
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9255  | https://doi.org/10.1038/s41598-023-35655-x

www.nature.com/scientificreports

Identification of immune‑related 
gene signature for predicting 
prognosis in uterine corpus 
endometrial carcinoma
Siyuan Song 1,2,3, Haoqing Gu 1,2,3, Jingzhan Li 1,2, Peipei Yang 1,2, Xiafei Qi 2, Jiatong Liu 2, 
Jiayu Zhou 1,2, Ye Li 1,2 & Peng Shu 1,2*

The objective of this study is to develop a gene signature related to the immune system that can be 
used to create personalized immunotherapy for Uterine Corpus Endometrial Carcinoma (UCEC). To 
classify the UCEC samples into different immune clusters, we utilized consensus clustering analysis. 
Additionally, immune correlation algorithms were employed to investigate the tumor immune 
microenvironment (TIME) in diverse clusters. To explore the biological function, we conducted GSEA 
analysis. Next, we developed a Nomogram by integrating a prognostic model with clinical features. 
Finally, we performed experimental validation in vitro to verify our prognostic risk model. In our 
study, we classified UCEC patients into three clusters using consensus clustering. We hypothesized 
that cluster C1 represents the immune inflammation type, cluster C2 represents the immune rejection 
type, and cluster C3 represents the immune desert type. The hub genes identified in the training 
cohort were primarily enriched in the MAPK signaling pathway, as well as the PD-L1 expression and 
PD-1 checkpoint pathway in cancer, all of which are immune-related pathways. Cluster C1 may be a 
more suitable for immunotherapy. The prognostic risk model showed a strong predictive ability. Our 
constructed risk model demonstrated a high level of accuracy in predicting the prognosis of UCEC, 
while also effectively reflecting the state of TIME.

Abbreviations
UCEC	� Uterine corpus endometrial carcinoma
TCGA​	� The cancer genome atlas
GEO	� Gene expression omnibus
TIME	� Tumor immune microenvironment
DEGs	� Differentially expressed genes
WGCNA	� Weighted correlation network analysis
HPA	� Human protein atlas
PPI	� Protein–protein interaction
OS	� Overall survival

Uterine Corpus Endometrial Carcinoma (UCEC) is a malignant tumor of the epithelium of the endometrial tis-
sue, which can infiltrate the myometrium as the disease progresses, accounting for 20–30% of malignant tumors 
of the female genital tract. It poses a serious threat to women’s health1. UCEC is easily curable when diagnosed 
early. However, metastatic UCEC is a common disease2. At present, it is generally believed that it is related to 
the hyperstimulation of the uterus by estrogen3. Treatment is mostly surgical or oral medications that regulate 
estrogen and progesterone, but surgery is costly and oral medications predispose to recurrence4.

Studies have shown that the tumor immune microenvironment (TIME) plays an important role in the occur-
rence and development of tumor cells and is closely related to tumor prognosis recently5,6. At present, it is gener-
ally believed that the existence of an immune microenvironment can inhibit tumor growth and prevent tumor 
metastasis7. UCEC genesis is essentially a chronic inflammatory process involving immune cells8. Cytokines 
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secreted by immune infiltrating cells have a certain impact on the survival of UCEC patients1,9. For example, 
the production of TAMs is related to circulating monocytes. The higher the number of circulating monocytes 
in patients, the higher the incidence of pelvic lymph node metastasis and myometrial invasion10. The level of 
Treg cells in UCEC patients is significantly increased, indicating that Treg cells can inhibit the infiltration and 
metastasis of tumor cells11.

Bioinformatics is an approach to mine and analyze target data based on public databases, thereby provid-
ing useful evidence for disease biomarker discovery and targeted drug research12,13. Based on TCGA and GEO 
expression profiling data, this study clustered UCEC according to molecular-specific subgroups associated with 
ICI patterns, and identified reliable diagnostic and prognostic biomarkers.

Method
Data download and processing.  As a training cohort, we downloaded data sets and clinical informa-
tion for UCEC from the TCGA database (https://​portal.​gdc.​cancer.​gov/). The mRNA expression dataset from 
GSE17025 based on platform GPL570 was selected and acquired from the GEO database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo) as a validation dataset. The clinical features were shown in Supplementary Table S1.

Overview of TIME in UCEC.  To assess the TIME in UCEC, we used the ESTIMATE package to evaluate 
immune cell subsets and immune signatures, the higher the corresponding score, the higher the proportion of 
the corresponding component in TIME14. The UCEC samples were clustered into discrete subgroups using the 
ConsesusClusterPlus package15. Using agglomerative Pam clustering with a 1-pearson correlation distance and 
80% of the samples were sampled 10 times. After that, we conducted survival analysis by Kaplan–Meier curves 
(http://​kmplot.​com/) in each cluster.

Correlation of immune cell infiltration.  To evaluate the correlation of immune cells during infiltration, 
the TIME was characterized by CIBERSORT16 to compare the relative subpopulations of immune cells and 
immune scores among the three different immune clusters, and P < 0.05 were considered eligible for subsequent 
analysis. Immune infiltration correlation matrices were constructed with absolute values of weak correlation 
coefficients between 0.10 and 0.39, moderate correlation coefficients between 0.40 and 0.69, and strong correla-
tion coefficients between 0.7 and 0.8917. In addition, to further evaluate the prognostic value of different immune 
infiltrating cells, survival analysis was performed according to different immune cell subsets.

Correlation between ICI score and immunotherapy.  Immunotherapy with immune checkpoint 
inhibitors (ICI) has dramatically changed cancer treatment strategies, therefore, we analyzed the correlation of 
ICI score with the expression levels of six key genes related to immune checkpoint blockade (CTLA-4, PD-1, 
PD-L1, PD-L2, TIM-3, and LAG3)18.

Functional enrichment analysis in the training cohort.  The DEGs between cluster C1, C2, and C3 in 
the training cohort were analyzed with the Limma package19. Set threshold P < 0.05 and |logFC| ≥ 1. To further 
elucidate the biological roles of DEGs, the DAVID website (https://​david.​ncifc​rf.​gov/) was used for functional 
enrichment analysis20. Bubble charts were created using R language. The PPI network was constructed through 
the STRING website (https://​cn.​string-​db.​org/) and visualized with Cytoscape 3.7.2.

Identification of hub genes in different database.  The tumor mutational burden (TMB) of hub genes 
was calculated by Maftools, using the ggplot2 package21 to draw the distribution map of mutation. We used 
GEPIA (http://​gepia.​cancer-​pku.​cn/​index.​html) to verify the expression levels of hub genes in tumor and normal 
tissues as well as the survival analysis22. The correlation between hub genes and the infiltration level of immune 
cells (B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells) was investigated on 
Tumor Immune Estimation Resource (TIMER) website (https://​cistr​ome.​shiny​apps.​io/​timer/)23.

WGCNA and identification of key module in the validation cohort.  The WGCNA package24 was 
used to construct a co-expression network. The method mainly consisted of the following steps: first, a weight 
coefficient β was selected. Second, the gene expression profiles were transformed into adjacency matrices, which 
were used to define separate similarity measures. Finally, module eigengenes were calculated for each module. 
We selected the hub genes in the black module significantly related to the grade for GSEA (version 1.52.1) analy-
sis. Terms with FDR < 0.05 were visualized by the ggplot2 R package to investigate the potential functions of the 
hub genes25.

Construction and verification of prognostic risk signature.  To identify prognostic genes, a univari-
ate Cox regression analysis of OS was performed. The risk signature was constructed using LASSO analysis 
combined with clinical information, and the samples were divided into high-risk groups and low-risk groups by 
Kaplan–Meier curves26. The expression levels, survival analysis, and the immune cells infiltration levels of prog-
nostic genes were verified by GEPIA and TIMER. The infiltration level for each SCNA category is compared with 
the normal using a two-sided Wilcoxon rank-sum test. The “RMS” R package was used to draw a nomogram 
to predict the possibility of OS. A ROC curve was constructed using the survival ROC R package to predict the 
prognosis of the model in the training cohorts. The CIBERSORT package was used to describe the TIME charac-
teristic between the two groups. The GSE17025 data set was used to verify the accuracy of the prognosis model.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
http://kmplot.com/
https://david.ncifcrf.gov/
https://cn.string-db.org/
http://gepia.cancer-pku.cn/index.html
https://cistrome.shinyapps.io/timer/
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Experimental verification in  vitro.  Cell culture.  Endometrial epithelial cells (EECs) was purchased 
from Wuhan Procell Life Science&Technology Co.,Ltd (catalog number: CM-H058), and endometrial cancer 
cells HEC-1A was purchased from Nanjing KGI Biological Company (catalog number: KG626). They were cul-
tured in DMEM containing 10% fetal bovine serum, 100 U/ml penicillin, and streptomycin in a box at a constant 
temperature of 37 °C (where the CO2 concentration was 5%), and passaged when the cell density increased to 
50–70%.

Quantitative real‑time PCR.  According to the method of Trizol to extract total RNA in cells and detect the 
integrity and purity of the total RNA, the reverse transcription reagent box will RNA into cDNA, and then use 
fluorescence quantitative PCR instrument for fluorescence quantitative detection. The PCR cycle program con-
sisted of 35 cycles of preheating at 95 °C for 3 min, followed by denaturation at 94 °C for 20 s, annealing at 59 °C 
for 30 s, and extension at 72 °C for 20 s. The 2−ΔΔCt method was used to calculate the relative expression level. The 
specific sequences of the primers are shown in Supplementary Table S2.

Statistical analysis.  The data in this study were analyzed using R (3.6.1). The t-test was used to measure 
differences between two groups, and the comparison between multiple groups used the Kruskal–Wallis test. 
“glmnet” package was used for LASSO analysis. For other tests, a p < 0.05 was considered statistically significant.

Results
TIME landscape of UCEC.  Three immune infiltration clusters were identified by using "ConsesusCluster-
Plus", including cluster C1 (219 samples), cluster C2 (290 samples), and cluster C3 (137 samples) (Fig. 1A–D). 
To further reveal the potential relationship between ICI and immune infiltrating cells, the integrated landscape 
of TIME was visualized as a heatmap (Fig. 1E). Kaplan Meier survival analysis showed that the median sur-
vival advantage was evident in the cluster C1, whereas the cluster C3 had the worst prognosis (Fig. 1F). Cluster 
C1 showed the highest Stroma Score, Immune Score and ESTIMATE Score, while cluster C2 showed the low-
est Stroma Score, Immune Score and ESTIMATE Score (Fig. 1G). Cluster C1 was characterized by a marked 
increase in antitumor cell subsets such as CD8 + T lymphocytes, activated memory CD4 + T lymphocytes, and 
M1 and M2 macrophages. Cluster C2 was characterized by a marked increase in inflammatory cells such as 
naive B lymphocytes, M0 macrophages, and mast cells. Cluster C3 was characterized by a marked increase in 
plasma cells, memory CD4 + T lymphocytes, and helper T lymphocytes (Fig. 1H). Accordingly, we found that 
cluster C1 had the highest immune score, whereas cluster C2 had the lowest immune score. The TIME is usu-
ally divided into three categories: immune inflammation, immune rejection, and immune desert27. These results 
demonstrated that the TIME and immune status of the three clusters differed significantly. Cluster C1 with a 
good prognosis had a high immune status, so we speculate that cluster C1 represents the immune inflammation 
type, cluster C2 represents the immune rejection type, and cluster C3 represents the immune desert type.

Correlation of immune cell infiltration.  We characterized TIME with CIBERSORT to compare the cor-
relation of immune cell infiltration in three different clusters (Fig. 2A), showing that CD8 + T lymphocytes were 
moderately correlated with activated memory CD4 + T lymphocytes, activated NK cells were weakly correlated 
with mast cells, and CD8 + T lymphocytes were weakly correlated with Treg cells. Survival analysis showed that 
activated CD4 memory cells, naive B cells, M1 macrophages, Treg cells, and activated NK cells infiltrating were 
found to be associated with longer survival, while plasma cell and M2 macrophage infiltration had a worse 
prognosis (Fig. 2B–I).

We compared the expression levels of six key immune checkpoint repressor genes in the three clusters. The 
results showed that cluster C1 was characterized by the highest expression levels of immune checkpoint repres-
sor genes, while cluster C3 with the lowest expression levels of immune checkpoint repressor genes (Fig. 3A–F), 
suggesting that cluster C1 may be more suitable for immunotherapy.

Functional enrichment analysis in the training cohort.  A total of 5571 DEGs were identified using 
the “Limma” R package, including 2713 up-regulated genes and 2858 down-regulated genes (Fig. 4A,B). GO 
enrichment analysis showed that biological processes mainly involved cell cycle, cell activation, and cell cycle 
process. Cell components mainly include the chromosome, side of the membrane, and spindle. Molecular func-
tions mainly include enzyme binding, ribonucleotide binding, and identical protein binding. KEGG enrichment 
analysis mainly involved the MAPK signaling pathway, PD-L1 expression, and PD-1 checkpoint pathway in 
cancer. The top ten bubbles were plotted in Fig. 4C–F. Moreover, the entire PPI network was analyzed using 
cytoHubba (Fig. 5A), the top 10 genes were screened out by taking p value as a standard, including BUB1, PLK1, 
MKI67, CDC20, KIF11, RAD51, AURKB, CENPA, AURKA, and CCNB1 (Fig. 5B). These hub genes were con-
sidered as risk factors for UCEC.

Identification of hub genes in different database.  We observed the highest mutation rate of 76.9% 
for MKI67, with other hub genes mutated to varying degrees in UCEC (Fig.  6A). GEPIA showed that hub 
genes were all expressed highly in UCEC, and they differed significantly between normal and tumor (Fig. 6B). 
Except overall survival of AURKA expression in UCEC was significantly different, other hub genes had no 
significant difference (Fig. 6C). The TIMER noted a positive relationship between CDB + T cells and expres-
sion of BUB1 (Cor = 0.018, p = 7.57e−01), MKI67 (Cor = 0.055, p = 3.55e−01), KIF11 (Cor = 0.101, p = 8.61e−02), 
RAD51 (Cor = 0.037, p = 5.32e−01), AURKA (Cor = 0.004, p = 9.44e−01), and CCNB1 (Cor = 0.02, p = 7.35e−01). 
Neutrophils was positively correlated with expression of BUB1 (Cor = 0.358, p = 2.68e−10), PLK1 (Cor = 0.239, 
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p = 3.59e−05), MKI67 (Cor = 0.223, p = 1.14e−04), CDC20 (Cor = 0.144, p = 1.38e−02), KIF11 (Cor = 0.226, 
p = 9.57e−05), RAD51 (Cor = 0.221, p = 1.32e−04), AURKB (Cor = 0.138, p = 1.79e−02), CENPA (Cor = 0.193, 
p = 9.20e−04), AURKA (Cor = 0.295, p = 2.75e−07), and CCNB1 (Cor = 0.249, p = 1.62e−05) (Fig. 6D).

Figure 1.   Tumor immune microenvironment landscape of UCEC. (A–D) Sample clustering consistency CDF 
curve, histogram, line graph, and heatmap. (E) An unsupervised cluster heatmap of immune cell infiltration 
in patients with UCEC. Rows represent immune infiltrated cells and Columns represent samples. (F) Kaplan–
Meier survival curves of three clusters. (G) Stromal Score, Immune Score, and ESTIMATE Score in three 
clusters (*p < 0.05; **p < 0.01; ***p < 0.001). (H) Subsets of immune cell infiltration in three clusters (*p < 0.05; 
**p < 0.01; ***p < 0.001).
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WGCNA and identification of key module in the validation cohort.  A 1446 up-regulated genes 
and 2865 down-regulated genes in the validation cohort were screened out (Fig. 7A,B). The up-regulated and 
down-regulated DEGs were analyzed by WGCNA. We combined the modules with the distance less than 0.25, 
and finally obtained 33 co-expression modules (Fig. 8A–C). The correlation between sample clusters and clinical 
features is shown in Fig. 8D,E, and the black was considered as the most significant module. GO enrichment 
analysis of hub genes is shown in Fig. 8F. We selected the hub genes for GSEA analysis. The B cell receptor sign-
aling pathway, T cell receptor signaling pathway, Endometrial Cancer, and P53 signaling pathway were signifi-
cantly enriched in the in the black module (Fig. 8G–I).

Establishment of prognostic risk signature.  We signature the risk based on LASSO analysis, tenfold 
cross-validation was set up to obtain the optimal model. RiskScore = [0.0554916674282798 × SRD5A1 + 0.002
63378960689375 × STAC], two prognostic related genes were finally obtained (Fig. 9A). The established risk 
signature successfully classified the UCEC patients into high-risk and low-risk groups (Fig. 9B). Survival out-
comes were significantly lower in patients with high-risk scores than in patients with low-risk scores (Fig. 9C). 
The Hazard Ratio (HR) of two prognostic genes were greater than 1 (Fig. 9D). In addition, the AUC of risk 
score of OS in 1 year, 3 years, and 5 years is 0.66, 0.67 and 0.67, respectively (Fig. 9E). Finally, the TIME of the 
two groups showed that the high-risk group had a higher ESTIMATE score, higher Immune score, and higher 
Stromal score (Fig. 9F). The CIBERSORT algorithm indicated that CD8 + T cells, activated CD4 memory cells, 
Tregs, Macrophases-M0, Macrophases-M2, and resting Mast cells were significantly higher in high-risk groups 
than in low-risk groups, while memory B cells, resting CD4 memory T cells, activated NK cells, Neutrophils, 
and Macrophases-M0 were significantly higher in low-risk groups than in high-risk groups (Fig. 9G), suggest-
ing the TIME and immune status of the two groups differed significantly. The protein expressions of STAC and 
SRD5A1 in UCEC and normal tissues were significantly different (Fig. 10A,B). GEPIA showed that the prognos-
tic gene SRD5A1 was expressed highly in UCEC, while the prognostic gene STAC was expressed lowly in UCEC 
(Fig. 10C). Patients with highly expressed STAC have a short overall survival (P < 0.05) (Fig. 10D). STAC and 

Figure 1.   (continued)
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Figure 2.   Immune cell infiltration patterns with different immunophenotypic features. (A) Immune infiltration 
correlation matrix. The fraction of immune cells was positively related and represented in red, whereas others 
were negatively related and represented in blue. p < 0.05 was the cut-off. (B) Analysis of survival probability 
among patients with different T cells CD8 infiltration levels. (C) Analysis of survival probability among patients 
with different Plasma infiltration levels. (D) Analysis of survival probability among patients with different B 
cells naive infiltration levels. (E) Analysis of survival probability among patients with different T cells CD4 
memory activated infiltration levels. (F) Analysis of survival probability among patients with different T cells 
regulatory (Tregs) infiltration levels. (G) Analysis of survival probability among patients with different NK cells 
activated infiltration levels. (H) Analysis of survival probability among patients with different Macrophages M1 
infiltration levels. (I) Analysis of survival probability among patients with different Macrophages M2 infiltration 
levels.
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SRD5A1 both had highly CDB + T cells infiltration level, suggesting that the prognostic genes are closely related 
to TIME (Fig. 10E). In addition, we observed mutations of STAC is 76.2% (Fig. 11).

Verification of prognostic risk signature.  We constructed a Sankey diagram based on the different 
groups and clinical features (Fig. 12). A nomogram was established to predict the survival probability of 1, 3, and 
5 years (Fig. 13A). Compared with the actual 1, 3, and 5 years survival rates, the calibration curve showed that 
the 5 years survival rate predicted by nomogram is in good agreement with the actual survival rate (Fig. 13B).

We used GSE17025 to verify the stability of the prognostic model, of which AUC values of 0.77, 0.78, and 0.79 
at 1, 3, and 5 years, respectively (Fig. 13C). In addition, the ESTIMATE, CIBERSORT, and IPS algorithm were 
performed in the validation cohort, and the results showed that the low-risk groups had higher Stromal score, 
higher ESTIMATE score, and higher Immune score (Fig. 14A). The IPS algorithm showed that IPS score was 

Figure 2.   (continued)
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higher in low-risk groups than in high-risk groups (Fig. 14B), suggesting that low-risk groups are more likely to 
benefit from immunotherapy. The CIBERSORT algorithm indicated that naïve CD4 T cells, Macrophases-M1, 
and Macrophases-M2 were significantly higher in low-risk groups than in high-risk groups (Fig. 14C). These 
results demonstrated that the prognosis related genes may be novel biomarkers for evaluating the prognosis and 
TIME of UCEC.

Experimental verification in vitro.  The PCR results showed that compared with normal endometrial 
epithelial cells, STAC was significantly expressed lowly in HEC-1A (p < 0.01), and SRD5A was significantly 
expressed highly in HEC-1A (p < 0.0001) (Fig. 15A,B), indicating that STAC and SRD5A could be used as prog-
nostic genes of UCEC.

Discussion
UCEC is a common gynecological malignancy with an increasing incidence in recent years28. At present, it is 
considered that type I and type II non-estrogen-dependent UCEC may be related to PTEN, P16, P53, and other 
gene mutations. Based on the mining and analysis of the TCGA database, identifying tumor-related biomark-
ers and establishing a prognosis prediction model have been proven to be an effective method to predict the 
prognosis of tumor patients.

Firstly, we divided UCEC patients into three clusters by consistent clustering. We hypothesized that cluster 
C1 represents the immune inflammation type, cluster C2 represents the immune rejection type, and cluster C3 
represents the immune desert type. Subsequently, we characterized TIME with CIBERSORT to compare the 
correlation of immune cell infiltration in three clusters, showing that cluster C1 may be more suitable for immu-
notherapy. DEGs in the training cohort are mainly enriched in the MAPK signaling pathway, PD-L1 expression, 
and PD-1 checkpoint pathway in cancer. The MAPK signaling pathway is a central pathway that regulates cellular 
proliferation, differentiation, and survival29. Although targeted therapy with MAPK pathways has produced a 
significant clinical response in most cancer patients, tumor recurrence rates are high due to the development of 
drug resistance30. Activation of the PD-1/PD-L1 signaling pathway can avoid peripheral tissue damage caused by 
excessive immune response, thereby reducing the occurrence of autoimmune diseases. However, when induced 
by the tumor microenvironment, the activation of PD-1 and PD-L1 as well as the PD-1/PD-L1 pathway often 
suppresses the T cell immune response and mediates immune escape of tumors, leading to their development31. 
Moreover, we screened out the hub genes through PPI, including BUB1, PLK1, MKI67, CDC20, KIF11, RAD51, 
AURKB, CENPA, AURKA, and CCNB1. The BUB1 gene plays an important role in cell division32. It is highly 
expressed in breast cancer33 and pancreatic cancer34. PLK1 regulates malignant biological behaviors such as 
proliferation, infiltration, and metastasis of tumor cells through interaction with tumor-related proteins such as 

Figure 3.   Expression levels of immune checkpoint-associated genes in different ICI clusters of UCEC. (A) 
CTLA4 expression levels in different clusters. (B) PD-1 expression levels in different clusters. (C) PD-L1 
expression levels in different clusters. (D) PD-L2 expression levels in different clusters. (E) TIM-3 expression 
levels in different clusters. (F) LAG3 expression levels in different clusters. (*p < 0.05; **p < 0.01; ***p < 0.001).
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p53, caspase 3, and golden egg white enzyme MMP-935. MKI67 was proven to be associated with prognosis of 
the UCEC36. CDC20 has significant expression in both the meiosis and cell cycle sub-pathways of oocytes, and 
its level affects the prognosis of patients37. In female reproductive system tumors, KIF11 is a prognostic marker 
of uterine cancer and ovarian cancer38. The protein expression level of RAD51 in tumor tissues is significantly 
higher than that of normal tissues. High RAD51 expression was associated with higher tumor pathological 

Figure 4.   Identification and enrichment analysis of DEGs in training cohort. (A) Volcanic map of DEGs. (B) 
Heatmap of DEGs. (C) Biological Process of DEGs. (D) Cellular Components of DEGs. (E) Molecular Function 
of DEGs. (F) KEGG59 of DEGs.
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grade, lymph node metastasis and clinical stage, and increased with increasing malignancy39. The expression 
of AURKA in normal endometrium was observed mainly in the proliferative phase. The AURKA expression 
was significantly increased in carcinomas compared with normal proliferative endometrium. In endometrial 
carcinomas, the expression of AURKB was significantly increased in high-grade tumors40. As an oncogenic gene, 
CENPA is associated with the prognosis of many cancers41. CCNB1 mRNA levels vary in expression in different 
cell cycles, with the highest expression in the G2 / M phase. CCNB1 has important prognostic value in various 
tumors42. GEPIA showed that the hub genes were all significantly expressed highly in UCEC, which is consistent 
with literature reports. The GSEA analysis of black module showed that the pathways enriched in the hub genes 
all have been proven to be related to immunity43.

In this study, we compared LASSO with other machine methods (elastic network and ridge regression) to 
further emphasize the importance of the LASSO model. LASSO is a linear regression method using L1 regu-
larization. Using L1 regularization can make some learned feature weights zero, so as to achieve the purpose of 
thinning and feature selection44. The basic idea of LASSO is to minimize the sum of the squares of the residuals 
under the constraint that the sum of the absolute values of the regression coefficients is less than a constant, so 
that some regression coefficients strictly equal to 0 can be generated and an interpretable model can be obtained45. 
Both LASSO and ridge regression can solve the over-fitting problem to a certain extent and are more stable 
than the least squares method. The difference is that LASSO has the characteristics of feature selection and can 
obtain sparse solutions, while ridge regression can only prevent over-fitting. This is because LASSO reduces the 
insignificant characteristic coefficient to zero, whereas ridge regression reduces the coefficient to near zero but 
not zero46. The elastic network model is the model fusion of LASSO and ridge regression, and adopts the paral-
lelization method. The base model is a linear model, and an LI norm and an L2 norm are added to it, which is also 
equivalent to adding an L2 regularization term on LASSO. However, in the process of coefficient compression, 
the elastic network model relaxes the screening of features47.

Finally, we constructed a prognostic risk signature based on prognostic genes STAC and SRD5A1. We found 
that the protein expressions of STAC and SRD5A1 in UCEC and normal tissues were significantly different. 
GEPIA showed that SRD5A1 was expressed highly in UCEC, while STAC was expressed lowly in UCEC. Patients 
with highly expressed STAC have short OS (p < 0.05). STAC and SRD5A1 both had high CDB + T cells infiltration 
levels, suggesting that the prognostic genes are closely related to TIME. The prognostic genes used to establish the 
risk signature have been shown to be closely related to tumor development. The role of STAC in tumorigenesis 
and progression is not clear48. Studies have found that STAC can promote breast cancer cell necrosis49. STAC 
was expressed highly in pancreatic cancer cells. STAC can activate SIRT1 lysosomal-dependent cell death50. 
Moreover, STAC can promote the migration of mouse tumor cells51. Thus, the bidirectional regulation of SATC 
in tumors depends on its level of activity, among other factors52. The SRD5A1 immunoreactivity occurs in the 
nucleus and cytoplasm53, and dihydrotestosterone (DHT) is the most effective endogenous androgen, which is 
converted from testosterone by SRD5A154. Androgens play a role in diseases such as endometriosis55. SRD5A1 
is immunoreactive in proliferating endometrial tissue56. Silencing SRD5A1 not only reduces progesterone meta-
bolic, but also increases unmetabolized progesterone level, suggesting that SRD5A1 is a potential target for 
UCEC treatment57. The PCR results showed that compared with normal endometrial epithelial cells, STAC was 
significantly expressed lowly in HEC-1A (p < 0.01), and SRD5A was significantly expressed highly in HEC-1A 

Figure 5.   PPI network and hub genes based on DEGs in the training cohort. (A) PPI network based on DEGs. 
(B) Hub genes based on PPI network.
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Figure 6.   Identification of hub genes in different database. (A) Correlation of hub genes with tumor mutational 
burden. (B) Expression of hub genes (a) BUB1, (b) PLK1, (c) MKI67, (d) CDC20, (e) KIF11, (f) RAD51, (g) 
AURKB, (h) CENPA, (i) AURKA, (j) CCNB1 in GEPIA. Red represents tumor, and gray represents normal. 
(C) Overall survival analysis hub genes (a) BUB1, (b) PLK1, (c) MKI67, (d) CDC20, (e) KIF11, (f) RAD51, (g) 
AURKB, (h) CENPA, (i) AURKA, (j) CCNB1 in GEPIA. (D) Correlation between the a) BUB1, (b) PLK1, (c) 
MKI67, (d) CDC20, (e) KIF11, (f) RAD51, (g) AURKB, (h) CENPA, (i) AURKA, (j) CCNB1 and the infiltration 
level of immune cells in TIMER database.
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(p < 0.0001), indicating that STAC and SRD5A could be used as prognostic genes of UCEC, and the prognostic 
risk model constructed by them had certain reliability. These results indicated that the prognosis genes were 
significantly correlated with TIME in UCEC. Thus, we speculated that the risk model we established could predict 
the poor prognosis of UCEC, and reflected the low immune status.

The established risk signature successfully classified the UCEC patients into high-risk and low-risk groups, 
the TIME and immune status of the two groups differed significantly. The nomogram could predict the prog-
nosis of UCEC patients accurately. Besides, the low-risk groups are more likely to benefit from immunotherapy.

Figure 6.   (continued)
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Figure 6.   (continued)
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Although multiple studies have established relevant prognostic models in UCEC58, our study shows unique 
advantages compared with previous studies. Firstly, the number of patients was significantly different from that 
of the published article. Secondly, our work identified three significantly different clusters of prognosis and 
immune status by consensus clustering. Thirdly, genes were obtained in different ways, we have selected DEGs 
based on WGCNA and partially elucidated the underlying mechanisms. Fourthly, we used the GEO data set to 
validate the prognosis model. Fifthly, we elucidated the effects of hub genes on TIME and prognosis. Sixthly, the 
prognostic model we constructed is different from the previous articles. Seventhly, we performed experimental 
validation in vitro, and the results showed that the prognostic risk model was stable to a certain extent, which 
could accurately predict the prognosis of UCEC. However, the study needs more experimental verification 
in vivo. The establishment of prognostic risk signature provided new possibilities for us to predict the efficacy of 
immunotherapy, and promotes personalized treatment for UCEC patients in the future.

Conclusion
In this study, we identified three clusters, clusters C1, C2, and C3. We speculate cluster C1 is the immune inflam-
mation type, cluster C2 is the immune rejection type, and cluster C3 is the immune desert type. The prognosis 
prediction model we constructed can provide support for clinically predicting the prognosis of UCEC patients 
and finding the corresponding immunotherapy.

Figure 7.   DEGs in the validation cohort. (A) Volcanic map of DEGs in the validation cohort. (B) Heatmap of 
DEGs in the validation cohort.
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Figure 8.   Weighted correlation network analysis (WGCNA) in the validation cohort. (A) Analysis of the scale-
free fit index (left) and the mean connectivity (right) for various soft-thresholding powers. (B) GS and MM 
correlation scatter. (C) Gene clustering dendrograms. (D) Heatmap of correlations between sample clusters and 
clinical features. (E) Heatmap of correlations between modules and clinical features. (F) GO enrichment analysis 
of hub genes in the validation cohort. (G–J) GSEA analysis of hub genes in the validation cohort.
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Figure 9.   Establishment of prognostic risk signature in the training cohort. (A) LASSO analysis with suitable 
lambda. (B) Distribution of survival status, risk score, and heatmap of UCEC patients in the high and low-
risk groups. (C) Survival curve of the UCEC patients in the two groups. (D) Forest map of multi-factor 
survival analysis. (E) Time-dependent ROC curve of the risk signature. (F) Stromal score, Immune score, and 
ESTIMATE score in the high and low-risk groups. (G) Statistical analysis of immune-related cells evaluated by 
CIBERSORT algorithm in the two groups.
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Figure 10.   Validation of prognosis genes in different databases. (A) The IHC of STAC in the HPA database. 
(B) The IHC of SRD5A in the HPA database. (C) Expression of prognosis genes (a) STAC, and (b) SRD5A in 
GEPIA. Red represents tumor, and gray represents normal. (D) Overall survival analysis of prognosis genes (a) 
STAC, and (b) SRD5A in GEPIA. (E) Box plots of tumor infiltration levels with different somatic copy number 
alterations for prognosis genes.
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Figure 11.   Tumor mutational burden (TMB) of prognosis-related genes.

Figure 12.   Sankey diagram of a correlation between two groups and clinical features.
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Figure 13.   Validation of prognostic risk signature. (A) Nomogram integrating risk score and clinical features. 
(B) Calibration of the nomogram at 1,3, and 5 years in the training cohort. (C) ROC curve of the risk signature 
in the validation cohort.

Figure 14.   Immune cell infiltration in the training cohort. (A) Stromal Score, Immune Score, ESTIMATE 
Score, and Tumor Purity in two groups. (B) IPS in two groups. (C) Subsets of immune cell infiltration in two 
groups (*p < 0.05; **p < 0.01; ***p < 0.001).
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Data availability
The datasets in this study were acquired from TCGA (https://​www.​cancer.​gov/​ccg/​resea​rch/​genome-​seque​ncing/​
tcga/​using-​tcga-​data/​types) and GEO databases (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE17​
025). The data used to support the findings of this study are included in the article.
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