural network, thereby improving performance.

Results
The result of adaptive scanning on experimentally acquired MoS2 data and its comparison to the result of a sparse 
grid scanning and the conventional grid scanning procedure is shown in Fig. 2. The data used for the comparison 
was not part of the training data for the adaptive scanning model. However, the entire data was acquired from the 
same sample and includes multiple data sets that were recorded from different regions of the sample. This data 
can be found in Ref.28. In our comparison, a ground truth reconstruction is obtained from one of the data sets 
each consisting of 10,000 diffraction patterns, while only 250 diffraction patterns have been used for the adaptive 
scanning as well as the sparse grid scanning reconstruction. Figure 2a shows the ptychographic reconstruction 
when using a sparse grid scanning procedure. The structure of the material is not clearly resolved and/or shows 
ambiguous features. Figure 2b shows the reconstruction when the scan positions are predicted through adaptive 
scanning. Although without the same homogeneous reconstruction quality throughout the entire field of view, 
the structure of the MoS2 material is now much better resolved and is closer to the ground truth reconstruction 
of the full data grid scanning procedure, shown in Fig. 2c.

Figure 1.  Schematic of the adaptive scanning workflow with its three main components. (a) Experimental 
data acquisition in ptychography. At the scan position Rp of the scan sub-sequence �RPt , the beam illuminates a 
sample, where the incident electron wave ψ in

p (r − Rp) interacts with the transmission function t(r) . The wave 
exiting the sample is propagated by a Fourier transform to the detector located in the far field and the intensity 
Ip = |�ex

p (k)|2 is recorded as a diffraction pattern. (b) A reconstruction V generated from diffraction patterns 
of a scan sub-sequence is mapped to the compressed representation z by using an encoder network Eφe (V) . (c) 
Schematic of the forward propagation process of the RNN model. The RNN consists of GRU units that use the 
hidden state Ht from the previous time step and the hybrid input information Xt to create a new hidden state 
Ht+1 . The hybrid input is the concatenation of the pre-processed information from the sub-sequence of scan 
positions �RPt and the corresponding compressed representation of the partial reconstruction zt . The output of 
the GRU cell is used to predict the positions of the next sub-sequence �RPt+1

 and is also used as the input for the 
next GRU cell.
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Further examples of reconstructions and their corresponding scan sequences are shown in Fig. 3. The results 
suggest that probe delocalization due to scattering plays an important role as to why an improved ptychographic 
reconstruction can be achieved by distributing the scan positions predominantly on the atoms of the specimen. 
This implies that similar results could be achieved by using RL with a reward function that specifically empha-
sizes the scattered electrons in the recorded diffraction patterns, which is an interesting area for future research.

The final point of our experimental investigation into adaptive scanning in ptychography evaluates the perfor-
mance of the method for various prediction settings. We compare the Fourier ring correlation (FRC)29 as well as 
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Figure 2.  Ptychographic reconstruction of a MoS2 data set with a scanning procedure that follows (a) a sparse 
grid scan, (b) an adaptive scan and (c) the conventional grid scan. While only 250 diffraction patterns are used 
in (a) and (b), the full data set with 10,000 diffraction patterns is used in (c). The inset in (c) illustrates the 
illumination probe used for the reconstruction with an estimated size of 0.93Å. The pixel size is identical to the 
one used in the reconstruction and its magnitude is represented by the intensity, and the phase is represented by 
the HSV colorwheel. (d) FRC of the sparse grid scan and the adaptive scan averaged over 25 data sets and where 
the standard deviation is illustrated by the shaded area.
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Figure 3.  Ptychographic reconstructions of different MoS2 data sets and with different scanning procedures. 
Reconstruction from 250 diffraction patterns of a data set that correspond to scan positions which follow (a–d) 
a sparse grid scanning sequence and (e–h) an adaptively predicted sequence. (i–l) Ground truth reconstruction 
of the full data set with 10,000 diffraction patterns shown with the scan positions used for the corresponding 
reconstructions (a–d) in green and (e–h) in red.
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the structural similarity index measure (SSIM)30 between the reconstruction obtained from the reduced data and 
the ground truth reconstruction obtained from the full data to quantify the improvement of the effective image 
resolution and image quality when using adaptive scanning. In the first comparison, shown in Fig. 2d, we apply 
the FRC to the sparse grid scan and adaptive scan averaged over 25 data sets, respectively. For both cases, there 
is a sharp frequency cut off in the proximity of atomic resolution (1.2 Å). However, while the cross-correlation 
value almost disappears in the case of the sparse grid scan, it plateaus at a value of about 0.2 in the case of the 
adaptive scan. This result indicates the benefit in terms of achievable resolution of adaptive scanning in contrast 
to other low dose alternatives. In the latter comparison, SSIMa and SSIMs refer to reconstructions of reduced 
data obtained with the adaptive scanning and the sparse grid scanning procedure, respectively. Table 1 shows 
the relative reconstruction quality improvement QSSIM = (SSIMa − SSIMs)/(SSIMs) for different experimental 
settings averaged over the same 25 data sets as used before. In the case of 250 scan positions, which corresponds 
to a dose reduction by a factor of 40 with respect to the original data, tests were performed for different total 
numbers T of sub-sequences and therefore different amounts of scan positions included in each sub-sequence 
�RPt . The quality improvement ranges from 9.89% to 15.84% for 2 to 5 sub-sequences, respectively. Note that the 
scan positions of the first sub-sequence �RP0 , provided to the RNN as part of the initial input, follow the sparse 
grid sequence and that the scan positions of each sub-sequence only cover a part of the sample, as can be seen in 
Fig. 6b. Further tests were performed using a larger number of total scan positions and 5 sub-sequences. How-
ever, the difference in quality between the reconstruction generated with the positions of the adaptive scan and 
the sparse grid scan decreases with the total number of positions used, as can be expected, since the sparse grid 
sampling covers the sampled area in an increasingly complete manner. These results indicate that the reconstruc-
tion quality improves with the frequency by which the positions are predicted, and that low dose experiments 
benefit the most from the adaptive scanning scheme.

In Fig. 4, we compare the results of various scanning procedures using simulated double-walled carbon 
nanotube (DWCNT) data. This data is publicly  available28. Figure 4a shows a ptychography reconstruction that 
considers 840 diffraction patterns that have been selected through the adaptive scanning procedure. Most of the 
unit cells of the structure can be resolved with a high contrast and therefore the configuration of the DWCNT 
can be easily deduced. The predicted scan positions coincide to a high degree with the structure of the DWCNT. 
Note that the initial scan sub-sequence visualized at the bottom of the reconstruction follows a sparse grid scan 
sequence. Figure 4b shows the reconstruction when using 840 diffraction patterns obtained from a sparse grid 

Table 1.  Performance of adaptive scanning for various experimental settings that differ in the number of scan 
positions and the total number of sub-sequences. For each setting, the oversampling ratio Nk/Nu , which is 
calculated following Ref.17, and the electron dose is given.

# Pos. Nk/Nu Dose ( e−/Å−2) # Sub-seq. QSSIM

250

8.21 1.34E5 2 9.89± 6.80%

3 12.38± 10.72%

4 15.71± 7.60%

5 15.84± 7.23%

335 10.83 1.79e5 5 10.03± 8.17%

420 13.43 2.25e5 5 8.60± 5.30%

500 15.86 2.68e5 5 8.08± 7.60%

5 Å

c) d)a) b)

Figure 4.  Ptychographic reconstruction of a DWCNT data set with a scanning procedure that follows (a) an 
adaptive scan, (b) a sparse grid scan, (c) an alternative low-dose scan and d) the conventional grid scan. 840 
diffraction patterns have been used for the reconstructions in (a) and (b), 13,536 patterns were used for the 
reconstruction in (c) and the full data set consisting of 13,225 patterns was used for the reconstruction in (d). 
Half of the corresponding scan positions are illustrated on the right hand side of each reconstruction. Note that 
the alternative low-dose scan method used for generating (c) consists of a full grid scan at a very low dose and 
a consecutive scan using 311 scan positions that have been found to match the sample structure based on the 
result obtained from the previous scan. Only the latter scan positions are visualized in (c).
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scanning procedure. The field of view is now much better covered with scan positions, but the periodicity at 
which the scan positions are spaced seems to be also present in the reconstruction. Hence, the reconstruction 
shows ambiguous features that make the interpretation of the structure more difficult compared to the previ-
ous case. Figure 4c shows the reconstruction of an alternative low-dose scanning procedure which has been 
described conceptually in Ref.27. Here, two consecutive scans are performed. The first scan is a conventional 
dense grid scan consisting of 13,225 diffraction patterns with an electron dose of 4e3 e−/Å−2 compared to 1e5 e−
/Å−2 . The same scan with the latter dose has also been used for the dense grid scan in Fig. 4d. The second scan 
of the alternative low-dose scanning procedure was limited to 311 scan positions as to match the total electron 
dose of the procedures in Fig. 4a and b. An atom finding method was applied to the ptychography reconstruction 
generated after the first scan to adapt these 311 scan positions to the atomic structure of the DWCNT speci-
men. Although the predicted scan positions in this approach match the atomic structure almost perfectly, their 
contribution to the final reconstruction seems to be not sufficient given that most of the total electron dose is 
required for their optimal prediction. Quantitatively, we obtain a relative reconstruction quality improvement 
QSSIM of 2.60± 3.38% and 16.97± 3.49% when using adaptive scanning with respect to the sparse grid scanning 
and alternative low-dose scanning procedure, respectively.

Conclusion
We have presented a method for electron ptychography that reduces the electron dose through adaptive scan-
ning. Sub-sequences of scan positions are predicted by the model within milliseconds, allowing an acquisition 
rate that theoretically exceeds rates currently achieved in 4D-STEM experiments. The method would therefore 
have the potential to be applied in real time at the microscope if the used ptychography reconstruction algorithm 
could generate images sufficiently fast. Future work does therefore require either an improvement of iterative 
ptychography algorithms in terms of processing speed or the integration of direct ptychography reconstruc-
tion methods, such as single-sideband (SSB)  ptychography31, in the adaptive scanning workflow. We show an 
improved resolution and reconstruction quality when using an adaptive scanning approach on experimen-
tally acquired monolayer MoS2 data sets in comparison to another dose reduction scanning approach. These 
improvements show that adaptive scanning for ptychography is a useful technique to lower the dose needed for 
the analysis of sensitive samples. It can be provided with simulated or generic experimental training  data32,33 to 
increase its applicability to a variety of different or less periodic material structures. We have demonstrated the 
generalizability of our method by applying it to simulated DWCNT data sets and showing that it outperforms 
other low-dose alternatives. In addition, the proposed workflow can be taken as a blueprint for a broad range 
of scanning microscopy methods and thus paves the way for future research in machine learning supported, 
automated and autonomous  microscopy34,35.

Methods
Image formation in ptychography. The approach described in this paper is compatible with multisclice 
ptychography, but in light of the application to a 2D material we constrain ourselves to single-slice ptychography. 
Here, ptychography can be expressed by a multiplicative approximation that describes the interaction of a wave-
function ψ in

p (r) of an incoming beam with the transmission function t(r) of a specimen. For each measurement 
p, the beam is shifted by Rp and a diffraction pattern is acquired with the intensity Ip that is expressed by

where F is the Fourier propagator, r the real space coordinate, k the reciprocal space coordinate and �ex
p (k) the 

exit wavefunction at the detector. The transmission function can be defined as t(r) = eiσV(r) , with the interaction 
constant σ and the complex potential V(r) . Throughout this treatment, σ is absorbed into V(r) . X-ray and optical 
ptychography is mathematically described similarly with the only difference that the transmission function t(r) 
is related to the complex refractive index of the specimen. Figure 1a illustrates the experimental configuration 
of conventional ptychography. The potential of the specimen is recovered from data of experimentally acquired 
diffraction patterns Jp using a reconstruction algorithm. Here, we apply a gradient based  algorithm17 with a 
gradient decent optimization and the potential is retrieved by iteratively minimizing the loss function

Generation of scan sequences. We use a recurrent neural network (RNN)36–38 for the generation of scan 
sequences. Its network architecture is designed to model temporal sequences with recurring input information. 
Memory cells combine the current input information Xt with the hidden state Ht and map it to the next hidden 
state Ht+1 . These hidden states represent the memory gathered from all the previous time steps. Gated recurrent 
units (GRU)s39, which allow a computationally fast mapping with a high performance, are used in this work. At 
every time step t, an output is generated on the basis of the current hidden state. In the implementation shown 
here, the output corresponds to multiple scan positions, i.e. a sub-sequence of scan positions, given by a vector 
of 2D coordinates �RPt . In principle, the output can be reduced to a single scan position Rpt , but we do not do so 
for practical reasons that involve a reduced training performance of the network and also a greatly increased 
acquisition time due to, e.g., more frequent data transfer and pre-processing of these intermediate data chunks. 
The sub-sequence is predicted via a fully connected layer (FC) that is parameterized by the layer weights θH:

(1)Ip = |�ex
p (k)|2 = |F

[

ψ in
p (r − Rp)t(r)

]

|2,

(2)L (V) =
1

P

P
∑

p=1

�Ip(V)− Jp�
2
2.
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At the predicted scan positions �RPt , diffraction patterns JPt are acquired by the microscope and from these dif-
fraction patterns a potential Vt(r) is reconstructed minimizing Eq. (2). The intermediate reconstruction Vt(r) 
combined with its corresponding sub-sequence of scan positions �RPt can then be used for the input information 
Xt of the RNN. However, the bandwidth of the information given in Vt(r) and �RPt differs strongly and thus pre-
processing is required before the two components can be concatenated and mapped to Xt . For the processed 
location information Lt based on the sub-sequence �RPt , a FC that is parameterized by the weights θR is used:

For the processed structure information Ct based on the reconstructed potential Vt(r) , a compressed representa-
tion zt is generated by using the encoder part of a convolutional  autoencoder40. This processing step is shown in 
Fig. 1b and the training of the convolutional autoencoder is described in the Supplementary Information. The 
compressed representation zt is then fed into a FC that is parameterized by the weights θz:

The processed location information Lt is subsequently concatenated with the processed structure information Ct 
and mapped to the input information Xt with a FC that is parameterized by the weights θLC . The whole process 
of predicting sub-sequences of scan positions and acquiring the corresponding diffraction patterns is repeated 
until a ptychographic data set of desired size is reached. Finally, backpropagation through time (BPTT) is used to 
generate the required gradients to update the network weights θ = {θH , θGRU, θLC , θR, θz} of the RNN. Figure 1c 
shows the prediction process modeled by the RNN in full detail.

Training through reinforcement learning. A RNN can be combined with RL to provide a formalism 
for modelling behaviour to solve decision making problems. In the case of adaptive scanning in ptychography, 
where we seek to predict multiple scan positions at each time step, RL can be formalized by a partially observable 
stochastic game (POSG) that is described by a 8-tuple, �M,S , {Am}m∈M , ρ, {rm}m∈M , {O m}m∈M ,ω, γ � , with 
multiple agents M. At each time-step t an agent m selects an action amt ∈ Am and makes an observation omt ∈ O m 
given the state st ∈ S . Thus, joint actions at = �a1t , . . . , a

m
t � from the joint action space A = A1 × · · · ×AM 

are executed and joint observations ot = �o1t , . . . , o
m
t � from the joint observation space O = O1 × · · · × OM are 

received from the environment at every time step. The next state st+1 is generated according to a transition 
function ρ : S ×A×S → [0, 1] , the observations ot+1 , containing incomplete information about the state 
st+1 , are generated according to an observation function ω : A×S × O → [0, 1] and each agent receives its 
immediate reward defined by the reward function rm : S ×A → R . This reward rm contributes to the total 
reward computed at the end of the sequence, Gm =

∑T
t=0 γ

t rm(at , st) , also known as the return. The discount 
factor γ ∈ [0, 1] controls the emphasis of long-term rewards versus short-term rewards. The entire history of 
observations and actions up to the current time ht = {o1, a1, . . . , ot−1, at−1, ot} is used as basis for optimal or 
near-optimal decision making. A stochastic policy πθm(amt |ht) maps the history of past interactions ht to action 
probabilities. Given a continuous action space, the policy can be represented by a two-dimensional Gaussian 
probability distribution:

with its mean vector µθm(ht) corresponding to Rpt , where the history ht is summarized in the hidden state Ht 
of the RNN and the covariance matrix � with fixed variances σ 2

x ∈ [0, 1] and σ 2
y ∈ [0, 1] . The joint policy of all 

agents is then defined as πθ (at |ht) =
∏M

m=1 πθm(a
m
t |ht) , with θ = {θm}m∈M . The goal of RL is now to learn a 

joint policy that maximizes the expected total reward for each agent m with respect to its parameters θm:

where the expected total reward can be approximated by Monte Carlo sampling with N samples. In this paper, 
improvement of the policy is achieved by updating the policy parameters θm = {θmH , θGRU, θLC , θR, θz} with 
’REINFORCE’41, a policy gradient method:

The derivation of ∇θmJ
m(θ) is given in the Supplementary Information.

Learning to adaptively scan in ptychography. While policy gradient methods are the preferred choice 
to solve reinforcement learning problems in which the action spaces are  continuous42, they come with signifi-
cant problems. Like any gradient based method, policy gradient solutions mainly converge to local, not global, 
 optima43. In this paper, we reduce the effect of this problem during training by splitting the training of the RNN 
into supervised learning and RL. While training in RL can be performed with a policy whose parameters are 

(3)�RPt = FCθH (Ht).

(4)Lt = FCθR (
�RPt ).

(5)Ct = FCθz (zt).

(6)πθm(a
m
t |ht) = N(µθm(ht),�),

(7)J m(θ) = Eπθ (τ )

[

Gm
]

≈
1

N

N
∑

n=1

Gm
n ,

(8)

∇θmJ
m(θ) =Eπθ (τ )

[

∇θm logπθ (τ )G
m
]

≈
1

N

N
∑

n=1

T
∑

t=0

∇θm logπθm(a
m
n,t |hn,t)G

m
n .
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arbitrarily initialized, this is not ideal. Having an adequate initial guess of the policy and using RL subsequently 
to only fine-tune the policy is a much easier problem to solve. A sparse grid scan sequence is a reasonable 
initialization as it follows the current scanning convention used in a microscope. Pre-training of the param-
eterized policy for the RL model can then be performed by supervised learning applied on the RNN such that 
the discrepancy between the predicted scan positions �RPt = �µθ (ht) and the scan positions of the initialization 
sequence �Rinit

Pt
 is minimized:

Figure 5 illustrates the scan positions during the fine-tuning of the policy through RL for the first 10,000 itera-
tions when either (a) a policy that has not been initialized via supervised learning or (b) an initialized policy 
is used. While the scan positions in both cases converge to the atomic structure, the positions predicted by the 
non-initialized policy are distributed only within a small region of the field of view during the entire training. 
Note that once the predicted scan sequence mimics the sparse grid scan sequence as a result of the supervised 
learning based initialization, all further improvements in performance are the result of the subsequent training 
through RL.

A high variance of gradient estimates is another problem that particularly strongly affects the Monte Carlo 
policy gradient  method42,44,45. Due to this, the sampling efficiency is relatively low, which causes a slow conver-
gence to a solution. This makes deep RL applied to ptychography challenging as the image reconstruction itself 
requires iterative processing. The high variance can be in part attributed to the difficulty of assigning credit from 
the overall performance to an individual agent’s action. Here, we introduce a way to estimate the reward function 
in order to tackle the credit assignment problem for adaptive scanning in ptychography. The reward function 
should naturally correspond to the quality of the ptychographic reconstruction. We have found empirically that 
a high reconstruction quality correlates positively with a high dynamic range in the phase. Therefore, the reward 
function could intuitively be formalized by rm(at |st) = P−1

∑

r∈FOV V(r) , where P is the total number of scan 
positions. This formulation, however, does not solve the credit assignment problem and results in an insufficient 
training performance, as shown in Fig. 6a. To estimate the reward for the actions of each individual agent, we 
use a tessellation method that partitions the atomic potential into small segments. A Voronoi  diagram46, where 
each position corresponds to a seed for one Voronoi cell, enables assignment of only a part of the total phase 
to each position. More precisely, the Voronoi diagram formed by the predicted scan positions is overlaid with 
the corresponding ptychographic reconstruction at the end of the prediction process and the summed phase 
within each Voronoi cell is the reward for that cell’s seed position. The reward function can be expressed by 
rm(at |st) = P−1

∑

r∈Cellm V(r) . Figure 6b shows a Voronoi diagram generated by predicted scan positions.

Settings. For the experimental investigation, we acquired multiple ptychographic data sets from a mon-
olayer molybdenum disulfide (MoS2 ) specimen with a Nion HERMES microscope. The microscope was oper-
ated with a 60 kV acceleration voltage, a convergence angle of 33 mrad and diffraction patterns with a pixel size 

(9)K(θ) =

T
∑

t

��RPt − �Rinit
Pt
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Figure 5.  Fine-tuning of a policy with RL that (a) has not been initialized and (b) has been initialized via 
supervised learning. In the latter case, the training starts with a sequence that matches a sparse grid scan 
sequence. Positions A indicate the scan positions of the first sub-sequence �RP0 that is provided to the RNN as 
part of the initial input. Positions B and C are the scan positions of all predicted sub-sequences at iteration 0 and 
10,000, respectively. The trajectories they form during the optimization process are indicated by dashed blue 
lines.
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of 0.84 mrad were acquired using a Dectris ELA direct-electron detector mounted at the electron energy-loss 
spectroscopy (EELS) camera port. Distortions induced by the EEL spectrometer were corrected with in-house 
developed software. For the ptychographic data set acquisition, a conventional grid scan with a scanning step 
size of 0.02 nm was used. From the experimentally acquired data sets we created 200 smaller data sets, each 
with 10,000 diffraction patterns and located at different regions of the sample. 175 of these small data sets were 
dedicated to the training of the network model, while the remaining 25 data sets were used to test the trained 
model and to generate the results shown here. The diffraction patterns were binned by a factor of 2 to 64× 64 
pixels. The adaptive scanning model was trained on the small data sets with the goal of predicting optimal scan 
sequences of 250 to 500 probe positions, out of the possible 10,000, which corresponds to a dose reduction by a 
factor of 40 to 20. Each sub-sequence contains 50 to 100 positions, where the initially given first sub-sequence 
follows a sparse grid scanning sequence.

We conducted a second investigation of the model’s performance on simulated data sets of a DWCNT and 
compared it to the performance of alternative low-dose data acquisition methods in ptychography. The data sets 
were generated using the simulation tool abTEM47 where we set the acceleration voltage to 60 kV, the convergence 
angle to 40 mrad and the scanning step size to 0.02 nm. The size of the diffraction patterns is 86× 86 pixels 
with a pixel size of 0.91 mrad. 962 data sets have been used to train the network model and from the 13,225 dif-
fraction patterns in each data set only 840 were chosen within the prediction process of the adaptive scanning 
workflow. 25 data sets were used to compare the different scanning procedures and analyse their performance 
using the QSSIM metric. The simulated DWCNT consisted of an inner and an outer nanotube with a diameter of 
9.78 Å and 16.44 Å and a chiral angle of 44◦ and 60◦ , respectively. For each data set, a unique rotation between 
the two nanotubes and a translation of the entire DWCNT within the field of view was applied.

The ptychographic reconstructions were performed with an optimized version of  ROP17,28 that allows simul-
taneous reconstruction from a batch of different data sets and therefore the parallel hardware architecture of a 
NVIDIA V100 GPU could be optimally used to efficiently train the model. For a batch size of 24, reconstruc-
tions were retrieved in about 35 s. A gradient descent step size αROP of 525 was chosen and the potential was 
retrieved at iteration 5. In the experimental investigation, the reconstructed potential was 200× 200 pixels with 
a pixel size of 0.0154 nm, for a field of view of 2× 2 nm, while for the simulation, the reconstructed potential 
was 200× 200 pixels with a pixel size of 0.0140 nm, for a field of view of 2.3× 2.3 nm. For the generation of 
the reward function, Voronoi diagrams were generated with the Jump Flooding  Algorithm48 and for the imple-
mentation of the network models,  PyTorch49 was used. For the compression of structure information, we used 
a convolutional autoencoder consisting of 6 convolutional layers with kernels of dimension 3, a stride of 1 and 
channels that ranged from 16 to 512 for the encoder and decoder part, respectively. The input of the autoencoder 
had a dimension of 512 with a pixel size of 0.0064 nm and thus a scaling and an interpolation was required before 
the potential generated by ROP could be compressed. In addition, the value of the potential Vi at each pixel i was 
transformed to zero mean and unit variance. For the prediction of the scan sequences, pre-training and fine-
tuning was performed with a RNN model composed of 2 stacked GRU layers with hidden states Ht of size 2048, 
the Adam  optimizer50 with a learning rate αRNN of 1e−5 and a batch size of 24. For the fine-tuning, a policy with 
variances of σ 2

x = σ 2
y = 0.01252 was chosen and a myopic behavior was enforced by setting the discount factor 

for the return, G, to γ = 0 . In the case of the experimental investigation, training of the autoencoder involved 
100,000 iterations, while the training of the RNN with supervised learning and RL has been performed with 
800 and 20,000 iterations, respectively. In the second investigation with the simulated data, the training of the 
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Figure 6.  (a) Learning curves for the first 10,000 iterations of RL with multiple agents and without credit 
assignment or with credit assignment, illustrated in orange and blue, respectively. (b) A Voronoi diagram is used 
to assign a unique reward to each scan position of the predicted sequence. The scan positions are shown as red 
dots, where the first 50 positions are distributed on the right side within the dark blue area. For visualization 
purpose, the ground truth reconstruction is included in the diagram.
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autoencoder has been done with 30,000 iterations and for the training of the RNN with supervised learning and 
RL, 200 and 2800 iterations were used, respectively.

Code availability
The source code of the presented work is available at  Gitlab51 and the experimental and simulated data can be 
found in Ref.28. All other code is available from the corresponding author on reasonable request.
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