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Reducing CNOT count in quantum 
Fourier transform for the linear 
nearest‑neighbor architecture
Byeongyong Park 1,2 & Doyeol Ahn 1,2,3*

Physical limitations of quantum hardware often necessitate nearest-neighbor (NN) architecture. When 
synthesizing quantum circuits using the basic gate library, which consists of CNOT and single-qubit 
gates, CNOT gates are required to convert a quantum circuit into one suitable for an NN architecture. 
In the basic gate library, CNOT gates are considered the primary cost of quantum circuits due to 
their higher error rates and longer execution times compared to single-qubit gates. In this paper, 
we propose a new linear NN (LNN) circuit design for quantum Fourier transform (QFT), one of the 
most versatile subroutines in quantum algorithms. Our LNN QFT circuit has only about 40% of the 
number of CNOT gates compared to previously known LNN QFT circuits. Subsequently, we input both 
our QFT circuits and conventional QFT circuits into the Qiskit transpiler to construct QFTs on IBM 
quantum computers, which necessitate NN architectures. Consequently, our QFT circuits demonstrate 
a substantial advantage over conventional QFT circuits in terms of the number of CNOT gates. This 
outcome implies that the proposed LNN QFT circuit design could serve as a novel foundation for 
developing QFT circuits implemented in quantum hardware that demands NN architecture.

Quantum algorithms are becoming important because of their accelerated processing speed over classical algo-
rithms for solving complex problems1–5. However, using quantum algorithms to solve practical problems is 
difficult because quantum states are very susceptible to noise, which can cause critical errors in the execution of 
quantum algorithms. In other words, quantum errors caused by noise pose a major obstacle to the realization 
of quantum algorithms.

The quantum circuit model is a well-known model for quantum computation. In this model, quantum algo-
rithms are represented by quantum circuits composed of qubits and gates. Since noise arises from the evolution 
of quantum states, gate operations are the major cause of noise. Therefore, quantum circuits should be designed 
with a minimal number of gates, especially in the noisy intermediate-scale quantum (NISQ) arena6,7.

Within the realm of quantum logic synthesis, quantum circuits are broken down into gates derived from a 
universal gate library. The basic gate library consists of CNOT and single-qubit gates8,9. Since CNOT gates are 
considered the main generators of quantum errors and have a longer execution time compared to single-qubit 
gates10, CNOT gates are expected to dominate the cost of quantum circuits when using the basic gate library.

When considering the cost of a quantum circuit, connectivity between qubits should also be taken into 
account. This is because physical limitations in quantum hardware may enforce quantum circuits to adopt the 
nearest-neighbor (NN) architecture10,11. The NN architecture means that a qubit in the circuit only interacts 
with adjacent qubits.

The quantum Fourier transform (QFT) is an essential tool for many quantum algorithms, such as quantum 
addition12, quantum phase estimation (QPE)13, quantum amplitude estimation (QAE)3, the algorithm for solving 
linear systems of equations4, and Shor’s factoring algorithm1, to name a few. Therefore, the cost optimization of 
QFT would result in the efficiency improvement of these quantum algorithms.

There have been studies aimed at reducing circuit costs of QFT8,14–22. Among them are studies related to the 
number of CNOT gates in QFT, including the following:
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1.	 When constructing an n-qubit QFT circuit using the basic gate library, n(n− 1) CNOT gates are required, 
provided that qubit reordering is allowed8. Qubit reordering implies that the sequence of qubits can be altered 
before and after the execution of the circuit.

2.	 In Ref.14, the authors incorporated n(n− 1)/2 extra SWAP gates to develop an n-qubit linear nearest-neighbor 
(LNN) QFT circuit, which accommodates qubit reordering. 

	 (i)	 To synthesize a single SWAP gate using the basic gate library, three CNOT gates are required8.
	 (ii)	 Consequently, the total number of CNOT gates required for the n-qubit LNN QFT circuit presented 

in Ref.14 is 5n(n− 1)/2.
	 (iii)	 By employing SWAP gates in the construction of LNN QFT circuits, the primary term representing 

the quantity of CNOT gates increases by a factor of 2.5.

3.	 Previous research efforts, as documented in case studies, have investigated techniques to minimize the 
amount of SWAP gates required in the LNN architecture when assembling n-qubit LNN QFT circuits15–18. 
These studies aimed to optimize the circuit design and improve overall efficiency.

In this paper, we propose a new n-qubit LNN QFT circuit design that directly utilizes CNOT gates, unlike 
previous studies14–18 that utilized SWAP gates. Our approach offers a significant advantage by synthesizing a 
more compact QFT circuit using CNOT gates instead of SWAP gates, as the implementation of each SWAP gate 
requires three CNOT gates. Upon qubit reordering, our n-qubit LNN QFT circuit requires n2 + n− 4 CNOT 
gates, which are 40% of those in Ref.14 asymptotically. Furthermore, we demonstrate that our circuit design 
significantly reduces the number of CNOT gates compared to the best-known results for 5- to 10-qubit LNN 
QFT circuits17,18.

In the following analysis, we compare our QFT circuit with the conventional QFT circuit8 when used as 
inputs for the Qiskit transpiler23, which is required for implementation on IBM quantum computers that neces-
sitate NN architecture10. Our findings confirm that using our QFT circuit as input requires fewer CNOT gates 
in comparison to the conventional QFT circuits. This evidence indicates that our QFT circuit design could serve 
as a foundation for synthesizing QFT circuits that are compatible with NN architecture, potentially leading to 
more efficient implementations.

Furthermore, we present experimental results from implementing the QPE using 3-qubit QFTs on actual 
quantum hardware, specifically the IBM_Nairobi10 and Rigetti Aspen-1111 systems. We also illustrate the decom-
position of controlled-Ry gates that share a target qubit using our proposed method. This particular circuit is 
often found in QAE, which is anticipated to supplant classical Monte Carlo integration methods24,25. By provid-
ing these results, we aim to highlight the practicality and effectiveness of our approach in real-world quantum 
computing applications.

The remainder of this paper is organized as follows: in the “Background” section, we provide a brief overview 
of quantum circuits, QFT, QPE, and QAE. The proposed approach section outlines our method for construct-
ing LNN QFT circuits. In the results and discussion section, we present the outcomes of transpilation on IBM 
quantum computers, display the experimental results of QPE executions on quantum hardware, and illustrate 
how to convert a circuit of controlled-Ry gates sharing the target qubit into an LNN circuit using our proposed 
method. We also address the limitations of our study and suggest potential future research directions. Finally, we 
conclude the paper with a summary of our findings and their implications for the field of quantum computing.

Background
Quantum circuit.  Quantum circuits consist of qubits and gates. Qubits store a quantum state, a vector in 
a Hilbert space, and each gate represents a unitary transformation on the Hilbert space. The matrix representa-
tions of the gates used in this paper are as follows:

Quantum fourier transform.  QFT is a quantum version of the discrete Fourier transform. The definition 
of n-qubit QFT and its inverse are as follows:
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The conventional n-qubit QFT circuit requires n(n− 1)/2 C(Rn) gates and n Hadamard ( H ) gates if qubit 
reordering is allowed8 (see Fig. 1). Synthesizing a C(Rn) gate demands two CNOT and three Rz gates26. There-
fore, n(n− 1) CNOT gates are required to construct an n-qubit QFT circuit. However, if the LNN architecture is 
required to implement the QFT, the number of CNOT gates is much larger than n(n− 1)14–18.

One of the most important uses of QFT is the QPE algorithm8,13. QPE is an algorithm for finding an eigen-
vector of a unitary operator using QFT. Let a unitary operator, an eigenvalue of the unitary operator, and a cor-
responding eigenstate be U  , e2π iθ , and |u� , respectively. Then, QPE can find θ if the state |u� is prepared and the 
controlled-U operators are implemented. The canonical QPE is executed according to the following process: first, 
prepare the state 

∣

∣0�⊗t |u� , where t  is a positive integer related to the precision of QPE. Second, apply t  Hadamard 
( H ) gates to 

∣

∣0�⊗t . Third, apply the controlled-Uj operator to the total state, where the controlled-Uj operator 
transforms 

∣

∣j� |u� to 
∣

∣j�Uj|u� , and 
∣

∣j〉 is a computational basis state. Finally, implement the inverse QFT on the 
first register and measure it. The measurement result gives a number that approximates 2tθ , which is accurate to 
(t − log2(2+ 1/2ε)) bits with a success probability of at least (1− ε)8.

Quantum amplitude estimation.  QAE3 is a frequently used subroutine of quantum algorithms. A signif-
icant feature of QAE is that it provides a quadratic speed-up compared to the classical Monte Carlo integration24.

QAE is  an a lgor ithm for  f inding the amplitude of  a  state  |ψ1�|1� in  the  state 
A|0�⊗(n+1) =

√
1− a|ψ0�|0� +

√
a|ψ1�|1� , where A is a unitary operator. The canonical QAE is the QPE of the 

Grover operator Q . The definition of Q is as follows:

Thus, the measurement result correctly converges to O(1/M) with a probability of at least 8/π2 , where M is 
the number of qubits representing the measurement result3.

Recently, QAEs that do not require the QPE have been proposed27,28. They reduce the algorithmic costs 
compared with the canonical QAE because they do not use additional qubits, controlled operations, nor inverse 
QFT. However, the QAE without QPE, similar to the canonical QAE, uses the quantum amplitude amplification 
by the repetitive execution of the Grover operator Q . Therefore, reducing the cost of the Grover operator Q is 
considered a key to efficiently implement QAE.

One of the most frequently appearing subcircuits in the circuit design of a Grover operator Q is the circuit of 
the serial controlled-Ry gates sharing the target qubit. This is because the serial controlled-Ry gates with single-
qubit gates can express the basic approximation form of operator A when QAE is used to implement integration 
numerically25.

The goal of using QAE to implement integration numerically is to find 
∑

f (x) . Then, A and θ(x) are defined 
as follows:

Then, θ(x) can be written as 
∑n

j=0ajx
j = a0 + x0θ0 + x1θ1 + · · · + x0x1θ01 + . . . , where each θk is a linear 

combination of aj’s. Therefore, operator A can be approximated to the required precision using a H gate and 
multi-qubit controlled-Ry gates sharing the target qubit. The basic approximation is the case n = 1 , which can 
be synthesized using an H gate, a Ry gate, and controlled-Ry gates sharing the target qubit. This approximation 
is useful for solving practical financial problems like risk analysis25 or option pricing29.
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Figure 1.   The conventional 5-qubit QFT circuit from Ref.8.
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Proposed approach
In this section, we propose a method for constructing an LNN QFT circuit using the basic gate library. This is 
achieved by applying the circuit identities presented in Figs. 2 and 3. The circuit identity in Fig. 2a is from Ref.26, 
and the one in Fig. 2b is from Ref.22. The circuit identity in Fig. 3 is newly introduced in this paper to enforce the 
QFT circuit to adopt the LNN architecture. The circuit identity in Fig. 3 is proved in Theorem 1.

Theorem 1  The circuit identity in Fig. 3 holds true for n ≥ 3.

Proof  It is sufficient to prove that the circuit identity is true when the input state is in an arbitrary computational 
basis state because quantum mechanics is linear. This can be proved by mathematical induction.

1.	 The circuit identity for the case n = 3 is illustrated in Fig. 4a. Suppose the input state of the circuit in both 
the left and right circuits of Fig. 4a is in a computational basis state |a1a2a3� , where each ai is either 0 or 1. In 
the left circuit of Fig. 4a, the resulting output state is |a1(a1 ⊕ a2)(a1 ⊕ a3)� . In the right circuit of Fig. 4a, as 
time progresses, the input state sequentially evolves into the states |ψ1� , |ψ2� , and |ψ3� . The states |ψ1� , |ψ2� , 
and |ψ3� are as follows:

Therefore, when n = 3 , the circuit identity is true.

2.	 Inductive hypothesis: when n = k , the circuit identity is true (see Fig. 4b).
3.	 The circuit identity for the case n = k + 1 is illustrated in Fig. 4c. Suppose the input state of the circuit in both 

the left and right circuits of Fig. 4c is in a computational basis state |a1a2a3 . . . akak+1� , where each ai is either 0 
or 1. In the left circuit of Fig. 4c, the resulting output state is |a1(a1 ⊕ a2)(a1 ⊕ a3) . . . (a1 ⊕ ak)

(

a1 ⊕ ak+1

)

� . 
In the right circuit of Fig. 4c, as time progresses, the input state sequentially evolves into the states |ψ4� , |ψ5� , 
and |ψ6� . When the state |ψ4� evolves into |ψ5� , we evaluate the state |ψ5� using the inductive hypothesis. The 
states |ψ4� , |ψ5� and |ψ6� are as follows:

(5)|ψ1 � = |a1a2(a2 ⊕ a3) �

(6)|ψ2 � = |a1(a1 ⊕ a2)(a2 ⊕ a3) �

(7)|ψ3 � = |a1(a1 ⊕ a2)(a1 ⊕ a2 ⊕ a2 ⊕ a3) � = |a1(a1 ⊕ a2)(a1 ⊕ a3)�

Figure 2.   Circuit identities used for decomposing QFT circuits using the basic gate library. (a) A circuit identity 
from Ref.26. (b) A circuit identity from Ref.22. D represents a circuit with a diagonal matrix representation.

Figure 3.   Circuit identity employed to enforce QFT circuits to adopt LNN architecture. This circuit identity 
holds true for n ≥ 3.
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Therefore, when n = k + 1 , the circuit identity is true.	�  �

In the remainder of this section, we present the construction of the LNN QFT circuit. First, we divide the 
conventional QFT circuit (see Fig. 1) into subcircuits, such as the circuit in Fig. 5a. Next, we decompose the 
subcircuits using the basic gate library, transform them into circuits for the LNN architecture, and combine 
them. The process of decomposing the subcircuit in Fig. 5a and transforming it into the circuit for the LNN 
architecture is as follows:

1.	 Apply the circuit identity in Fig. 2a to the circuit in Fig. 5a. The circuit identity in Fig. 2a is from Ref.26. This 
step decomposes the circuit in Fig. 5a into the circuit in Fig. 5b.

2.	 Combine some Rz gates by using the fact that the circuits represented by diagonal matrices commute with 
each other. This step transforms the circuit in Fig. 5b into the circuit in Fig. 5c.

3.	 Repeatedly apply the circuit identity in Fig. 2b, which is from Ref.22. This step transforms the circuit in Fig. 5c 
into the circuit in Fig. 5d.

4.	 Apply the circuit identity in Fig. 3 to the circuit in Fig. 5d. This step transforms the subcircuit into the circuit 
for the LNN architecture (see Fig. 5e).

To construct a QFT circuit, we apply the method above for all the subcircuits, combine them, and cancel out 
adjacent CNOT gates. Note that this QFT circuit has an LNN architecture (see Fig. 6). Using this method, we 
can construct an n-qubit LNN QFT circuit with n2 + n− 4 CNOT gates.

Results and discussions
Proposed LNN QFT circuit.  Our n-qubit LNN QFT circuit requires n2 + n− 4 CNOT gates, which is 
40% asymptotically when comparing the leading order terms with the previous study in Ref.14. Our QFT circuit 
has the same leading order term of CNOT count n2 , compared to the QFT circuit that does not require an NN 
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Figure 4.   Special cases of the circuit identity in Fig. 3. These cases are utilized in proving Theorem 1. (a) The 
case for n = 3 . (b) The case for n = k . (c) The case for n = k + 1 . The circuit in the dashed green box performs 
the same operation as the circuit in (b).
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architecture. For 5- to 10-qubit QFTs, our results reduce the number of CNOT gates by 16.13%, 20.83%, 30.67%, 
43.80%, 47.88%, and 51.89% compared to the best-known results17,18. The results and comparison with previous 
works can be found in Table 1.

Figure 5.   Decomposition of the subcircuit in the QFT circuit. All circuits in this figure perform the same 
operation. (a) A subcircuit of the conventional QFT circuit. (b) The result of applying the circuit identity in 
Fig. 2a to the circuit in (a). (c) The result of transforming the circuit in (b) by utilizing the commutativity of 
circuits with diagonal matrix representations. (d) The result of applying the circuit identity in Fig. 2b to the 
circuit in (c). (e) The result of applying the circuit identity in Fig. 3 to the circuit in (d).

Figure 6.   An n-qubit LNN QFT circuit with n2 + n− 4 CNOT gates.
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Transpilation of QFT on IBM quantum computers.  For real quantum hardware such as IBM quantum 
computers10, the physically implemented circuit must be in a specific NN architecture because qubits are not 
fully connected. However, the qubits are neither linearly connected (see Fig. 7). Therefore, our QFT circuit for 
LNN architecture cannot be implemented directly on IBM quantum computers without adjustments for the 
specific NN architectures.

Qiskit provides a transpiler23 to transform an input circuit into a circuit that satisfies the specific NN con-
dition, which is required in each IBM quantum computer. In this section, we put our QFT circuits and the 
conventional QFT circuits (such as the circuit in Fig. 1) in the Qiskit transpiler for implementation on IBM 
quantum computers: (1) IBM_Nairobi, a 7-qubit quantum computer using the Falcon r5.11H processor, (2) 
IBMQ_Guadalupe, a 16-qubit quantum computer using the Falcon r4P processor, (3) IBM_Cairo, a 27-qubit 
quantum computer using the Falcon r5.11 processor, and (4) IBM_Washington, a 127-qubit quantum computer 
using the Eagle r1 processor10. We transpiled 3- to 7-qubit QFT on the IBM_Nairobi, 3- to 16-qubit QFT on the 
IBMQ_Guadalupe, 3- to 27-qubit QFT on the IBMQ_Cairo, and 3- to 127-qubit QFT on the IBM_Washington. 
Each QFT circuit is transpiled 100 times. Next, we chose the minimal number of CNOT gates required to syn-
thesize the QFT and compared them. As a result, we confirmed that using our QFT circuit as input requires fewer 
CNOT gates than using the conventional QFT circuit for all cases. The results can be found in Fig. 8.

Implementation of QFT on actual quantum hardware.  We implemented QPE using a 3-qubit QFT 
on the IBM_Nairobi10 and the Rigetti-Aspen-1111, a 40-qubit superconducting quantum computer, to compare 
their performance. The connectivity between qubits used for the implementation of QPE can be found in Fig. 7. 
QPE is an algorithm for finding an eigenvalue of a unitary operator using a corresponding eigenstate and QFT. A 
brief explanation of QPE can be found in the “Background” section. In this study, we chose the unitary operator 
U and the corresponding eigenvector |u� as follows:

We chose θ as 1/8, 2/8, 3/8, …, and 7/8. The QPE circuits are synthesized using our method. If we use a 
quantum computer without noise when implementing QPE, we can get the right results with one execution for 
each θ . However, the quantum computers we used are noisy. Therefore, we implemented QPE 1000 times for 
each θ on each quantum computer.

(11)U =
(

1 0
0 e2π iθ

)

, |u� =
(

0
1

)

Table 1.   The number of CNOT gates in QFT circuits for LNN architecture. The first column represents the 
number of qubits in the QFT circuit, the second column represents our results, the third to the fifth columns 
represent the results of previous studies14,17,18, and the sixth column represents the improvement rate of our 
circuit compared to the best-known result.

Ours Ref.14 Ref.17 Ref.18 Improvement (%)

n n2 + n − 4 (5/2)(n2 − 1) – –  ~ 60

5 26 50 31 –  ~ 16.13

6 38 75 48 –  ~ 20.83

7 52 105 105 75  ~ 30.67

8 68 140 124 121  ~ 43.80

9 86 180 192 165  ~ 47.88

10 106 225 240 225  ~ 52.89

Figure 7.   Qubit connectivity of quantum devices (a) Circuit diagram of IBM_Nairobi10, showing the 
connectivity of qubits. Qubits labeled 1, 3, 5, and 4 are used to implement QPE. (b) Partial circuit diagram of 
Rigetti-Aspen-1111, showing the connectivity of qubits. Qubits labeled 10, 11, 26, and 27 are used to implement 
QPE.
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Utilizing the IBM_Nairobi, we obtained the correct answer by taking a majority vote for all θ . The probability 
of finding the correct answer was 47.6% on average. We also found the correct answer by using a majority vote 
for all θ through the Rigetti-Aspen-11. The probability of finding the correct answer was 26.23% on average. The 
results and comparison can be found in Fig. 9.

Applying to QAE circuits.  Our proposed method can be utilized to construct other circuits for the LNN 
architecture. One of the applicable circuits is the circuit of controlled-Ry gates sharing the target qubit. This 
circuit frequently appears when QAE replaces the Monte Carlo integration25,27,29. The explanation of QAE and 
the reason why controlled-Ry gates frequently appear in QAE circuits can be found in the “Background” section.

The process for transforming the controlled-Ry gates sharing the target qubit into the LNN circuit is as follows:

Figure 8.   CNOT count for QFT construction on IBM quantum computers. In all figures, the x-axis represents n 
for an n-qubit QFT, and the y-axis represents the required number of CNOT gates for constructing the QFT. The 
blue lines represent the case using the conventional QFT circuit8, while the orange lines represent the case using 
our QFT circuit. For all cases, our circuit demonstrates an advantage in terms of the number of CNOT gates 
over the conventional QFT circuit.

Figure 9.   The results and comparison of the implementations of QPEs using 3-qubit QFTs on the Rigetti-
Aspen-11 and IBM_Nairobi. The blue and yellow columns represent the results of implementation on Rigetti-
Aspen-11 and IBM_Nairobi, respectively. Each QPE was implemented 1000 times for each θ . The x-axis 
excluding the last one, displays the θ that QPE aimed to find. The y-axis displays the frequency of the correct θ 
being found. The last columns show the averages of the frequency with which the correct answers were obtained.
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1.	 Replace each controlled-Ry gate with a controlled-Rz gate and two Rx gates using the matrix identity 
Rx(−π/2)Rz(θ)Rx(π/2) = Ry(θ).

2.	 Cancel out Rx gates between controlled-Rz gates.
3.	 Apply our previously described method for constructing LNN QFT circuits.

Remarks.  The n-qubit LNN QFT circuit proposed in this paper requires n2 + n− 4 CNOT gates, which 
is only 40% of the CNOT gates required in the approach presented in Ref.14, when considered asymptotically. 
However, it is important to note that while the LNN QFT circuit in Ref.14 exhibits a linear increase in depth with 
the number of qubits, our LNN QFT circuit experiences a quadratic growth in depth, which might lead to longer 
execution times. Therefore, future research should focus on minimizing both the number of CNOT gates and the 
depth of LNN QFT circuits concurrently to further enhance their efficiency.

Moreover, it is essential to recognize that our technique is limited to LNN architectures and does not consider 
other NN architectures. Given that quantum hardware may not always follow an LNN architecture10,11, future 
work should explore QFT circuit designs for more general NN architectures, such as 2D NN architecture, to 
ensure broader applicability and utility in the field of quantum computing.

Conclusion
In this study, we propose a novel LNN n-qubit QFT circuit that reduces the number of CNOT gates to approxi-
mately 40% of the best-known results. Our QFT circuit does not increase the number of CNOT gates in the lead-
ing order term compared to the QFT circuit without an NN architecture. We also demonstrate that transpiling 
QFT circuits using the proposed design for implementation on IBM quantum computers requires fewer CNOT 
gates than using conventional QFT circuits. Given these results, our QFT circuit has the potential to replace the 
conventional QFT circuit as the starting point for QFT circuit optimization in quantum computers that require 
an NN architecture.

Quantum algorithms that employ QFT may be challenging to implement in the near future because the 
implementation of QFT requires a large number of quantum gates, which can cause critical errors in executing 
quantum algorithms. However, QFT is crucial in many essential quantum algorithms, especially those that exhibit 
exponential speed-up over classical algorithms. Therefore, to fully exploit the advantages of quantum comput-
ing, the error rate in implementing QFT should be mitigated. Since our proposed QFT circuit construction 
reduces the number of CNOT gates, the primary source of errors, our proposal may pave the way for utilizing 
key quantum algorithms for real-world use cases.

Data availability
The data generated during the current study are available from the corresponding author on reasonable request.
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