
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports

Molecule generation using
transformers and policy gradient
reinforcement learning
Eyal Mazuz *, Guy Shtar , Bracha Shapira & Lior Rokach

Generating novel valid molecules is often a difficult task, because the vast chemical space relies on the
intuition of experienced chemists. In recent years, deep learning models have helped accelerate this
process. These advanced models can also help identify suitable molecules for disease treatment. In
this paper, we propose Taiga, a transformer-based architecture for the generation of molecules with
desired properties. Using a two-stage approach, we first treat the problem as a language modeling
task of predicting the next token, using SMILES strings. Then, we use reinforcement learning to
optimize molecular properties such as QED. This approach allows our model to learn the underlying
rules of chemistry and more easily optimize for molecules with desired properties. Our evaluation of
Taiga, which was performed with multiple datasets and tasks, shows that Taiga is comparable to,
or even outperforms, state-of-the-art baselines for molecule optimization, with improvements in
the QED ranging from 2 to over 20 percent. The improvement was demonstrated both on datasets
containing lead molecules and random molecules. We also show that with its two stages, Taiga is
capable of generating molecules with higher biological property scores than the same model without
reinforcement learning.

A major challenge in drug discovery is designing drugs with the desired properties. The chemical space of
potential drug-like molecules is between 1023 to 1060 , of which about 108 of molecules are synthesized1,2. Addi-
tionally, the average cost of developing a new drug is one to two billion US dollars, and the average development
time is 13 years3. Traditionally, chemists and pharmacologists use their intuition and expertise to identify new
 molecules4. While Lipinski’s “rule of five”5 may reduce the number of possible drug-like molecules, the search
space remains large. In order to narrow the space further, high-throughput screening (HTS) is used; however,
the task remains daunting. Additionally, computational methods can be used to narrow the drug search space
and shorten the time needed to develop new drugs.

In recent years, there have been many attempts to use deep learning, particularly generative models, for drug
 design6,7. However, the task of generating optimized and valid molecules using computational methods remains
challenging due to the large search space and the small number of labeled samples.

There have been several attempts to use SMILES (simplified molecular-input line-entry system) strings as a
representation for molecules8. For example, Gomez et al. tried using generative models based on SMILES strings
for the molecule generation task. However, the proposed methods only managed to generate a low percentage of
molecules that were considered valid due to the complicated grammatical rules of SMILES6,9.

Recently, the use of reinforcement learning (RL) has gained attention due to its ability to solve a wide range
of problems such as playing the game of Go10 and operating machines. RL systems excel in these tasks thanks
to their ability to make sequential decisions and maximize defined long-term rewards; this allows for the direct
optimization of desirable new drug properties that are not derived from the model itself when using generative
models such as recurrent neural networks (RNNs).

Later, RL optimization was incorporated into SMILES generation methods to generate molecules with desired
properties, such as high IC50 values for JAK2, using a recurrent neural network (RNN)11 such optimization is
technically challenging, since it tends to cause the model to converge toward a set of primarily invalid molecules,
since RNNs cannot handle long sequences.

To improve the rate of valid molecules generated, other studies constrained the input of generative models
when producing molecules by forcing the model to adhere to certain rules when generating molecules. Some
studies proposed the use of variational autoencoders (VAEs) to generate valid molecules by learning the distribu-
tion of a latent space and sampling from it, instead of sequentially generating the molecule token by token12,13.
However, the validity rate of these methods was relatively low; these results could be explained by the lower

OPEN

Ben-Gurion University of the Negev, Beersheba, Israel. *email: mazuze@post.bgu.ac.il

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35648-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

validity rate obtained in those studies for unseen molecules compared to known ones. To address this issue, the
authors proposing the junction tree variational autoencoder (JTVAE)7 represented molecules as junction trees
in order to encode the sub-spaces of the molecular graph. This allowed the decoder to generate valid molecules
by utilizing only valid components while considering how they interact.

Two approaches exist to deal with the issue of long sequences presented by RNN models. The first is the use
of factional-based architectures which are a wavelet-based architecture that compresses the associated operator’s
kernel using fine-grained wavelets and thus handles long sequence data14,15. The other approach, which is now
de-facto the gold standard in neural language processing (NLP), is the use of transformer models16,17 which
achieve state-of-the-art results on many NLP tasks.

In this paper, we propose a new RL-based method to generate molecules with desired properties, which
overcomes the problem of generating valid molecules with desired properties. We use a transformer-based archi-
tecture, utilizing SMILES string representations in a two-stage approach. To the best of our knowledge, this is the
first application that utilizes both transformer models and reinforcement learning together for molecule graph
generation. In the first stage, the model learns to embed these discrete string representations in a vector space.
Then, in the second stage, the model optimizes the vector space in order to generate molecules with the desired
properties, such as QED (quantitative estimate of drug-likeness) or pIC50. The use of an attention mechanism
allows our method to gain an understanding of the underlying chemical rules that make a valid molecule by
performing a simple language modeling task, using just a small amount of data. Then, the understanding gained
regarding those rules, along with policy gradient RL, is used to generate molecules with the desired properties.

We evaluate our model on multiple datasets with various properties on the tasks of molecule generation and
optimization for the desired properties and compare it to several state-of-the-art approaches1–3,7,18,19 that use
different representations and techniques for molecule generation. We demonstrate our model’s ability to gener-
ate a high percentage of valid molecules and rival methods that use other techniques to ensure the generation
of valid molecules. Additionally, unlike previous research that only focuses on the top molecules generated,
we show our model’s ability to generate large number of molecules with a high mean QED, which defines how
drug-like a molecule is, while maintaining a low synthetic accessibility score, a theoretic score of how hard it is
to synthesize the molecule.

In the task of optimizing a biological property (i.e., IC50), we show that Taiga is capable of improving existing
molecules and generating molecules with the desired biological properties. Our main contributions are as follows:

• Introducing Taiga, an RL-based method that utilizes the transformer architecture, which is capable of gen-
erating novel and diverse molecules.

• Demonstrating that the use of an attention mechanism combined with policy gradient RL can overcome the
existing challenges of generating valid molecules represented as SMILES strings.

• Performing extensive experiments using several datasets with a range of properties and multiple metrics to
evaluate the performance of our method’s components (Fig. 1).

Results
In this section, to evaluate Taiga’s performance, we validate it on 2 common tasks: molecule generation and
molecule optimization, for the molecule generation task we compare Taiga to the performance of several SOTA
baselines using multiple datasets and metrics.

Molecule generation. 1. Data: We used three datasets in our experiments: the Moses20, Zinc21, and
 GDB1322 datasets.

• The Moses dataset consists of 1.6M training set molecules extracted from the Zinc clean lead collection.
• The Zinc dataset consists of 250K molecules extracted from the Zinc database.
• The GDB13 rand dataset consists of 1M random molecules extracted from the larger GDB13 database.

These datasets differ from one another in terms of the number and type of molecules included. Experimenting
on these different datasets allows us to demonstrate the generalization ability of the methods evaluated.

2. Baselines: We compared our method to various approaches: (1) GCPN1, a method that uses proximal
policy optimization (PPO) on molecular graphs, with the addition of adversarial loss; (2) JTVAE7, a method
which uses the junction tree algorithm to generate molecular graphs with autoencoders; (3) MolGPT2, a method
that generates SMILES using transformer architecture only; (4) MolGAN18, a method that generates molecular
graphs using GANs and DDPG; (5) MolDQN3, a method that works on molecular graphs using Q-learning; (6)
 GraphDF19 a discrete normalizing flow method; and (7) an LSTM version of our method which also uses policy
gradient RL, similar to11. We ran all models with their released code, optimizing for the same target property
(i.e., QED), each with its respective reward function, as described in the original papers, on the same hardware
containing one TITAN RTX GPU, 60GB RAM, and an eight-core CPU.

3. Model Configuration: Taiga consists of four decoder layers, each with eight attention heads, a feedforward
size of 1024, and an initial embedding size of 512, as those parameters are frequently used in transformer models
and were not optimized during this research. The model was trained for three epochs on the language modeling
task and 100 steps, with each step averaging 500 episodes (molecules) in the RL stage. We use the REINFORCE
algorithm with a discount factor of 0.99 and a maximum sequence size of 150 characters, we used character-level
tokenization for all our experiments. The LSTM-PG uses the same hyperparameters as Taiga for all experiments.

We designed the following reward function for our model:

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

4. Metrics: We utilized the following widely used metrics to evaluate the methods:

• Validity: the percentage of valid molecules a model is able to generate. If RDKit was able to process the
SMILES string and generate a Molecule object, then the validity of that molecule is set to 1. Otherwise,
validity is set to 0.

• Novelty: the percentage of molecules generated that do not appear in the training data.
• Diversity: the percentage of unique molecules the model can generate .
• Quantitative Estimation of Drug-Likeness (QED), the geometric mean of eight common molecule properties

(molecular weight, AlogP, hydrogen bond donors, hydrogen donor acceptors, molecular polar surface area,
rotatable bonds, aromatic rings, structural alerts), that can estimate how well the molecule behaves in the
human body, This value can be range from 0 to 1, and the higher the QED value, the similar a molecule is to
existing drugs and will have higher chance surviving the drug-discovery process23.

• Synthetic Accessibility Score (SAS), an estimation of the how easy it is to synthesize a molecule by calculating
the fragment score penalized by the complexity of the molecule; it ranges from 0 to 10, where a molecule
with an SAS value above 6 is considered challenging to synthesize24.

We calculated the QED and SAS metrics after removing all of the invalid molecules from the set of generated
molecules. Novelty, Validity and Diversity are all crucial metrics for assessing performance of generative models
in the drug discovery. These metrics have different use meanings, since a model can have 100% diversity with
0% novelty by just generating all molecules from the dataset it was training on. and vice versa, a model can
have 100% novelty but 0% diversity by generating only 1 unique molecule but generating over and over again.
For all methods, we generated the molecules after the optimization stage. For each method, we generated 25K
molecules to calculate the metrics.

5. Results: Table 2 , Figure 2 and Supplementary Figure S1 presents the results for molecule generation and
optimization across all models and datasets , and the aggregate results of the validity, QED, and diversity for all
models. Supplementary Table S1 and Supplementary Figure S2 present the results of the top-3 molecules gener-
ated with each dataset in terms of their respective QED scores. As can be seen in Table 2 and Supplementary
Figure S1, on the GDB13 dataset, which has a lower mean QED than the other datasets (see Table 1), Taiga is the
only method that was able to obtain QED scores higher than the dataset’s mean QED score. However, Taiga wasn’t

(1)R(sT) =
{

10 ∗ QED(sT), if sT is valid molecule

0, otherwise

Stage 1 Stage 2

a: Molecule generation process

b: Last generation step and reward calculation

c n

0.674

Figure 1. Overview of the training process. Stage 1: We train the transformer model on the language-modeling
task of predicting the next token , e.g. in the figure when the last input token is ‘1’ Taiga tries to predict the next
token in the sequence which is ‘C’, since it’s an auto-regressive model, it can only attend to previous tokens,
i.e. those in the green squares indicated by the blue dotted line, and not the subsequent tokens in the gray
squares. The next token prediction is done in parallel because of the attention mechanism. Stage 2: (a) The agent
receives the SMILES string and predicts the next token by sampling from the output distribution, which is then
appended to the SMILES string to create the next state. A reward of zero is given to the molecule at any step
that is not the final step. (b) The agent completes the molecule generation process by predicting a [EOS] token
(which is not appended to the SMILES string), and a reward greater than zero is provided either by computing
the property directly from the molecule by using libraries such as RDKit or by feeding the generated molecule to
an external property predictor (e.g. Chemprop) which generates the reward for the molecule.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

able to improve the SAS scores of the generated molecules relatively to the dataset’s mean SAS score, and achieved
lower SAS scores than LSTM-PG which achieved the best SAS scores for this dataset. This is probably Due to the
fact that the GDB13 1m rand dataset is a random subset of the entire GDB13 dataset and is not preprocessed to
contain lead-like molecules, thus making it more challenging for optimization and reaching good performance.
On this dataset, Taiga also achieved the best scores in terms of novelty and diversity while maintaining a high
validity score, this means that the molecules generated are not only valid but high novelty score means we have
higher chance to come across a lead molecule (since high novelty mean it doesn’t overfit and generates molecules
from the training set). As seen in Supplementary Table S1 and Supplementary Figure S2 our method excels and
is the only one that generated molecules with a QED value above 0.9. When looking at the SAS scores of the best
molecules in terms of their QED in the GDB dataset, we find mixed results; this most likely occurred, because
none of the methods directly tries to optimize the SAS score, and therefore when a model generates molecules,
it generates compounds that are more complex and thus have a higher QED score but are harder to synthesize.

Of the three examined datasets, Taiga achieved the best optimization results with the Moses dataset, while
still maintaining a high value for validity, diversity, and novelty metrics averaging around 97%. Compared to
graph-based methods like JTVAE and GCPN, which represent molecules as complex graphs to generate a high
rate of valid molecules, our method achieved comparable results on the diversity and novelty metrics and was
not far behind on the validity metric meaning that SMILES-based method can generate high percentage of valid
molecules. On the majority of metrics, our method performed the same or better than SMILES-based methods
such as MolGPT and LSTM-PG, but MolGPT was able to achieve higher novelty score for the Zinc and Moses
datasets. In Supplementary Table S1, we can see that Taiga generated molecules with a higher QED value than
that obtained by graph-based methods and other SMILES-based methods, while LSTM-PG did manage to cre-
ated a high amount of valid molecules and achieved the best SAS scores on the Moses dataset (due to the fact it

Table 1. Overall training dataset statistics.

Dataset Number of molecules QED SAS Max atoms

GDB13 rand 1,000,000 0.513 4.96 13

Moses 1,584,663 0.810 2.45 30

Zinc 249,456 0.731 3.05 38

Table 2. Performance comparison on the property generation task; the mean score and standard deviation of
the molecules is presented. Significant values are in bold. ∗The authors support the GDB dataset in their code,
however we were unable to run the code; our attempt to contact the authors was unsuccessful. ∗∗ It is infeasible
to create training data from the Moses dataset, even when using more than 128GB of RAM. ∗ ∗ ∗MolDQN is
uses only RL and does not need a training set; therefore, it does not have a novelty score and is listed separately.

Dataset Model QED(↑) SAS(↓) Validity(↑) Diversity(↑) Novelty(↑)

GDB13

GCPN∗ – – – – –

JTVAE 0.49±0.10 4.88±0.64 100% 89% 100%

MolGPT 0.50±0.12 4.93±0.85 90% 100% 99%

MolGAN 0.50±0.11 4.98±1.08 89% 8% 99%

GraphDF 0.38±0.13 4.93±0.83 100% 99% 99%

LSTM 0.51±0.12 3.88±0.83 99% 96% 96%

Taiga 0.64±0.11 4.87±0.78 95% 100% 100%

Moses

GCPN 0.64±0.15 4.38±0.85 99% 99% 99%

JTVAE 0.70±0.12 4.24±0.70 100% 100% 100%

MolGPT 0.75±0.11 2.88±0.58 62% 98% 99%

MolGAN∗∗ – – – – –

GraphDF 0.42±0.13 4.76±0.80 100% 99% 99%

LSTM 0.80±0.07 2.06±0.46 95% 90% 82%

Taiga 0.83±0.07 2.25±0.49 97% 99% 95%

Zinc

GCPN 0.65±0.15 4.53±0.86 99% 99% 99%

JTVAE 0.64±0.14 4.69±0.76 100% 100% 100%

MolGPT 0.67±0.16 3.98±0.99 57% 99% 99%

MolGAN 0.33±0.00 5.23±0.00 100% 0% 100%

GraphDF 0.42±0.13 4.80±0.91 99% 99% 100%

LSTM 0.73±0.14 2.47±0.88 56% 96% 96%

Taiga 0.75±0.11 2.89±0.92 88% 98% 97%

– MolDQN∗ ∗ ∗ 0.78±0.10 6.31±0.83 100% 65% –

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

generated molecules which lower QED score which are less complex), it wasn’t able to improve the metric it was
optimized for which means that it can’t generate both optimized and valid molecules which further emphasizes
the limitation of LSTM-based method in comparison to Transformers.

On the Zinc dataset (see Table 2 and Supplementary Figure S1), most methods generated molecules with an
average QED value similar to the dataset mean and a high SAS score, but Taiga generated molecules with a QED
value higher than the mean. Although graph-based methods such as GCPN and JTVAE were able to achieve a
higher value on the validity metric than SMILES-based methods with this dataset, however, they achieved lower
mean QED scores. This makes them less favorable for generating potential molecules even if they obtained a
perfect validity. In addition, we can see that Taiga’s validity scores are higher than those of MolGPT and LSTM-
PG which strengthen the idea of using transformers and RL together in a 2-stage training scheme. Although
MolGAN achieved numerical results on this dataset, the SMILES strings it generated was only “.*.*.*.*.*.*.*”
which was accepted as valid by RDKit but is not practical in any sense.

In Supplementary Table S1S1 and Supplementary Figure S2, we can see that Taiga obtained the best QED
scores on the top molecules, while other methods such as LSTM-PG, GCPN, and MolGAN failed to obtain
good QED scores for top molecules. In addition, in terms of the SAS score, Taiga demonstrated superiority over
almost all other methods, obtaining better SAS scores for most molecules aside from LSTM-PG, which was able
to generate molecules with better SAS scores. This is due to the fact that LSTM-PG can’t handle long sequences
and generate shorter SMILES which result in smaller molecules with less atom and bonds which have a lower
complex structure and thus easier to synthesize, since the SAS score penalize for complexity.

Compared to MolDQN, which achieved better QED scores than Taiga on two of the three datasets without
using a dataset during the training process, MolDQN achieved the lowest diversity scores out of all methods,
which means that MolDQN is unable to generate a diverse set of molecules and generates the same molecule
repeatedly. Similarly, it achieved the lowest SAS score out of all methods, thus generating molecules that are
difficult to synthesize. This is due to the fact that MolDQN is a Q-learning algorithm, which at test time uses a
greedy approach, and chooses actions based on the highest Q-values when generating molecules.

Aggregating the results, as seen in Fig. 2, shows Taiga’s superior performance across all datasets. Taiga is
located in the upper-right corner of the figure (high validity, high QED) and has high diversity (indicated by a
larger circle). Most of the examined methods were unable to generate a large amount of valid molecules with
high QED values; some methods (e.g., JTVAE) were able to achieve good validity and diversity scores but at the
cost of degraded performance on the target properties that the model tried to optimize. On the other hand, Taiga
achieved better performance on the target task of optimizing for the desired property at the cost of a slightly
lower validity rate.

Property optimization. In this subsection, we evaluate Taiga’s ability to optimize biological properties
with therapeutic function, which are harder to predict than QED; such a task requires additional supervised
learners to predict molecular properties.

1. Data: We used 2 datasets, the first is IC50 data extracted from the ChEMBL database25 and extracted all of
the molecules that have exact pIC50 values, i.e., we removed molecules for which only a range is available. pIC50
is the negative log of the IC50 value by using the following formula: 9− log10(IC50) . We focused specifically on
the BACE (Beta-secretase 1) protein. After filtering out 10,164 molecules, we ended up with 9,331 samples with
exact pIC50 values. The second is a dataset of molecules that used in cancer treatments, we collected around 400
molecules from various sources that had indication for some anti-cancer activity (FDA approval, clinical trials,
DrugBank, etc.), and were assessed as such by a pharmacologist and around 1000 molecules that are not known
for treating cancer were randomly sampled from the list of FDA approved drugs after filtering after filtering out
drugs that were already examined in cancer-related clinical trials (as reported in ClinicalTrials.gov) or drugs
that are chemically similar to those drugs.

2. Model Configuration: We used the same configuration for Taiga as the one for the molecule generation task.
For the property prediction model we utilize Chemprop26, a message passing graph neural network (MPNN)
since its ability to predict potential molecules27. We train the model with the default parameters the library
(https:// github. com/ chemp rop/ chemp rop/.) provides, that is for 30 epochs with a batch size of 50, learning rate
of 1e−4 and ensemble size of 2, using supervised learning on the curated dataset.

Inspired by Popova et al.11, we used the following reward function for the IC50 task:

and for the anti-cancer prediction we use the following reward function:

where Chemprop(sT) is the raw output probability of the MPNN which ranges between 0 and 1 model raw output
probabilities.

3. Results: The results presented in Table 3 demonstrate Taiga’s ability to maximize pIC50 values with the
different datasets. We can see that when using all of the datasets as baselines, Taiga can be optimized for biologi-
cal properties. On average, Taiga increased the pIC50 value by 20% when converting to IC50 values; this is the
equivalent of reducing the concentration by a factor of 3-5 for the same therapeutic effect. We can see that the
validity constraint of equation 2 helps maintain the same validity scores as the baseline. This prevents overfitting

(2)R(sT) =

{

exp
(

pIC50
3

)

, if sT is valid molecule

0, otherwise

(3)R(sT) =
{

Chemprop(sT), if sT is valid molecule

0, otherwise

https://github.com/chemprop/chemprop/

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

by generating random strings that can exploit the property predictor. Looking at other metrics such as the QED
or SAS, we can see that Taiga was able to generate molecules with improved pIC50 values and at the same main-
tained similar SAS and QED values to those of the baseline; this means that it did not only do the molecules
have a better potential for treatment, they are also easy to synthesize and have drug-like properties. With two of
the three datasets, Taiga was able to keep generating a set of novel and diverse molecules after the RL stage, and
on the Zinc and GDB dataset, the novelty and diversity scores decreased but by just a small margin. This means
that Taiga was able to generate a set of molecules with higher pIC50 values while ensuring that the molecules
are different from each other and were not seen during the training process.

When generating molecules to have anti-cancer activity, we also see that Taiga can maximize and generate
molecules with high potential for cancer treatments without compromising other metrics, When calculating
molecular similarity to existing anti-cancer therapeutics, the top molecules generated are chemically similar,
which means that Taiga did manage to learn some understanding on what makes a drug anti-cancer. We also see
Taiga’s manages to generate a high amount of novel and diverse molecules while maintaining a high validity rate.
Looking at the other metrics, such as QED or SAS, we can see that Taiga can generate anti-cancer molecules while
maintaining around the same SAS score but having lower QED scores. When looking at anti-cancer molecules,
some of them violate Lipinski’s rule of 5, so it makes sense to have lower QED (which as part of its average uses
properties from the rule of 5) scores as a trade-off for anti-cancer activity.

Ablation study. We conducted an ablation study to evaluate the contribution of the RL stage on Taiga’s
performance. As can be seen in the results presented in Table 4, with the Moses dataset, before the RL stage
Taiga underperformed in terms of validity and novelty when generating molecules; in addition, the QED value
obtained was similar to the mean QED of the dataset (see Table 1). However, after the RL stage, the model was
able to find a policy that enables better maximization of the QED. This is demonstrated by the increase in the
mean QED of the molecules generated and the increase in the validity and novelty scores.

We can see a similar phenomenon with the GDB dataset when comparing the results before and after the RL
stage. Although the model was able to generate more valid molecules before the RL stage, the difference in the

Table 3. Performance on the property optimization task. Baseline refers to the results obtained after the
language modeling stage and before RL. Maximized refers to the results obtained after the language modeling
stage and RL stage calculated by the raw output of the property predictor. Significant values are in bold.

Dataset Type Metric Value(↑) QED(↑) SAS(↓) Validity(↑) Diversity(↑) Novelty(↑)

GDB13

Baseline pIC50 5.180 0.521 5.07 97.49% 99.99% 99.91%

Maximized pIC50 10.462 0.563 5.03 97.84% 86.58% 86.58%

Baseline Anti-cancer 0.158 0.521 5.07 97.49% 100.00% 99.89%

Maximized Anti-cancer 0.844 0.552 4.65 95.54% 99.99% 99.99%

Moses

Baseline pIC50 4.949 0.805 2.42 93.72% 99.87% 89.55%

Maximized pIC50 5.612 0.795 2.41 95.52% 99.78% 95.59%

Baseline Anti-cancer 0.304 0.805 2.42 93.77% 99.87% 89.55%

Maximized Anti-cancer 0.774 0.749 2.12 96.43% 98.12% 93.20%

Zinc

Baseline pIC50 4.936 0.727 3.09 74.94% 99.98% 99.93%

Maximized pIC50 6.333 0.671 2.99 92.33% 93.32% 93.22%

Baseline Anti-cancer 0.215 0.726 3.09 74.94% 99.99% 99.99%

Maximized Anti-cancer 0.824 0.782 1.98 93.35% 87.84% 87.96%

Table 4. Comparison of the results for the main metrics for Taiga, with and without the RL stage.

GDB13

Validity(↑) Divesity(↑) Novelty(↑) QED(↑)

w/o RL 97.78% 99.99% 99.90% 0.510

w/ RL 95.82% 100.00% 100.00% 0.646

 Stage

Moses

Validity(↑) Divesity(↑) Novelty(↑) QED(↑)

w/o RL 92.82% 99.40% 94.17% 0.806

w/ RL 97.21% 98.90% 95.56% 0.831

Zinc

Validity(↑) Divesity(↑) Novelty(↑) QED(↑)

w/o RL 69.13% 99.97% 99.94% 0.733

w/ RL 85.46% 99.70% 99.60% 0.757

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

mean QED value obtained before and after the RL stage emphasizes the fact that the model was able to learn how
to generate highly optimized molecules with just a slight trade-off in terms of the validity.

A similar improvement was seen with the Zinc dataset; before the RL stage, Taiga struggled to generate valid
molecules and obtained a mean QED similar to that of the dataset itself. After the RL stage, Taiga generated more
than 15% more valid molecules without significantly compromising the performance in terms of the diversity
and novelty metrics; its mean QED also improved.

Another setting we tested is using RL directly without incorporating the language modeling task first. The
results are not included in the table since the model wasn’t able to converge at all. After the first 20 steps it reached
a point where the it failed to generate valid molecules (or any molecular formula at all).

We also tested the effects of using different tokenizers on Taiga’s ability to generate optimized molecules. We
switched the character-level tokenizer for a BPE tokenizer28. In the end, the vocabulary consisted of 500 tokens
(excluding special tokens such as [BOS], [EOS], etc.).

Table 5 summarize the results of our experiments. As can be seen, using the BPE tokenizer resulted in lower
QED and SAS scores for both the GDB and Moses datasets. On the Zinc dataset, we can see that both QED
and SAS scores have been improved by the BPE tokenizer. Moreover, it improved the model’s ability to generate
valid molecules.

I believe this is due to the fact that the zinc dataset contains the greatest number and diversity of molecules.
It can be determined by examining the number of unique single characters in each dataset (Zinc: 34, Moses: 26,
GDB: 21) that are used as the initial vocabulary when training the BPE tokenizer. If the initial vocabulary and
dataset are not diverse enough, the vocabulary will end up with similar tokens, but longer (e.g. CCCC and CCC
CCC). As a result, the model learns very short sequences, however on the Zinc dataset, because of its large initial
vocabulary and diverse set of molecules, we will still be able to learn longer sequences with a large vocabulary
that is sufficiently diverse.

This improves the validity score since the sequences are shorter than the character-level and each token con-
tains a group of atoms (and bonds), so the model has lower chances of generating invalid molecules compared
to using character-level tokens, where each token can cause the molecule to become invalid.

To further assess Taiga’s ability to generate novel molecules and not overfit to the training data, for each dataset
we calculated the novelty scores of the molecules generated during the molecule generation stage based on the
other datasets. As seen in Table 6, Taiga generated novel and unseen molecules that do not exist in the other

Figure 2. Models’ QED performance as a function of the molecule validity rate. The size of the dot represents
the diversity value (higher is better); models that are closer to the top-right corner are considered better.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

datasets. This reinforces the idea that existing difficulties with SMILES strings can be overcome by combining
transformers with RL.

Discussion
In this paper, we propose a solution for the de-novo drug design problem of generating novel molecules with
desired properties. We introduce Taiga, a transformer-based architecture for the generation of molecules with
desired properties. Taiga uses a two-stage approach by first learning a language modeling task and then optimiz-
ing for the desired properties using RL.

Our results demonstrate that the use of an attention mechanism enabled our method to overcome the problem
of generating invalid SMILES strings. When compared to an RNN using the same RL technique, Taiga achieved
similar or better results on all metrics across all of the examined datasets.

While all of the examined methods try to achieve the highest QED scores by directly optimizing for it on
the generation task, Taiga outperformed state-of-the-art methods when generating molecules with the highest
QED scores and obtained similar or better results in terms of validity, novelty, and diversity when generating
arbitrary molecules.

When optimizing for biological properties like pIC50, Taiga reduced the concentration required by a factor
of 3–5 for the same therapeutic effect (evaluated by an external property predictor), while maintaining similar
scores on all other metrics, when using all datasets as baselines for training. When optimizing for anti-cancer
activity, Taiga manages to achieve better anti-cancer activity while maintaining similar scores on all other metrics.
Additionally, when examined by expert pharmacologists, several of the top molecules generated we evaluated
as easily synthesizable and have a high chance of having anti-cancer properties, this emphasise the advantage of
the RL stage, which allows us to optimize properties that are not derived from the model itself.

Our proposed method for molecule generation can enhance the drug development process by generating
candidate molecules with improved therapeutic properties that are better than those of existing drugs on the
market. The drug development process takes an average of 13 years, of which half are spent searching for lead
molecules, and our proposed method can help reduce the time devoted to this task.

Future work can explore reward function that try to optimize several properties or doing constrained opti-
mization from existing molecules.

Methods
Problem formulation. We define the molecule generation and optimization tasks similarly to the for-
mulations used by the authors presenting GraphDF19. Given a set of molecules {mi}Mi=1 and a score function
R(m) → R , the molecule generation task is defined as learning a generation model pθ (·) , such that pθ (m) is
the probability of generating molecule m. The optimization task is defined as maximizing EM∼pθ [R(m)] with

Table 5. Comparison of the results for the main metrics for Taiga, with different tokenizer schemes.
Significant values are in bold.

Tokenizer GDB13

Validity(↑) Divesity(↑) Novelty(↑) QED(↑) SAS(↓)

BPE 94.48% 100.00% 100.00% 0.625 5.38

Char 95.82% 100.00% 100.00% 0.646 4.87

Moses

Validity(↑) Divesity(↑) Novelty(↑) QED(↑) SAS(↓)

BPE 97.38% 99.86% 86.78% 0.816 2.44

Char 97.21% 98.90% 95.56% 0.831 2.25

Zinc

Validity(↑) Divesity(↑) Novelty(↑) QED(↑) SAS(↓)

BPE 96.13% 99.40% 99.21% 0.794 2.58

Char 85.46% 99.70% 95.60% 0.757 2.89

Table 6. Cross-dataset novelty scores of the molecules generated. Rows indicate the source of the pre-training
dataset used to train Taiga and generate molecules with. Columns indicate the actual dataset we compare
novelty scores with.

Test dataset

Moses Zinc GDB13

Train dataset

Moses 95.56 98.74 98.90

Zinc 98.82 95.60 99.70

GDB13 100.00 100.00 100.00

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

respect to R (in the context of molecules, R can be the IC50 of the molecule or or any property one might want
to maximize).

Overview. Figure 1 illustrates our proposed method. Taiga is based on a two-stage process in which we first
train a transformer-based architecture on a general language modeling task by having the model predict the
next token in the sequence of SMILES strings. Then we apply policy gradient RL (specifically, the REINFORCE
algorithm) to achieve the desired molecular properties by learning a policy that maximizes the desired property
as the reward in the RL stage. The main advantage of our proposed method is its utilization of a pretrained model
capable of learning both the underlying rules of chemistry and the grammar of SMILES strings, which acts as
an initial policy by training on the next-character prediction task. This improves the model when applying the
REINFORCE algorithm.

Language model. Similar to MolGPT2, we use a GPT-like decoder-based transformer model as an auto-
regressive model for language modeling. The model consists of several decoder-only blocks stacked one after
another. Each block uses the self-attention mechanism. This attention mechanism takes a set of keys, queries,
and values (q, k, v) as inputs, applies a dot product operation between the queries and the keys, and then com-
putes the attention weights for the values by using the softmax function on the result of the dot product. The
attention mechanism is formulated as follows:

In order to learn different representations, we use MultiHeadAttention, which allows us to attend information
for different positions at the same time:

where WQ
i ,W

K
i ,W

V
i are the projection matrices of head i. To train a model that can carry out text generation

tasks, we mask future tokens to prevent tokens from attending consecutive tokens when computing the self-
attention mechanism.

We then define a transformer decoder block as follows:

where xl−1 is the input from the previous block, MLP is a multi-layer feed-forward network and MHA is the
MultiHeadAttention defined previously. We can then stack as many layers of decoder blocks as we want to cre-
ate out model.

Reinforcement learning. In this subsection, we formulate the RL problem for molecule graph generation.
We define the SMILES generation as a Markov decision process M = (S,A,P,R, γ).

• Observation Space: A single state is represented as a vector F, we assume there is a finite set of character types
that can be used to represent a SMILES string bounded by n, in which F ∈ Rl where fi belongs to {0, . . . , n} .
S = {si} is the state space of all possible intermediate SMILES strings with length t ≤ T ; T denotes the ter-
minal state after the model generates a [EOS] token or reaches a maximal length; and s0 , which is the initial
state, is an empty string.

• Action Space: A = {ai} is the set of actions the agent can take. In our case, all of the possible actions are the
characters in the vocabulary you can append to the SMILES representation of the molecule, so we assume
that ai belongs to {0, . . . , n}.

• Transition Dynamics: P is the transition dynamics that specify the probability of reaching a certain state
given the current state and the chosen action, p(st+1|st , at) , since the state and action space consist of only
characters; the transition dynamics are simply p(st+1|st , at) = 1 , since appending a character is deterministic.

• Reward Function: R is the reward function for a given molecule. We define the reward as zero for all inter-
mediate states, R(st) = 0 . R(sT) = f (sT) is a function applied to the molecule generated, and γ is the discount
factor.

Policy gradients. We can now define the task of finding the set of parameters for our transformer-based
network which maximizes the expected reward of our objective function J(θ):

where dπ is the state distribution and Vπ is the value function. Since it is unreasonable to compute the sum of
all terminal states, which are all of the states that end with the [EOS] token, due to the large number of terminal
states, we sample them. Based on the rule of large numbers, we can approximate this sum. Then we determine
the gradient of the expected value using policy πθ (a|s).

(4)Attention(Q,K ,V) = softmax(QKT/
√
d)V ,

(5)MultiHead(Q,K ,V) =Concat(head1, . . . , headn)W
o,

(6)headi =Attention(QW
Q
i ,KW

K
i ,VW

V
i),

(7)
zl = xl−1 +MHA(LayerNorm(xl−1))

xl = zl +MLP(LayerNorm(zl))

(8)max
θ

J(θ) =
∑

s∈S
dπ (s)Vπ (s) =

∑

|s|=T

dπ (s)Vπ (s),

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

where Gt is the return of the trajectory and is defined as:

Data availability
The ZINC, Moses and GDB13 datasets used in this study are available online. The code is available at https://
github. com/ eyalm azuz/ MolGen.

Received: 8 September 2022; Accepted: 22 May 2023

References
 1. You, J., Liu, B., Ying, R., Pande, V. & Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation.

In Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, 6412–6422 (Curran
Associates Inc., Red Hook, NY, USA, 2018).

 2. Bagal, V., Aggarwal, R., Vinod, P. & Priyakumar, U. D. Molgpt: Molecular generation using a transformer-decoder model. J. Chem.
Inf. Model. (2021).

 3. Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of molecules via deep reinforcement learning. Sci. Rep. 9, 1–10
(2019).

 4. Topliss, J. G. Utilization of operational schemes for analog synthesis in drug design. J. Med. Chem. 15, 1006–1011 (1972).
 5. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and

permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).
 6. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent.

Sci. 4, 268–276 (2018).
 7. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In International Confer-

ence on Machine Learning, 2323–2332 (PMLR, 2018).
 8. Weininger, D. Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem.

Inf. Comput. Sci. 28, 31–36 (1988).
 9. Gupta, A. et al. Generative recurrent networks for de novo drug design. Mol. Inf. 37, 1700111 (2018).
 10. Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016).
 11. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).
 12. Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar variational autoencoder. In International Conference on Machine

Learning, 1945–1954 (PMLR, 2017).
 13. Dai, H., Tian, Y., Dai, B., Skiena, S. & Song, L. Syntax-directed variational autoencoder for structured data. In International Confer-

ence on Learning Representations (2018).
 14. Gupta, G., Xiao, X. & Bogdan, P. Multiwavelet-based operator learning for differential equations. Adv. Neural. Inf. Process. Syst.

34, 24048–24062 (2021).
 15. Yin, C. et al. Fractional dynamics foster deep learning of copd stage prediction. Adv. Sci. 2203485 (2023).
 16. Vaswani, A. et al. Attention is all you need. In Advances in neural information processing systems, 5998–6008 (2017).
 17. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv: 1810. 04805 (2018).
 18. De Cao, N. & Kipf, T. MolGAN: An implicit generative model for small molecular graphs. ICML 2018 workshop on Theoretical

Foundations and Applications of Deep Generative Models (2018).
 19. Luo, Y., Yan, K. & Ji, S. Graphdf: A discrete flow model for molecular graph generation. In Meila, M. & Zhang, T. (eds.) Proceed-

ings of the 38th International Conference on Machine Learning, vol. 139 of Proceedings of Machine Learning Research, 7192–7203
(PMLR, 2021).

 20. Polykovskiy, D. et al. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. Front. Pharmacol.
(2020).

 21. Irwin, J. J. & Shoichet, B. K. Zinc—A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model.
45, 177–182 (2005).

 22. Blum, L. C. & Reymond, J.-L. 970 million druglike small molecules for virtual screening in the chemical universe database gdb-13.
J. Am. Chem. Soc. 131, 8732–8733 (2009).

 23. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem.
4, 90–98 (2012).

 24. Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and
fragment contributions. J. Cheminformat. 1, 1–11 (2009).

 25. Gaulton, A. et al. The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954. https:// doi. org/ 10. 1093/ nar/ gkw10 74 (2016).
 26. Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).
 27. Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020).
 28. Sennrich, R., Haddow, B. & Birch, A. Neural machine translation of rare words with subword units. arXiv preprint arXiv: 1508.

07909 (2015).

Author contributions
E.M. suggested the idea and performed the computations, G.S, B.S, L.R. supervised this work. All authors con-
tributed to the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 35648-w.

(9)∇θ J(θ) = Eπ [Qπ (s, a)∇θ lnπθ (a|s)] = Eπ [Gt∇θ lnπθ (a|s)]

(10)Gt = Rt+1 + γRt+2 + γ 2Rt+2 + · · · + γ T−1RT .

https://github.com/eyalmazuz/MolGen
https://github.com/eyalmazuz/MolGen
http://arxiv.org/abs/1810.04805
https://doi.org/10.1093/nar/gkw1074
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
https://doi.org/10.1038/s41598-023-35648-w
https://doi.org/10.1038/s41598-023-35648-w

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:8799 | https://doi.org/10.1038/s41598-023-35648-w

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to E.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Molecule generation using transformers and policy gradient reinforcement learning
	Results
	Molecule generation.
	Property optimization.
	Ablation study.

	Discussion
	Methods
	Problem formulation.
	Overview.
	Language model.
	Reinforcement learning.
	Policy gradients.

	References

