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Forecasting COVID‑19 activity 
in Australia to support pandemic 
response: May to October 2020
Robert Moss 1*, David J. Price 1,2, Nick Golding 3,4, Peter Dawson 5, Jodie McVernon 2,6, 
Rob J. Hyndman 7, Freya M. Shearer 1,3 & James M. McCaw 1,8

As of January 2021, Australia had effectively controlled local transmission of COVID‑19 despite a 
steady influx of imported cases and several local, but contained, outbreaks in 2020. Throughout 2020, 
state and territory public health responses were informed by weekly situational reports that included 
an ensemble forecast of daily COVID‑19 cases for each jurisdiction. We present here an analysis of 
one forecasting model included in this ensemble across the variety of scenarios experienced by each 
jurisdiction from May to October 2020. We examine how successfully the forecasts characterised 
future case incidence, subject to variations in data timeliness and completeness, showcase how we 
adapted these forecasts to support decisions of public health priority in rapidly‑evolving situations, 
evaluate the impact of key model features on forecast skill, and demonstrate how to assess forecast 
skill in real‑time before the ground truth is known. Conditioning the model on the most recent, but 
incomplete, data improved the forecast skill, emphasising the importance of developing strong 
quantitative models of surveillance system characteristics, such as ascertainment delay distributions. 
Forecast skill was highest when there were at least 10 reported cases per day, the circumstances in 
which authorities were most in need of forecasts to aid in planning and response.

As of January 2021, Australia had effectively controlled COVID-19 transmission, experiencing prolonged inter-
vals of local elimination throughout 2020 despite a steady influx of imported cases, which have been effectively 
managed by Australia’s hotel quarantine  system1. Scenario modelling conducted in February 2020 informed 
Australia’s rapid and strong initial  response2, which was sufficient to control the import-driven first  wave3. In 
particular, Australia’s definitive border measures, including mandatory 14-day hotel quarantine on arrival from 
overseas, was effective in limiting community exposure from infected international arrivals.

Nonetheless, in May 2020 a breakdown in infection prevention and control measures in the state of Victoria’s 
hotel quarantine system resulted in community exposure that developed into a second  wave4,5. COVID-19 (ances-
tral strain) case incidence peaked at 450 locally-acquired infections per day in the last week of July  20205,6. This 
was substantially higher than the peak of 131 daily cases in the import-driven first wave. Despite the imposition 
of stringent inter-state movement restrictions, cross-border importation of cases into the state of New South 
Wales led to a long period of constrained community transmission in that state throughout 2020, kept in check 
by proactive public health case finding and quarantine without imposition of stringent social  measures7. In Vic-
toria, a combination of case finding, contact tracing, and prolonged restrictions on movement and gathering sizes 
were required to bring the second wave to an end in October  20205,8. Subsequent border incursions in various 
states and territories were associated with small clusters and in some cases localised community transmission, 
prompting the imposition of strong public health responses supported by variably stringent social restrictions 
over days and weeks. The daily incidence of locally-acquired COVID-19 cases in each jurisdiction over the study 
period is shown in Fig. 1.

The public health response to the Victorian second wave and outbreaks in other Australian jurisdictions 
was informed by the results of real-time analytics and an ensemble forecast of COVID-19 activity for each 
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Australian state and territory, presented to key government advisory committees in weekly situational reports. 
Similar analytics and forecasts have supported public health responses around the  world9–13. Here we detail one 
of the forecasting models included in the ensemble forecast, which was adapted from Australian seasonal influ-
enza  forecasts14–16 that we have deployed in near-real-time in collaboration with public health colleagues since 
 201517,18. We evaluate the model’s performance by measuring forecast skill relative to an historical benchmark 
forecast over the study period (May to October 2020) and demonstrate how these outputs supported public health 
responses during that period. In addition to using the model to predict future rates of locally-acquired COVID-19 
cases in each Australian jurisdiction, we demonstrate how our methods were adapted and improved in response 
to the needs of government, in order to most effectively support the public health decision-making process.

We generated forecasts by combining a stochastic SEIR-type (Susceptible, Exposed, Infectious, Recovered) 
compartment model with daily COVID-19 case counts through the use of a bootstrap particle  filter16. The fore-
casting model incorporated real-time estimates of the effective reproduction number Reff  for the cohort of active 
cases (who may not be representative of the whole population), and the transmission potential (TP) averaged 
over the whole population (characterising the potential for wide-spread transmission)7.

In brief, Reff  is the average number of infections caused by an active case in a population (where some people 
may be protected against infection) and reflects the transmission characteristics of active cases in that population. 
In contrast, TP characterises the expected number of infections caused by an average person in a population (even 
when there are no active cases in that population) and reflects whole-population behaviours. These TP estimates 
were informed by nationwide behavioural surveys and by mobility data from technology  companies7,19.

We used the active-case Reff  to characterise local transmission at the time of forecast, and assumed that trans-
mission from future active cases would gradually become more representative of the whole population. That is, 
local transmission in the forecasting model gradually shifted from the active-case Reff  to the whole-population 
transmission potential (TP) over the forecast horizon. We assess the impact of this assumption about active case 
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Figure 1.  Daily incidence of locally-acquired COVID-19 cases for each jurisdiction, as reported after the end 
of the study period (see "COVID-19 surveillance data" section). Most jurisdictions experienced a first wave in 
March and April, comprised largely of imported cases. From June to October, Victoria (VIC) experienced a large 
second wave and New South Wales (NSW) experienced a prolonged low-amplitude small second wave. Other 
jurisdictions are: Australian Capital Territory (ACT), Northern Territory (NT), Queensland (QLD), South 
Australia (SA), Tasmania (TAS), and Western Australia (WA). Vertical lines indicate the study period (1 May to 
31 October). Note the different vertical scales for New South Wales and Victoria.
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heterogeneity by comparing the forecast skill against that of a separate suite of forecasts where local transmission 
was maintained at the current active-case Reff .

One of the most significant challenges in using predictive models to support public health decision-making 
in real time is understanding how much confidence to place in the  predictions20–22. We address the question 
“When should we trust these forecasts?” by showing how forecast skill can be assessed in real-time before the 
ground truth is known.

Results
At each week in the study period (May to October 2020) we produced forecasts for each jurisdiction that pre-
dicted daily COVID-19 case counts in that jurisdiction over the next four weeks. Note that each forecast was 
conditioned on the expected case counts by symptom onset date, after accounting for delayed case ascertainment 
(see "COVID-19 surveillance data" and "Forecasting COVID-19 case numbers in the community" sections  for 
methodological details).

We first examine how well these forecasts characterised future case incidence during the onset of the sec-
ond wave in Victoria (In "Onset of the second wave in Victoria" section). Over this period, the timeliness and 
completeness of the near-real-time case data varied substantially, and we show how they impacted the forecast 
predictions.

We then demonstrate how we adapted the forecasts to support the gradual easing of restrictions in Victoria, 
as daily case incidence decreased in September and October but continued to persist at low levels (In "Likeli-
hood of a large outbreak" section). Policy changes during this period were subject to reaching specific 14-day 
moving average case thresholds.

Finally, we present an analysis of the forecast performance across all Australian jurisdictions, in which we 
measure how accurately our forecasts predicted the future case numbers, relative to an historical benchmark 
forecast (In "Forecast skill" section). We calculated skill scores for our forecasts, where negative values indicate that 
the forecasts performed worse than the historical benchmark, zero indicates that the forecasts performed as well 
as the historical benchmark, and positive values indicate that the forecasts performed better than the historical 
benchmark. The maximum possible skill score is one, which indicates that a forecast yielded perfect predictions 
with no uncertainty. We identify the circumstances under which forecast skill was highest, evaluate the impact 
of key model features on forecast skill, and conclude by considering how to assess forecast skill in real-time.

Onset of the second wave in Victoria. Throughout May 2020, Victorian case incidence remained low 
and relatively stable (5.6 cases per day, on average). With such limited chains of local transmission, forecasts 
generated in May considered local extinction to be the most likely outcome and did not include the possibility 
of a large outbreak. These predictions were consistent with the findings of a subsequent genomic study, in which 
the month of May 2020 was characterised by near elimination of COVID-19 in  Victoria23. However, a new clus-
ter of local cases emerged at the end of  May23, and by late June more widespread epidemic activity was clearly 
established, with more than 60 cases per day (Fig. 1).

Here we focus on the following key questions: “When did the forecasts first consider a large outbreak was 
possible?”; “When did the forecasts first consider a large outbreak was likely?”; and “How did the reported data 
available at each week influence these predictions?”.

Likelihood of a large outbreak. The forecast generated on 24 June was the first to indicate that a large outbreak 
might occur. The 95% credible interval included trajectories with increasing case counts, suggesting that there 
was least a 1-in-40 chance of a sustained outbreak, and the lower bounds of each credible interval was greater 
than zero. Forecasts generated on this date, and for the subsequent six weeks, are shown in Fig. 2, and a qualita-
tive summary of each forecast is provided in Table 1.

The forecast generated on 1 July was the first to demonstrate confidence that a substantial outbreak would 
occur (the 50% credible interval included trajectories with increasing case counts). Its median trajectory exceeded 
100 cases per day, the 50% credible interval (CrI) lower bound remained above 10 cases per day until mid-August, 
and the 50% CrI upper bound was in good agreement with the future case counts over the entire forecast horizon. 
As local transmission became more established, subsequent forecasts yielded increasingly confident and accurate 
predictions of the size and timing of this second wave. The 8 July forecast was a marked outlier from the other 
forecasts over this period, and we address this forecast separately in the next section.

Despite the 50% CrIs being reasonably narrow, the 95% CrIs remained very broad in all of these forecasts. 
The 95% CrI lower bounds decreased to zero cases per day roughly 2 weeks after the forecast date, and their 
upper bounds exceeded 1,000 cases per day. This diversity of epidemic trajectories (from the stochastic SEEIIR 
compartment model) illustrates the inherent uncertainty at the time of each forecast about the future course of 
this second wave, and what impact the imposed public health and social measures might have on local transmis-
sion over the forecast horizon.

The impact of near-real-time data. A natural consequence of working with near-real-time surveillance data 
was the challenge of interpreting the reported numbers of locally-acquired cases for recent dates, given the delay 
between symptom onset and cases being ascertained and reported. Fig. 3 shows the daily case counts reported 
at each data date, and the expected daily case counts after accounting for delayed  ascertainment7 (see "Forecast-
ing COVID-19 case numbers in the community" section for methodological details). Ascertainment delays are 
evident in the data reported on and after 24 June (i.e., once there was an indication of established local trans-
mission) and became more pronounced as local case incidence increased. The most recent data in each extract 
(dashed lines) systematically undershoot the corresponding case counts in subsequent data extracts.
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The forecast generated on 8 July is a particularly notable example of how data timeliness and completeness 
can impact model predictions. Its 50% CrI is much narrower than those of other forecasts and trends downward 
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Figure 2.  Forecasts of daily COVID-19 case incidence for Victoria, shown separately for each data date (right-
hand axis labels). Each forecast is shown as a spread of credible intervals (blue shaded regions). Vertical dashed 
lines indicate the data date (i.e., when the forecast was generated). Black lines show the daily case counts at 
the time of forecasting, after accounting for delayed ascertainment, and dark yellow lines show the future case 
counts. Note that the daily case counts at the time of forecasting (black lines) end several days prior to the data 
date; see "Competing models" section for details. The y-axis is truncated at 800 cases; due to the potential for 
exponential growth in model cases, the upper bounds of the 95% credible intervals reached as high as 45,000 
cases per day at the end of the 22 July forecast horizon.
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from the most recent observation (30 June), undershooting every future daily case count, even those before the 
data date itself. This forecast was influenced by an apparent decrease in daily cases reported over 25–30 June 
(Fig. 3), even after applying the modelled correction for delays between symptom onset and case ascertainment 
(based on data from earlier data extracts), and might have revealed an opportunity for achieving elimination. 
However, case counts for these dates were substantially higher in subsequent data extracts. While there were a 
number of local clusters in Victoria around this time, including in multiple schools and public housing  sites24,25, 
to the best of our knowledge this ascertainment delay was not linked to any specific cluster. A plausible explana-
tion is that unprecedented case numbers impacted various aspects of the public health response (e.g., laboratory 
testing, contact tracing, reporting). The Victorian Government subsequently received additional support from 
Australian Defence Force  personnel26.

Table 1.  Qualitative summaries of the forecast credible intervals (CrIs) during the onset of the second wave, 
where “Date” is the date on which each forecast was generated.

Date Forecast characteristics

24 June 50% CrI is flat (no outbreak), 95% CrI includes possibility of large outbreak

1 July 50% CrI upper bound in good agreement with future case counts

8 July 95% CrI undershoots future case counts

15 July 50% CrI includes all of the future case counts

22 July 50% CrI undershoots future case counts after the peak

29 July 50% CrI undershoots future case counts after the peak

5 August 50% CrI includes all of the future case counts
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Figure 3.  Daily incidence of COVID-19 cases for Victoria from mid-May until the end of June, shown 
separately for each data date (right-hand axis labels). Each data extract updated the entire time-series. Forecasts 
were conditioned on the expected case counts after accounting for delayed ascertainment (solid black lines); the 
reported case counts in the data extracts are also shown (dashed black lines). Updated case counts, as reported 
on 12 August, are shown as grey columns.
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In contrast, the forecast generated on 5 August is in good agreement with the data, and its 50% CrI includes all 
of the future case numbers. Note the raw data available at the time of forecast suggested an epidemic in decline, 
but incidence remained near-maximal for the next two weeks and this was captured by the forecast.

These observations highlight the importance and the challenge of understanding the meaning and limitations 
of the available data in near-real-time. While correcting for delays (right censoring) is necessary, such corrections 
are not static through time. It is fundamentally difficult to estimate the completeness of these data in rapidly-
evolving situations, such as during rapid epidemic growth, where bottlenecks and delays are not directly observ-
able and are subject to change. Active communication with those responsible for the data is crucial to ensuring 
that the data and the resulting forecasts are interpreted appropriately, particularly when there are changes in 
surveillance, testing, and/or reporting.

Policy context: easing restrictions in Victoria. In response to the imposed restrictions (“stage 3” and 
“stage 4”), daily case numbers in Victoria peaked in August and steadily decreased  thereafter5,7. By early Septem-
ber the Victorian government had announced a plan to gradually ease these restrictions over a period spanning 
mid-September to late November, conditional on achieving specific case thresholds over 14-day windows ahead 
of each planned date for policy  changes27. However, similar to the months of May and June, local cases remained 
at low but persistent levels in the second half of September and into October (see Fig. 4). The city of Melbourne 
had been under intense mobility and gathering restrictions (so-called “lockdown”) since 7 July, and the growing 
need to ease these restrictions had to be carefully balanced against the risk of resurgence. We used our forecasts 
to predict the probability that the 14-day moving average for incident cases would achieve these specific thresh-
olds at each day of the forecasting period (see "Meeting case-number thresholds that trigger policy changes" 
section for methodological details).

Each of the four target case thresholds was achieved in the months of September and October 2020 (see 
Table 2). For each case threshold, we inspected the forecasts made in the weeks prior to that threshold being 
achieved, to see how far in advance the forecasts suggested that these thresholds would be achieved. The forecasts 
predicted a greater than 50% chance of achieving each threshold three to four weeks in advance (see Table 2 and 
Fig. 5). For example, the ≤ 50 cases threshold was achieved on 13 September. Twenty five days earlier, the forecast 
generated on 19 August predicted a 46.8% chance of achieving this threshold by 13 September. The next forecast 
(generated on 26 August) predicted a 63.5% chance of achieving this threshold by 13 September.

The one exception was the 10-case threshold, which was reached on 9 October. In the weeks prior to this 
date, daily case counts fluctuated around 10 cases per day (see Fig. 4). Three weeks prior to this threshold being 
reached, the forecasts predicted only a 23% chance of reaching this threshold by 9 October. By the following 
week — two weeks in advance — the forecasts predicted a 68% chance of reaching this threshold by 9 October.
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Figure 4.  Daily incidence of COVID-19 cases for Victoria in October, shown separately for each data date 
(right-hand axis labels). Forecasts were conditioned on the expected case counts after accounting for delayed 
ascertainment (solid black lines); the reported case counts in the data extracts are also shown (dashed black 
lines). Updated case counts, as reported after the study period, are shown as grey columns.
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Forecast skill. Having described the behaviour and qualitative performance of our forecasts during periods 
of increasing, decreasing, and low levels of local transmission, we now consider their performance more pre-
cisely, through skill scores. We measured forecast skill relative to an historical benchmark, described in "Forecast 
targets and skill" section, which assumed that future case counts would follow the same distribution as the case 
counts observed to date. This provides a quantitative performance evaluation and helps to address a critical ques-
tion when using forecasts to support public health decision-making: “When should we trust these forecasts?”.

Forecast uncertainty. To quantify forecast uncertainty we used forecast sharpness, a measure of the breadth 
of forecast outcomes (e.g., a sharpness of zero means there is a single possible outcome). For jurisdictions that 
reported substantial COVID-19 activity, as the lead time increased (i.e., looking further into the future) the 
forecasts exhibited little increase in uncertainty, or even grew more certain (Sect. S1). This trend reflects, in part, 
that as local epidemic activity increased there was more information available to inform the forecasts and con-
strain the range of plausible outcomes. During the second wave in Victoria, strong public health measures and 

Table 2.  Forecast predictions concerning the 14-day moving average case thresholds. For each threshold, this 
table shows the date when that threshold was first reached, and the following forecast quantities for that date: 
(a) the forecast data date; (b) the projected probability of reaching the threshold by the date when it was first 
reached; and (c) the forecast 50% credible interval for daily case incidence on that date.

Threshold First reached Data date Probability 50% CrI

≤ 50 cases 13 Sep
19 Aug 46.8% 7-94

26 Aug 63.5% 8-44

≤ 25 cases 22 Sep 26 Aug 64.1% 1-24

≤ 10 cases 9 Oct 23 Sep 68.2% 1-8

≤ 5 cases 21 Oct 23 Sep 72.7% 0-4
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Figure 5.  Time series showing the projected probability of reaching each of the 14-day moving average case 
thresholds, shown separately for each data date (right-hand axis labels). Vertical dashed lines show when each 
threshold was first reached (with respect to symptom onset date, not reporting date). The black points show the 
projected probability of having achieved each threshold on the day that it was reached.
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social restrictions markedly reduced the TP, and this caused the forecasts to become sharper at longer lead times 
(Fig. S2). In contrast, assuming that transmission would be sustained at the current active-case Reff  caused the 
forecasts to become more uncertain at longer lead times (Fig. S3). For jurisdictions that primarily reported zero 
cases on a given day, the forecast trajectories tended to local extinction, and forecast sharpness was close to zero 
(i.e., minimal uncertainty) for all lead times.

Forecast bias and case heterogeneity. The forecasts tended to under-estimate future case counts (negative bias, 
see Sect. S2). For jurisdictions which had achieved local elimination, such as South Australia in May, this reflects 
a deliberate model feature: our careful separation of the potential for reintroduction from the consequence of 
reintroduction. Without evidence of reintroduction into these jurisdictions, the forecasts did not admit the pos-
sibility of subsequent epidemic activity (see "Accounting for observed reintroduction" section) and predicted 
there would be zero reported cases each day. On the rare occasions where a jurisdiction subsequently reported 
one or two isolated cases (see Fig.  1) this resulted in a negative bias (under-estimation).

For Victoria, which experienced substantial COVID-19 activity during the study period, model assumptions 
about local transmission contributed to the underestimation of future case counts. Recall that the model used 
the active-case Reff  to characterise local transmission at the time of forecast, with transmission reverting to the 
transmission potential (TP) over time (see "Forecasting COVID-19 case numbers in the community" section for 
details; example Reff  trajectories are shown in Sect. S4). However the second wave in Victoria was dominated by 
localised outbreaks in health and aged care settings, and other essential services, where public health and social 
measures to constrain transmission had less impact than in the general  population5. Over a 5-month period, 
the Reff  was systematically greater than the TP, as described and evaluated in Golding et al.7. Accordingly, as 
shown in Fig. 2, the majority of the Victorian forecasts somewhat under-estimated future case counts. Despite 
this negative bias, the model consistently out-performed forecasts where local transmission was instead main-
tained at the current active-case Reff  (see Sect. S3.1). Noting that Reff  was consistently higher than the TP, this 
highlights the importance (and challenge) of accounting for heterogeneity of transmission in diverse settings 
and population sub-groups.

Forecast skill and the historical benchmark. Of the five jurisdictions that primarily reported zero cases on a 
given day, the forecasts consistently out-performed the historical benchmark for all lead times in the Australian 
Capital Territory and Western Australia, and out-performed the historical benchmark for 1-week lead times 
in South Australia and Tasmania. The historical benchmark out-performed the forecasts for all lead times in 
the Northern Territory, where the past case counts were extremely good predictors of the future case counts. 
For Queensland, which saw a sustained period of 1–5 cases per day (July to September 2020) the forecasts out-
performed the historical benchmark for lead times of up to 2 weeks. For longer lead times the forecasts tended to 
include the possibility of a sustained increase in cases, which was inconsistent with the ground truth and reduced 
their skill relative to the historical benchmark.

For jurisdictions that experienced substantial COVID-19 activity (New South Wales, Victoria) the forecasts 
exhibited improved performance relative to the historical benchmark for shorter lead times (Sect. S3.3). For 
Victoria, which experienced the largest local outbreak, the forecasts substantially out-performed the historical 
benchmark for lead times of up to 4 weeks (Sect. S3.4).

Forecast skill across all jurisdictions was highest when daily case numbers were zero or at least ten (Sect. S3.1). 
The forecasts also out-performed the historical benchmark when there were 1–9 daily cases, but to a lesser degree. 
Across all jurisdictions, 1–9 daily cases comprised 18% of the daily observations; 4% in the state of Victoria, the 
other 14% in jurisdictions that did not experience sustained epidemic activity. These are the circumstances under 
which there is great uncertainty as to whether local transmission will become established and drive exponential 
growth in case numbers. The model forecasts began to include the possibility of a large outbreak in these cir-
cumstances (e.g., see the Victorian forecast for 24 June in Fig. 2) and many trajectories substantially exceeded 
the future case counts, since enacted control measures regularly curtailed transmission.

In contrast, the historical benchmark predictions were defined by the daily case counts reported to date and 
yielded much narrower predictions than the forecast model in these circumstances. The majority of the 1–9 
daily case observations occurred in jurisdictions that did not experience sustained epidemic activity, for which 
the past observations were good predictors of the future case counts, and the historical benchmark performed 
well. For Victoria, the historical benchmark predictions substantially underestimated the future case counts in 
the second wave, and did not include the ground truth as a possibility.

Of course, when considering the model forecasts as a risk evaluation tool, their ability to include the potential 
for large outbreaks in their projections is a major advantage over the historical benchmark, as is their ability to 
predict peak timing and size.

Forecasting in near-real-time. We highlighted some challenges of using near-real-time data in  "Onset of the 
second wave in Victoria" section. By accounting for delayed ascertainment in the reported case counts (depicted 
in Figs. 3 and 4) we extracted additional information that, on average, increased the forecast skill (Sect. S3.2), 
even though it slightly decreased the forecast skill for days where 1–9 cases were reported (Sect. S3.1). Forecast 
performance was particularly sensitive to the imputed case counts when the reported case counts were low and a 
difference of, say, 1 case per day represented a large relative change (see Figs. 3 and 4 for examples).

When considering forecast skill as a function of the number of cases ultimately recorded for each day, as 
above, the results can only be evaluated in retrospect, since these numbers are unknown when the forecast is 
made. Accordingly, we also considered forecast skill as a function of the number of daily cases predicted by the 
forecast model (Sect. S3.5). In other words, before we know the ground truth, can we anticipate what the forecast 
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skill is likely to be, based only on (a) the current forecast predictions; and (b) the forecast skill of previous fore-
casts (for which the ground truth is already known). Our intent was to address the question “What does this 
forecast mean?” before the ground truth is known, with the aim of providing assistance when interpreting the 
forecast outputs in near-real-time.

The skill scores were similar when aggregated by the number of cases ultimately reported for each day or by 
the median number of predicted case numbers, particularly when there were at least 5 cases per day (Fig. S17). 
This means that we can estimate the forecast skill by using the median forecast as a proxy for the ground truth; 
past performance appears to be indicative of future performance. This indicates that in decision-making contexts 
(i.e., when future case counts are unknown) we can still obtain a reasonable estimate of forecast skill and assess 
forecast reliability in real-time. These estimates are particularly reliable when local transmission is established.

Discussion
Principal findings. Forecasting infectious disease activity is a fundamentally difficult  problem28, and even 
more so in unprecedented circumstances and in the face of regularly updated public health responses, public 
perceptions of risk, and changes in  behaviour29–31. Despite these challenges, we were able to adapt our existing 
seasonal influenza forecasting  methods14–18 to COVID-19 transmission in Australia, and provide the resulting 
forecasts to public health authorities to support the Australian COVID-19 response. We tailored our analyses in 
near-real-time to support public health decision-making in rapidly-evolving situations. This included providing 
public health authorities with estimated future epidemic activity, timelines for achieving case thresholds that 
would trigger easing of restrictions, and risk assessments based on repeated incursions of new chains of trans-
mission in primarily infection-free jurisdictions.

Our forecasts exhibited the greatest skill in the state of Victoria, which experienced the overwhelming major-
ity (96%) of locally-acquired cases reported in Australia over the study period, May–October 2020. Forecast skill 
was highest when there were at least 10 reported cases on a given day, the circumstances in which authorities 
were most in need of forecasts to aid in planning and response.

In considering several alternate forecast models, forecast skill was higher when we assumed that the active-
case Reff  characterised local transmission at the time of forecast and that, over the forecast horizon, local trans-
mission would trend back towards the whole-population transmission potential (whether Reff  was lower or 
higher than the TP). This improvement in skill was driven by characteristics of both the Victorian and New 
South Wales epidemics. In Victoria, while Reff  remained consistently higher than the transmission potential, it 
decreased steadily over  time7. In New South Wales, the public health response to incursions repeatedly drew 
Reff  below the  TP7. Although our model overestimated the rate at which local transmission would trend back 
towards the TP, it consistently out-performed forecasts generated under the assumption that local transmission 
would be sustained at the current active-case Reff .

Forecast skill was also higher when the model was conditioned on the most recent data, even though these 
data were known to be incomplete. By imputing symptom onset dates and estimating the delay between symptom 
onset and case  ascertainment7, we obtained additional information to that available in the reported time-series 
data, improving forecast skill. However, when the reported number of daily cases were low, forecast performance 
was particularly sensitive to the imputed case counts and there were occasions where forecast skill was higher 
when the model was not conditioned on the most recent data.

Study strengths. Australian jurisdictions maintained high testing levels over the study period. The propor-
tion of infected persons that were identified as cases was likely to be both very high, and to remain relatively 
constant over the study period. These cases include asymptomatic individuals who were identified through 
large-scale and systematically exhaustive contact tracing  programs5. In comparison, in recent influenza seasons 
the probability that a person with influenza-like illness (ILI) symptoms would seek healthcare and have a speci-
men collected for testing (as estimated from  Flutracking32,33 survey participants) was around 3–8%16. But dur-
ing the study period, 50–75% of Flutracking participants with ILI symptoms reported having a COVID-19 test 
(Sect. S5), suggesting high case ascertainment. The end of the second wave in Victoria provides yet further evi-
dence of high case ascertainment. As the 14-day case thresholds for easing restrictions were achieved, there were 
fewer and fewer unlinked (“mystery”) cases reported. For example, the Victorian 19 October update reported an 
average of 7.7 cases per day in the past 14 days and a total of just 15 unlinked  cases34, while the 26 October update 
reported an average of 3.6 cases per day in the past 14 days and a total of just 7 unlinked  cases35. Elimination was 
achieved before the end of the study period, and so unidentified cases, if present, did not cause sustained chains 
of transmission. This is consistent with the TP, which was estimated to be less than one in Victoria from August 
to October  20207.

As described above, we had access to detailed line-listed data, and were able to estimate the delay distribution 
for the time between symptom onset and case ascertainment, and to impute the symptom onset date for cases 
where this had not yet been  reported7.

We were able to incorporate the impact of public health interventions via near-real-time estimates of the effec-
tive reproduction number ( Reff  ) and the whole-population transmission potential (TP), which were informed by 
nationwide behavioural surveys, population mobility data, and times from symptom onset to case  detection7,19. 
Upon reintroduction of cases in jurisdictions that had achieved local elimination, estimates of the transmission 
potential allowed us to produce forecasts that were informed by local mobility and behaviour, before reliable 
estimates of the effective reproduction number were available.

Likewise, we were able to adapt the forecast outputs to support policy decisions in near-real-time for indi-
vidual jurisdictions without incorporating additional effects into the underlying simulation model. This meant 
that we did not need to explicitly model control measures that were imposed and relaxed in each jurisdiction 
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— such an effort would have been extremely complex and it would be impossible to account for decisions that 
occur within each forecast horizon and their impact on transmission dynamics. The fact that our forecasts exhib-
ited high forecast skill, particularly during periods of sustained local transmission, demonstrates that increasing 
model complexity is not always necessary or  appropriate12,22,36,37.

Study limitations. Australia had experienced limited COVID-19 activity prior to the study period, and so 
it was reasonable to assume that the entire population was susceptible to infection. Subsequent waves of local 
infection, as experienced in Australia after the study period, have resulted in a non-negligible proportion of 
the population having some degree of natural immunity. In these circumstances, the forecasts would become 
more sensitive to assumptions about case ascertainment. COVID-19 vaccination in Australia began in Febru-
ary 2021 (i.e., after the study period) and has mitigated the impact of subsequent circulation of the Delta and 
Omicron variants in 2021 and 2022. By February 2022, more than 94% of people over the age of 16 were fully 
 vaccinated38. We have continued to refine and extend the methods presented here to account for changes in case 
ascertainment, vaccination coverage, booster vaccinations, and waning immunity. Results obtained with these 
refinements continue to be reported under Australia’s National Disease Surveillance Plan for COVID-1939 and 
will be described elsewhere.

Our forecast model only incorporated population heterogeneity by allowing local transmission to trend from 
the active-case Reff  to the whole-population transmission potential (TP) over the forecast horizon. This limited 
granularity was appropriate for the purposes to which the forecasts were applied, but meant that the forecasts 
were not suitable for addressing more nuanced questions about, for example, targeted (geographic or socio-
demographic) interventions to mitigate localised  clusters40.

Meaning and implications. The first wave of COVID-19 in Australia was primarily driven by returning 
travellers who had acquired their infection overseas. In contrast, the second wave in Victoria was driven by local 
transmission. Cases in the second wave were also over-represented in essential services that involved frequent 
and intense contact, such as residential aged care facilities, healthcare, manufacturing, and meat  processing5, 
and so were less able to reduce their contacts (and so transmission opportunities) than the general population. 
Accordingly, during the second wave in Victoria the active-case Reff  was systematically higher than the whole-
population transmission  potential7, even though both decreased over time in response to public health interven-
tions. Forecast bias was compounded by this disparity between Reff  and transmission potential.

However, since the active-case Reff  did decrease over time, forecast skill was highest when, over the forecast 
horizon, local transmission trended back towards the whole-population transmission potential. It is unclear how 
future trends in local transmission could be better modelled or predicted, highlighting fundamental challenges 
in regards to (a) understanding the transmission characteristics of persons who are currently infectious; and (b) 
predicting how the transmission characteristics of infectious persons will change into the future, particularly 
when case numbers are low. These are intrinsic sources of uncertainty for infectious diseases forecasting, and 
while they may conceivably be reduced, they cannot be eliminated.

There is an acknowledged need for effective and on-going collaborations between modellers and public health 
practitioners in order to take full advantage of modelling tools such as epidemic forecasts to support public 
health policy and decision-making41–43. The forecasts presented here were adapted from our Australian seasonal 
influenza  forecasts14–16, which we have deployed in near-real-time in collaboration with public health colleagues 
since  201517,18. A number of modifications were required to adapt these forecasts to COVID-19 transmission 
in Australia, but developing and applying these methods to seasonal influenza activity in previous years has 
provided us with valuable experience in adapting to unprecedented circumstances, working with incomplete 
and evolving data, responding to public health needs, and effectively communicating forecast outputs to public 
health decision-makers.

Methods
Ethics statement. The study was undertaken as urgent public health action to support Australia’s COVID-
19 pandemic response. The study used data from the Australian National Notifiable Disease Surveillance System 
(NNDSS) provided to the Australian Government Department of Health and Aged Care under the National 
Health Security Agreement for the purposes of national communicable disease surveillance. Data from the 
NNDSS were supplied after de-identification to the investigator team for the purposes of provision of epide-
miological advice to government. Contractual obligations established strict data protection protocols agreed 
between the University of Melbourne and sub-contractors and the Australian Government Department of 
Health and Aged Care, with oversight and approval for use in supporting Australia’s pandemic response and for 
publication provided by the data custodians represented by the Communicable Diseases Network of Australia. 
The ethics of the use of these data for these purposes, including publication, was agreed by the Department of 
Health and Aged Care with the Communicable Diseases Network of Australia. All methods were carried out in 
accordance with the relevant guidelines and regulations.

COVID‑19 surveillance data. We used line-lists of reported cases for each Australian state and territory, 
which were extracted from the National Notifiable Disease Surveillance System (NNDSS) on a weekly basis. 
The line-lists contained the date when the individual first reported exhibiting symptoms, the date when the case 
notification was received by the jurisdictional health department, and whether the infection was acquired locally 
or overseas.
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We used a time-varying delay distribution to characterise the duration between symptom onset and case 
notification, which was estimated from the reporting delays observed during the study  period7. Symptom onset 
dates were imputed for cases where this was not (yet) reported.

Forecasting COVID‑19 case numbers in the community. We used a discrete-time stochastic SEEIIR 
model with gamma-distributed waiting times to characterise infection in each Australian jurisdiction. Let S(t) 
represent the number of susceptible individuals, E1(t)+ E2(t) represent the number of exposed individuals, 
I1(t)+ I2(t) represent the number of infectious individuals, and R(t) the number of removed individuals, at time 
t  . Symptom onset was assumed to coincide with the transition from I1 to I2 . We used real-time estimates of the 
effective reproduction number Reff7, which were informed by nationwide behavioural surveys, mobility data 
from technology companies, and times from symptom onset to case  detection7,19, and sampled a unique trajec-
tory Rj

eff (t) for each particle j . In order to initialise the first epidemic wave in each jurisdiction, it was assumed 
that 10 exposures were introduced into the E1 compartment at time τ , to be inferred, giving initial conditions:

The number of individuals who leave each compartment on each time-step �t follows a binomial distribution 
(see Table 3 for parameter definitions):

S(0) = N − E1(0)

E1(0) = 10

E2(0) = 0

I1(0) = 0

I2(0) = 0

R(0) = 0

σ(t) =

{

0 if t < τ

σ if t ≥ τ

γ (t) =

{

0 if t < τ

γ if t ≥ τ

βj(t) = R
j
eff (t) · γ (t).

Table 3.  Parameter values for (i) the transmission model; (ii) the observation model; and (iii) the bootstrap 
particle filter.

Description Value

(i)

N The population size Table 4

Reff (t) The time-varying effective reproduction number See text

j The index of the selected Reff (t) trajectory ∼ U(1,Npx)

σ The inverse of the latent period (days−1) See text

γ The inverse of the infectious period (days−1) See text

τ The time of the initial exposures (days) ∼ U(0, 50)

ê(t) The time-varying number of exogenous exposures See text

�t The time-step size (days) 0.01

(ii)

bgobs The background observation rate 0.05

pobs The observation probability 0.8

k The dispersion parameter 10

pdet The detection probability (per observation) See text

(iii)
Npx The number of particles 2000

Nmin The minimum number of effective particles 0.25 · Npx
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We allowed for the introduction of exogenous exposures, which may be acquired by individuals who, e.g., visit an 
external location where infectious individuals are present, or encounter an infectious individual from an external 
location who has travelled to this location. The expected number of exogenous exposures, ê(t) , is time-varying 
and independent trajectories can be sampled for each particle.

We modelled the relationship between model incidence and the observed daily COVID-19 case inci-
dence ( yt ) using a negative binomial distribution with dispersion parameter k , since the data were non-
negative integer counts and were over-dispersed when compared to a Poisson distribution. Let X(t) rep-
resent the state of the dynamic process and particle filter particles at time t  , and xt represent a realisation; 
xt = (st , e1t , e2t , i1t , i2t , rt , σt , γt , jt , êt) . We assumed that cases were observed (i.e., were reported as a notifiable 
case) with probability pobs when they transitioned from I1 to I2 . To account for incomplete observations due 
to, e.g., delays in testing and reporting for the most recent observations, we fitted a time-to-detection distribu-
tion and calculated the detection probability ( pdet ) for each observation at each time t 7. In order to improve 
the stability of the particle filter for very low (or zero) daily incidence, we also allowed for the possibility of a 
very small number of observed cases that were not directly a result of the community-level epidemic dynamics 
( bgobs ). Accordingly, we defined the likelihood L(yt | xt) of obtaining the observation yt from the particle xt as:

The value of the dispersion parameter k was chosen so that when zero individuals enter the I2 compartment over 
one day, the 50% credible interval has an upper bound of zero observed cases and the 95% credible interval has 
an upper bound of one observed case.

To generate projected case counts at each day, we used a bootstrap particle filter with post-regularisation44 and 
a “deterministic” resampling  method45, as previously described in the context of our Australian seasonal influenza 
 forecasts14–18. We constructed a simulated trajectory ỹi = {ỹi0, ỹ

i
1, . . . } from each particle i in the ensemble by 

drawing a random sample ỹit at each day t :

Parameters and model prior distributions. Model and particle filter parameters are described in Table 3. Since 
Australia is one of the most urbanised countries in the world, for each jurisdiction we used capital city residential 
populations (including the entire metropolitan region, as listed in Table 4) in lieu of the residential population of 
each jurisdiction as a whole. Parameters σ and γ were sampled from a multivariate log-normal distribution that 
was defined to be consistent with a generation interval distribution with mean=4.7 and SD=2.97,46, and we sam-
pled independent Rj

eff (t) trajectories for each particle. The observation probability pobs was fixed at 0.8, assuming 
that 80% of infections would be  detected47.

�(t) =
β(t) · [I1(t)+ I2(t)]+ ê(t)

N

SPr(t) = 1− exp (−�t · �(t))

Sout(t) ∼ Bin (S(t), SPr(t))

EPr1 (t) = 1− exp (−�t · 2 · σ(t))

Eout1 (t) ∼ Bin (E1(t),E
Pr
1 (t))

EPr2 (t) = 1− exp (−�t · 2 · σ(t))

Eout2 (t) ∼ Bin (E2(t),E
Pr
2 (t))

IPr1 (t) = 1− exp (−�t · 2 · γ (t))

Iout1 (t) ∼ Bin (I1(t), I
Pr
1 (t))

IPr2 (t) = 1− exp (−�t · 2 · γ (t))

Iout2 (t) ∼ Bin (I2(t), I
Pr
2 (t))

S(t +�t) = S(t)− Sout(t)

E1(t +�t) = E1(t)+ Sout(t)− Eout1 (t)

E2(t +�t) = E2(t)+ Eout1 (t)− Eout2 (t)

I1(t +�t) = I1(t)+ Eout2 (t)− Iout1 (t)

I2(t +�t) = I2(t)+ Iout1 (t)− Iout2 (t)

R(t +�t) = R(t)+ Iout2 (t)

L(yt | xt) ∼ NegBin (pdet · E[yt ], k)

E[yt ] = (1− ninc(t)) · bgobs + ninc(t) · pobs · N

ninc(t) =
I2(t)+ R(t)− I2(t − 1)− R(t − 1)

N

Var[yt ] = pdet · E[yt ] +

(

pdet · E[yt ]
)2

k

ỹit ∼ NegBin (µ = E[yit ], k).
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Competing models. We evaluated four competing models, by considering all combinations of: 

1. Assuming that local transmission would trend back towards the whole-population transmission potential 
over the forecast horizon (“Trend to TP”), or that local transmission would instead be sustained at the active-
case Reff  distribution over the forecast horizon (“Fixed Reff ”); and

2. Conditioning on all daily case counts where the detection probability pdet ≥ 0.5 , or only conditioning on all 
daily case counts where pdet ≥ 0.95 (in order to reduce the influence of imputed symptom onset dates, and 
cases potentially not yet reported).

The labels used to identify each of these four models are listed in Table 5.

Accounting for observed reintroduction. We deliberately treated the consequence of observed reintro-
duction separately from the potential for reintroduction. Here our interest lies in introducing new exposures to 
reflect a small number of reported cases in a jurisdiction after a sufficiently long period of no reported cases in 
that jurisdiction. This captures importation events where the particle ensemble contains few, if any, particles with 
any exposed or infectious individuals, and is fundamentally different from predicting the probability of a future 
reintroduction into a jurisdiction that currently has no active COVID-19 cases. We can realise this by defining 
exogenous exposure trajectories that are non-zero for a short period prior to the observed reintroduction.

For a jurisdiction that reports one or more COVID-19 cases at time τ ( yτ ) after a prolonged period of no cases 
(e.g., 28 days or longer), we assume that the initial exposure(s) occurred � = 5 days prior to the case(s) being 
reported, and we account for the time-to-detection distribution ( pdet ) and the observation probability ( pobs):

We deliberately selected this approach instead of keeping ê(t) fixed at some positive value ε , so that the forecasts 
for jurisdictions that had achieved local elimination did not suggest there would be subsequent epidemic activity 
without evidence of reintroduction. This decision was motivated by Australia’s international and domestic move-
ment restrictions, which were effective in limiting community exposure from infected international arrivals and 
from travel between jurisdictions. The daily probability of an importation event was deemed to be sufficiently 
low that it would only serve to inflate the widest credible intervals in jurisdictions that had achieved elimination.

Forecast targets and skill. The forecast targets were the daily case counts (indexed by symptom onset 
date) for the 7 days prior to the data date (“back-cast”), for the data date itself (“now-cast”), and for the 28 
days after the data date (“forecast”). Forecast performance was measured using Continuous Ranked Probability 
Scores  (CRPS48). CRPS is a generalisation of the Mean Absolute Error (MAE) for probabilistic forecasts, which 
penalises forecasts for placing probability mass at a distance from the ground truth, and is one of the most widely 
used accuracy metrics for probabilistic forecasts. CRPS values increase as more probability mass is allocated to 
incorrect values, and as the distance between these incorrect values and the ground truth increases.

We calculated CRPS values for each observation yτ of COVID-19 cases on day τ , given observations y0:t for 
days 0 . . . t (inclusive):

ê(t) =

{

yτ ·
(

pdet · pobs
)−1

if τ = t +�

0 otherwise.

Table 4.  The population sizes used for each jurisdiction. Values were obtained from Population Australia data 
for 2019 (https:// www. popul ation. net. au/).

Jurisdiction N

Australian Capital Territory 410,199

New South Wales 5,730,000

Queensland 2,560,000

South Australia 1,408,000

Northern Territory 154,280

Tasmania 240,342

Victoria 5,191,000

Western Australia 2,385,000

Table 5.  The four competing forecast models.

Trend to TP Fixed Reff

pdet ≥ 0.5 Default Fixed Reff

pdet ≥ 0.95 Minimal imputation Minimal imputation, Fixed Reff

https://www.population.net.au/
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where H denotes the Heaviside step function.
We compared the performance of each model M to that of an historical benchmark forecast N  , whose 

probability mass function N (t) for the data date t  was the distribution of the daily case counts reported in the 
jurisdiction at the time of forecast, accounting for the detection probability pdet(τ ) for each observation yτ:

We measured the performance of each model M using CRPS skill  scores49:

We also measured forecast sharpness S(t) and forecast bias B(t) as per Funk et al.50:

Meeting case‑number thresholds that trigger policy changes. We have already defined the prob-
ability that the case counts on day τ will not exceed some threshold T : P(Yτ ≤ T | y0:t) . We can build on this 
definition to obtain the probability that the average daily case count over some window W up to, and including, 
day τ does not exceed this threshold T:

This was used to predict the probability of achieving each of the target case thresholds for relaxing measures in 
the second wave in Victoria, for each day in the forecast horizon.

Data availability
All of the simulation code and forecast outputs used to generate the results in this manuscript and the supplemen-
tary materials are provided in a public git repository (https:// gitlab. unime lb. edu. au/ rgmoss/ aus- 2020- covid- forec 
asts). See the provided README.md file for detailed instructions.
The input data for each data date (i.e., the daily COVID-19 case counts and Reff  trajectories) are provided in a 
separate dataset (https:// doi. org/ 10. 26188/ 19315 055). For access to the raw COVID-19 case data, a request must 
be submitted to NNDSS.datarequests@health.gov.au, which will be assessed by a data committee.
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