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Entropy generation and flow 
characteristics of Powell Eyring 
fluid under effects of time sale 
and viscosities parameters
Mohsan Hassan 1, Muhammad Ahsan 1, Usman 2*, Metib Alghamdi 3 & Taseer Muhammad 3

Shear thinning fluids are widely used in the food and polymer industries due to their unique flow 
characteristics. The flow behavior of these fluids has been commonly studied using the Powell Eyring 
model under a small shear rate assumption. However, this assumption is not always valid. In this 
study, we explore the transport characteristics of a Powell Eyring fluid over a variable thicker sheet, 
not only at small shear rates but also at medium and high shear rates. Furthermore, we calculate the 
rate of entropy generation based on the assumptions. Generalized Powell–Eyring model of viscosity 
is used for the fluid, representing the re-arrangements of molecules in the forward and backward 
directions through the theory of potential energy. The model concludes the sensitivity of the viscosity 
from zero to infinite shear rate along time sale and exponent parameters. The model is used in the 
transport phenomena equations. The solution of the equation is obtained by using the numerical 
method and used to calculate the rate of entropy generation. The results are presented in the form 
of velocity and temperature profiles, the average rate of entropy generation, skin friction coefficient 
and Nusselt number under the influence of various viscosity parameters. It is found that velocity and 
temperature profiles are decreased and increased respectively against the time scale parameter.

Fluid flow is a fundamental phenomenon in the chemical process industry, where the flow pattern and the type 
of liquid/fluid significantly impact the equipment layout, process performance, and economic situation. To 
efficiently and safely run a chemical plant, it is crucial to anticipate the behavior of fluid flow, along with prior 
knowledge of heat and mass transfer and boundary conditions. While predicting the behavior of Newtonian 
liquids, such as water, alcohols, and esters, is relatively straightforward, it becomes much more challenging for 
non-Newtonian fluids with complex rheological patterns and flow  behaviors1,2. Shear thinning is a common 
phenomenon observed in non-Newtonian fluids, wherein the viscosity of the fluid decreases with an increase 
in shear rate. The viscosity of shear-thinning fluids is a function of shear rate and exhibits Newtonian behavior 
at very low and high shear rate values. Shear thinning fluids have numerous examples and applications in daily 
life and the food industry, such as melted chocolate, tomato paste in the ketchup industry, and yoghurt. Polymer 
melts of high- and low-density polyethene, nylon, polyester, and polystyrene are a few examples of shear-thinning 
fluids. Other examples of shear-thinning liquids in the cosmetic industry include nail polish, toothpaste, and 
moisturizing lotions. Given the significant applications of shear-thinning fluids, it is essential to investigate 
their rheological and flow behaviors and patterns to ensure smooth operation in the chemical process industry. 
Accurately predicting and understanding the behavior of these fluids can lead to simpler equipment design, 
avoiding unnecessary complexity throughout the process and ensuring optimal process performance and safety.

There exist numerous mathematical models in the literature to describe the rheological behavior of shear-
thinning fluids. The first model proposed by Ostwald in 1929 established a simple relation between shear stress 
and shear  rate3. This model, commonly known as the “power law”, became the basis for various viscometers 
and rheometers used to gather rheological data for different shear-thinning fluids. However, the power law 
is not suitable for predicting the behavior of shear-thinning fluids at low and high shear rate values. In 1965, 
Cross proposed another mathematical expression to describe the rheological behavior of inelastic fluids, which 
is comparatively better than the power law in terms of predicting the rheological properties of shear-thinning 
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fluids at low and high shear rate  values4. Carreau introduced a model in 1972 based on the molecular structure 
of shear-thinning  fluids5. By considering the molecular structure, it is possible to predict the rheological behavior 
of these fluids by establishing a relationship between viscosity and shear rate. Another general relation between 
viscosity and shear rate, in the form of an inverse hyperbolic sine, is presented in  references6,7 and defined as

where µo and µ∞ are viscosities at low and high shear rate respectively, γ̇  is shear rate, � is time sale parameter 
and  σ is exponent parameter. The Sutterby model is attained when µ∞ = 0 and The Eyring model is gotten when 
µ∞ = 0 and σ = 1 . The Eyring–Powell model is represented in Eq. (1) when σ = 1 . Equation (1) is extensively 
used to predict the flow patterns of shear thinning non-Newtonian fluids for different applications as follows 
in Table 1.

The studies mentioned above indicate that Eq. (1) has been extensively examined in fluid flow problems 
across various geometries, subject to certain assumptions σ = 1 , µ∞ = 0 and �

∣

∣γ̇
∣

∣ ≪ 1. The viscosity of some 
shear-thinning liquids can be altered by a factor of three to four relative to the shear rate, making it impossible to 
disregard such a substantial change in viscosity during the processing of polymer melts or lubes. Consequently, 
the aforementioned assumptions cannot be considered universally applicable. The present problem’s objective is 
to investigate Eyring–Powell fluid flow with heat transfer while taking into account viscosity at low shear rates, 
which has not been previously addressed. The flow is analyzed over a variable nonlinear thicker stretching sheet, 
with boundary layer assumptions applied due to the proximity of the flow to the wall. The problem consists of 
highly nonlinear differential equations that are solved using numerical techniques. The results are expressed as 
velocity and temperature equations, which are then used to calculate physical quantities.

Mathematical model
Consider the incompressible, steady-state and laminar boundary layer flow of the non-Newtonian fluid through 
the Generalized Powell–Eyring model over a variable thicker sheet. The flow geometry is shown in Fig. 1.

The sheet is subjected to stretching at a variable velocity, denoted by a function uw = a(x + b)m . Additionally, 
the thickness of the sheet varies with a specific function y = A(x + b)

1−m
2  . It is assumed that the temperature of 

the sheet remains constant Tw and is greater than the temperature of the inviscid region denoted by T∞.
The mathematical flow model is based on partial differential equations that represent continuity, momentum, 

and energy equations as follows

(1)µ = µ∞ + (µo − µ∞)

(

sinh
−1

(

�
∣

∣γ̇
∣

∣

)

�
∣

∣γ̇
∣

∣

)σ

.

(2)ux + vy = 0,

(3)ρ
(

uux + vuy
)

= −px + (τ 11)x + (τ 12)y ,

(4)ρ
(

uvx + vvy
)

= −py + (τ 21)x + (τ 22)y ,

(5)ρCp

(

uTx + vTy

)

= k
(

Txx + Tyy

)

+ φ.

Table 1.  The non-Newtonian Eyring–Powell model over diverse  geometries8–20.

Authors Model Geometry Remarks/investigations

Arshad et al.8 σ = 1 , µ∞ = 0 , �
∣
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∣
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∣
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∣
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∣

∣γ̇
∣
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∣
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In the above, the shear stresses τij for the Generalized Powell–Eyring model are defined as

and viscous dissipation φ is written as

In view of Eqs. (5) and (6), Eqs. (2)–(4) are written as

Now, the Eqs. (8)–(10) are reduced through boundary layer assumptions. Consider the following boundary 
layer assumptions as

Equations (8)–(10) after applying Eq. (11) are written as
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(

sinh
−1

(

�
∣

∣γ̇
∣

∣

)

�
∣

∣γ̇
∣

∣

)σ
(

uy + vx
)
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(11)x = Lx, y = εLy, u = U∞u, v = εU∞v, p = ρU2
∞p, T =

T − T∞
Tw − T∞

.

Figure 1.  The flow geometry for the problem.
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Here Ec = U2
∞

Cp(Tw−T∞)
 , Pr−1 = α

v  , Re−1 = µo
U∞ρL and C =

√

µ3
∞ρ�2

µoL
.

For Re >> 1 and

the Eqs. (12)–(14) are written without bar are written as

along associated boundary conditions

Now, introduces the similarity transformations to reduce the governing equations into ordinary differential 
equations  as21

In above � is a stream function and satisfies Eq. (21) by
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In view of Eqs. (21) and (22), the main Eqs. (16)–(20) are simplified as

where β = µ∞
µ◦

 , Cx = �

√

a3(x+b)3m−1

ν
 , α = −B

(

m−1
1+m

)

 and B = A
√

a
ν

 are constants.

Entropy generation
The rate of entropy generation is defined as

where

By using Eq. (27) into Eq. (26), we get

After applying Eq. (11), we get

where Ṅ = T2
∞L2νṠgen

k(Tw−T∞)2U∞
 and A = T∞
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.

Equation (28) in view of Eqs. (15) and (29) are written without a bar are written as

Now, we apply Eq. (21) in Eq. (30) and get the following form
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(22)u =
∂�

∂y
, v = −

∂�

∂x
.

(23)

mF ′2 − (m+ 1)

2
FF ′′ = σ(1− β)





sinh
−1

�

Cx

√
F ′′2

�

Cx

√
F ′′2





σ−1

−
sinh

−1
�

Cx

√
F ′′2

�

Cx

√
F ′′2

+
1

�

1+ C2
xF

′′2



F ′′′

+



β + (1− β)
sinh

−1
�

Cx

√
F ′′2

�

�

Cx

√
F ′′2

�





σ

F ′′′,

(24)−
m+ 1

2
Pr Fθ ′ = θ ′′ + Pr Ec







β + (1− β)





sinh
−1

�

Cx

√
F ′′2

�

Cx

√
F ′′2





σ





F ′′2,

(25)
f ′ = 1, f = α, θ = 1 at η = B
f ′ → 0, θ → 0 at η = ∞ ,

(26)Ṡgen =
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Physical parameters
Skin friction coefficient. To measure the shear stress at the wall, a dimensionless parameter known as the 
skin friction coefficient is utilized. This coefficient is defined as:

By using the Eqs. (11) and (21), the coefficient is written as

here Rex = uw(x+b)
ν

 is the local Reynold number.

Nusselt number. The convective heat transfer coefficient in a dimensionless form which is known Nusselt 
number, is written as

Equation (35) is written after applying Eqs. (11) and (21) as

Solution technique
The numerical result of Eqs. (23) and (24) along Eq. (25) are obtained by using the RK method in the following 
manner.

Let F = F1 , θ = G1 and find the system of first-order differential equations as

along boundary conditions

Here �1 and �2 are unknown constants.

Results and discussion
In this portion, the effects of the time scale parameter � , exponent parameter σ and high shear rate viscosity 
µ∞ on the velocity F ′(η) and temperature θ(η) profiles as well as on skin friction coefficient Cfx and Nusselt 
number, Nux are examined. The values of dimensionless rheological parameters such as Weissenberg C , Prandtl 
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number Pr , Eckert Ec , viscosity ratio parameter β , and Reynold number Re are varied during the investigation 
and calculated in Table 2.

Figure 2a depicts the velocity profile in terms of the time scale parameter. It is evident that the velocity 
decreases as the parameter increases. It is used to control the behavior of the viscosity curve. Generally, it is noted 
that viscosity is rapidly decreased from low shear to high shear when the time scale parameter is increased. The 
parameter is expressed in the form of the Weissenberg number, indicating a decline in the velocity. Furthermore, 
the profile’s behavior remains almost constant at all values of the x , but the velocity boundary layer thickness 

Table 2.  The value of different dimensionless parameters when ρ = 1100 , Cp = 4000 , µo = 0.1 , m = 3 , σ = 1, 
a = 0.01 , A = 0.02 , b = 0.5 , Tw − T∞ = 30 and k = 40.

 x
↓

� μ∞

µ∞ = 0.03 � = 0.7

0.5 0.7 0.9 0.01 0.02 0.03

C

 2 2.05 2.87 3.68 2.87 2.87 2.87

 3 7.87 11.02 14.16 11.02 11.02 11.02

 4 21.50 30.11 38.71 30.11 30.11 30.11

10−6 × Ec

 2 0.02 0.02 0.02 0.02 0.02 0.02

 3 1.53 1.53 1.53 1.53 1.53 1.53

 4 6.92 6.92 6.92 6.92 6.92 6.92

Re

 2 4297 4297 4297 4297 4297 4297

 3 16,507 16,507 16,507 16,507 16,507 16,507

 4 45,107 45,107 45,107 45,107 45,107 45,107

Pr

 – 10 10 10 10 10 10

β 0.3 0.3 0.3 0.1 0.2 0.3

Figure 2.  (a) The influence of the time sale parameter on the velocity profile. (b) The influence of the time sale 
parameter on the temperature profile.
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decreases as the distance from the origin in the parallel direction increases. Figure 2b shows the temperature 
profile for different time scale parameter values. As the parameter increases, the temperature also rises. Addi-
tionally, the temperature distribution remains constant for every value of the x , but the thermal boundary layer 
thickness decreases more than the velocity boundary layer thickness.

Figure 3a presents the influence of the exponent parameter on the velocity profile. It is observed that the 
velocity decreases as the parameter increases, which is attributed to the increase in viscosity with respect to the 
shear rate under the given flow conditions. Figure 3b depicts the impact of the parameter on the temperature 
profile, which displays an increase in the temperature profile with an increasing parameter value. Notably, both 
profiles exhibit a similar trend at different values of x , as shown in Figs. 2 and 3.

Figure 4a reveals the effect of high shear rate viscosity on the velocity profile, which demonstrates an increase 
in the velocity profile with increasing high shear rate viscosity. This viscosity appears in the viscosity ratio 
parameter and implies a reduction in velocity as the parameter value increases. Furthermore, Fig. 4b displays 
the temperature profile under the influence of high shear rate viscosity, indicating a decrease in temperature as 
the viscosity ratio parameter increases.

Figure 5 illustrates the impact of different parameters on the average rate of entropy generation. It is observed 
that entropy generation increases when the time scale parameter is increased, owing to the dominant influence 
of viscous irreversibility compared to thermal irreversibility. A similar trend of entropy generation is observed in 
the case of the exponent parameter, where thermal irreversibility decreases, but viscous irreversibility increases 
significantly, resulting in an enhancement of entropy generation. When the difference between low and high 
shear rate viscosities is reduced by increasing the high shear rate viscosity, entropy generation decreases due to 
the decrease in viscous irreversibility.

The numerical values of the skin friction coefficient under the influence of the time scale parameter, exponent 
parameter, and high shear rate viscosity at different values of the parameter are presented in Table 3. The coef-
ficient magnitude decreases with increasing time scale and exponent parameters but increases with an increase 
in high shear rate viscosity. The negative sign of the coefficient indicates that the sheet exerts a shear stress on the 
fluid. The results of the Nusselt number in relation to the aforementioned parameters are presented in Table 4. 
An increase in the time scale and exponent parameters results in a decrease in the Nusselt number, while high 
shear rate viscosity leads to an increase in the Nusselt number.

Conclusions
The present investigation examines the heat and mass flow behaviors of a shear-thinning fluid through a general-
ized Powell–Eyring model. This study introduces a higher shear rate viscosity, time scale and exponent parameters 
in the flow modeling, which has not been previously done with the Powell–Eyring model. The effects of these 
parameters on the velocity and temperature profiles are summarized as follows:

Figure 3.  (a) The influence of the exponent parameter on the velocity profile. (b) The influence of the exponent 
parameter on the temperature profile.
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• Upon increasing the time scale parameter, a consequential reduction in viscosity occurs, leading to a decrease 
in the velocity profile and an increase in the temperature profile. The corresponding increase in the time scale 
parameter leads to an increase in the average entropy generation.

• An increase in the exponent parameter accentuates the shear thinning effects, resulting in a decrease in the 
velocity profile and an increase in the temperature profile. This parameter also causes an increase in the 
average entropy generation.

• Regarding the numerical values, an increase in the time scale and exponent parameters leads to a decrease in 
the skin friction coefficient. However, an increase in shear rate viscosity causes the skin friction coefficient to 
increase. Conversely, the Nusselt number demonstrates an opposing trend in comparison to the skin friction 
coefficient concerning these parameters.

Figure 4.  (a) The influence of high shear rate viscosity on the velocity profile. (b) The influence of high shear 
rate viscosity on the temperature profile.
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Figure 5.  The average rate of entropy generation under different parameter effects.

Table 3.  The values of local Skin friction number −Cfx under the influence of different parameters.

� σ µ∞

x
↓

0.5 0.7 0.9 0.010 0.015 0.020 0.01 0.02 0.03

2 0.04005 0.03623 0.03364 0.03786 0.03204 0.02572 0.03390 0.03897 0.04404

3 0.01399 0.01296 0.01233 0.01362 0.00993 0.00699 0.00921 0.01270 0.01618

4 0.00695 0.00663 0.00644 0.00701 0.00481 0.00323 0.00388 0.00618 0.00847

Table 4.  The values of local Nusselt number −Nux under the influence of different parameters.

� σ µ∞

x
↓

1.0 1.5 2.0 0.010 0.015 0.020 0.01 0.02 0.03

2 125.143 385.727 370.563 123.398 119.052 114.371 118.945 121.491 123.398

3 245.281 241.860 239.285 241.860 233.341 224.168 233.133 238.123 241.860

4 405.464 399.810 395.553 399.810 385.727 370.563 385.383 393.632 399.810
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
request.
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