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Ulam‑Hyers stability of tuberculosis 
and COVID‑19 co‑infection 
model under Atangana‑Baleanu 
fractal‑fractional operator
Arunachalam Selvam 1, Sriramulu Sabarinathan 1*, Beri Venkatachalapathy Senthil Kumar 2, 
Haewon Byeon 3, Kamel Guedri 4, Sayed M. Eldin 5*, Muhammad Ijaz Khan 6 & 
Vediyappan Govindan 7

The intention of this work is to study a mathematical model for fractal‑fractional tuberculosis 
and COVID‑19 co‑infection under the Atangana‑Baleanu fractal‑fractional operator. Firstly, we 
formulate the tuberculosis and COVID‑19 co‑infection model by considering the tuberculosis recovery 
individuals, the COVID‑19 recovery individuals, and both disease recovery compartment in the 
proposed model. The fixed point approach is utilized to explore the existence and uniqueness of the 
solution in the suggested model. The stability analysis related to solve the Ulam‑Hyers stability is also 
investigated. This paper is based on Lagrange’s interpolation polynomial in the numerical scheme, 
which is validated through a specific case with a comparative numerical analysis for different values of 
the fractional and fractal orders.

SARS-CoV-2 (COVID-19) erupted in Wuhan City, China, in late 2019 and evolved into a global pandemic. More 
than 220 countries and territories worldwide are affected by the COVID-19 pandemic, which affects every part of 
our daily lives. In the 21st century, human COVIDs like SARS-CoV and MERS-CoV have risen from the creature 
supply-induced worldwide pandemic with an alarming death rate and morbidity. The quantities of contaminated 
cases passing despite everything increment essentially and do not indicate a very controlled circumstance as of 
25th October 2022, a total aggregate of 62,753,838 (65,782,318) contaminated (deceased) COVID-19 cases were 
accounted for all over the world. These are essentially partitioned into four genera: α,β , γ , and δ . If α is β-CoV 
for the most part, tainted vertebrates, during γ is δ-CoV turned to influence birds. Furthermore, HCoV-229E 
and HCoV-NL63 of α-CoVs and HCoV-HKU1, and HCoV-OC43 of β-CoVs, exhibit low pathogenicity as well 
as moderate respiratory side effects as typical viruses. The other two recognizable β-CoVs, like MERS-CoV and 
SARS-CoV display intense and dangerous respiratory  illnesses1.

Tuberculosis (shortly TB) is one of the most deadly diseases. The physiology of Mycobacterium tuberculosis 
is the causative agent of this life-threatening disease. However, it may harm glands, bones, the brain, the kidneys 
and other organs. Mycobacterium tuberculosis flourished through various stages and its host then was East 
Africa. Early TB infection originated in East Africa 3 million years ago and it was concluded that it might have 
spread to early primates around then. The incidence of TB reportedly dates back over 5000 years. Globally, 1.45 
million people died and more than 10 million became infected with tubercular bacilli, which made it the world’s 
leading infectious killer in  20182.

Ulam3, in his celebrated talk in 1940 in the mathematics club of the University of Wisconsin, presented a 
number of uncertain issues. The following year,  Hyers4 was the first mathematician to answer Ulam’s ques-
tion concerning the stability of functional equations. Along these lines,  Rassias5 autonomously presented the 
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generalization of the Hyers theorem contained in the unbounded Cauchy contrast in 1978. Following this out-
come, many mathematicians have investigated the expansion of the Ulam stability with other functional and 
differential equations using various techniques in different directions (see  also6–9).

The bifurcation of fractional order has also been related to practical ventures. It is extensively employed in 
4D neural network incorporating two different time  delays10, three triangles multi-delayed neural  network11 
and delayed BAM neural  network12. Authors  in13 proposed the interaction between the immune system and 
cancer cells. The tumor-immune model has been investigated from a numerical and theoretical point of view. A 
fractal-fractional model of tumor-immune interaction was discussed  in14.

Goudiaby et al.15 observed the simple mathematical model of COVID-19 and tuberculosis co-infection with 
treatment for the infected. They incorporated the optimal control system into a sub-model using five control 
compartments. Dokuyucu and  Dutta16 analyzed a model of fractional derivative type Ebola virus spread that 
leads to disease in Africa by using the Caputo-Fabrizio operator. They examined the numerical solutions for 
the proposed model by using the Adam-Basford method for the Caputo-Fabrizio fractional derivative operator.

Mekonen et al.17 examined the COVID-19 and tuberculosis co-dynamics model and a numerical simulation 
showed the effect of various values of fractional order and compared the sensitive parameters.  In18, the authors 
analyzed the COVID-19 and tuberculosis co-infection of optimal control problems. Zhang et al.19 investigated 
the Caputo derivative fractal-fractional type, anthropogenic cutaneous leishmania model. Based on fractional 
derivative order, they analyzed the existence, uniqueness and Hyers-Ulam stability of the solution derived for 
the model (see  also20–23).

Aziz Khan et al.24 studied that COVID-19 disease spreads from person to person with the help of the nabla 
Atangana-Baleanu-Caputo fractional derivative of Ulam-Hyers stability and optimal control strategies. In recent 
years, many researchers have studied the fractional model of Ulam stability with fractional results and related 
papers (see  also25–30).

Amin et al.31 examined a fractal-fractional type COVID-19 model under the Atangana-Baleanue fractal-
fractional operator. Then, they analyzed the existence, uniqueness and Ulam-Hyers stability of the solution 
derived for the model with various values of k1 and k2 . Asamoah et al.32 provided the existence and uniqueness 
of the solutions and Ulam-Hyers stability using the fractal-fractional Atangana-Baleanu derivative for the Q 
fever disease of complex dynamics.

Hasib Khan et al.33 provided a fractal-fractional order TB model restricted to a case study in China. The 
authors derived the Ulam-Hyers stability of advanced fractal-fractional operators. Then, they used the Lagrange 
polynomials interpolation numerical scheme based on the obtained algorithms.  In34, the authors observed the 
HIV-TB co-infection model using the fractional order of the Atangana-Baleanu derivative.

The objective of this study is to utilize our numerical algorithm to observe the impact of two different 
orders on the approximate solutions of the given model. These two orders, namely the fractal dimension and 
fractional order are critical components of mathematical models that use fractional orders for simulation. This 
study marks the initial investigation of fractal-fractional TB and COVID-19 co-infection model using advanced 
fractal-fractional operators, explicitly focusing on Ulam-Hyers stability. The model also provides the existence, 
uniqueness, and Ulam-Hyers stability of the solutions in the proposed model. Our findings from various frac-
tional mathematical models have motivated us to enhance our numerical approaches to accommodate fractal-
fractional simulations.

Basic definitions
In this segment, we will discuss some basic concepts related to the fractal-fractional operator and some known 
definitions that will be needed to obtain the main results of this study. Also, in this work, we assume the space 
{y(s) ∈ C([0, 1]) → R} with �y� = maxs∈[0,1]|y(s)|.

Definition 1 Let y ∈ C((a, b),R) be a fractal differentiable on (a, b). The fractal-fractional derivative of y(s) 
with fractional order 0 < k1 ≤ 1 and fractal dimension 0 < k2 ≤ 1 in the sense of Atangana-Baleanu having a 
generalized Mittag-Leffler type kernel can be defined as  follows33:

where AB (k1) = 1− k1 +
k1

Ŵ(k1)
 and dy(u)

duk2
= lims→u

y(s)−y(u)

sk2−uk2
.

Definition 2 For the same function y, considered above, the fractal-fractional integral of y(s) with fractional 
order 0 < k1 ≤ 1 in the sense of Atangana-Baleanu having a Mittag-Leffler type kernel can be defined as  follows31:

Ethical approval. This article does not contain any studies with human participants or animals performed 
by any of the authors.

Model formulation
This segment describes a TB and COVID-19 co-infection model based on the Atangana-Baleanu fractal-frac-
tional operator. Our model given below is an extension of some specified  in17,18 by,
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• Including the COVID-19 disease reinfection of recovered individuals; and
• Including the TB recovery compartment, the COVID-19 recovery compartment and both diseases recovery 

compartments; and
• Including the COVID-19 infection after recovery from TB and TB infection after recovery from COVID-19.

Under the schematic diagram given in Fig. 1, the TB and COVID-19 co-infection model is presented by the 
system of equations depicted as follows:

where

and N(s) = STC + LT + IT + RT + IRC + AC + IC + RC + IRT + LTC + ITC + R . The initial condition of the 
TB and COVID-19 co-infection model becomes: STC(0) = STC0 (s) , LT (0) = LT0 (s) , IT (0) = IT0 (s) , RT (0) = RT

0 (s) , 
IRC(0) = IRC0 (s) , AC(0) = AC

0 (s) , IRT (0) = IRT0 (s) , LTC(0) = LTC0 (s) , ITC(0) = ITC0 (s) , R(0) = R0(s).

(1)





FFM

0 D
k1,k2
s STC(s) = π −

�
�
T + �

C + µ
�
STC ,

FFM

0 D
k1,k2
s LT (s) = �

TSTC −
�
α1 + ω1 + η�C + µ

�
LT ,

FFM

0 D
k1,k2
s IT (s) = α1L

T + pσ1 L
TC +m1τ I

TC −
�
ρ1 + θ1 + µ+ dT

�
IT ,

FFM

0 D
k1,k2
s RT (s) = ω1L

T + ρ1I
T −

�
ν1 + µ

�
RT ,

FFM

0 D
k1,k2
s IRC(s) = ν1R

T −
�
β1 + µ+ dC

�
IRC ,

FFM

0 D
k1,k2
s AC(s) = �

CSTC −
�
α2 + ω2 + ǫ�T + µ

�
AC ,

FFM

0 D
k1,k2
s IC(s) = α2A

C + pσ2 L
TC +m2τ I

TC + rRC − (ρ2 + θ2 + µ+ dC)IC ,
FFM

0 D
k1,k2
s RC(s) = ω2A

C + ρ2I
C −

�
ν2 + r + µ

�
RC ,

FFM

0 D
k1,k2
s IRT (s) = ν2R

C −
�
β2 + µ+ dT

�
IRT ,

FFM

0 D
k1,k2
s LTC(s) = η�CLT + ǫ�TAC −

�
α12 + σ + µ

�
LTC ,

FFM

0 D
k1,k2
s ITC(s) = α12L

TC + θ1I
T + θ2I

C −
�
τ + µ+ dTC

�
ITC ,

FFM

0 D
k1,k2
s R(s) = β1I

RC + β2I
RT +

�
1−

�
p1 + p2

��
σLTC +

�
1−

�
m1 +m2

��
τ ITC − µR.

�
T =

�1

N(s)

(
LT + IT

)
,

�
C =

�2

N(s)

(
AC + IC + LTC + ITC

)
,

Figure 1.  TB and COVID-19 co-infection model showing the compartments.
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In model (1), the human population is divided into twelve compartments: Susceptible to both TB and 
COVID-19 (STC) , latent level TB infected people (LT ) , active level TB infected people (IT ) , recovered from TB 
(RT ) , COVID-19 infection after recovery from TB (IRC) , COVID-19 infected with asymptomatic (AC) , COVID-
19 infected with symptomatic (IC) , recovered from COVID-19 (RC) , TB infection after recovery from COVID-19 
(IRT ) , latent TB and COVID-19 dual infected compartment (LTC) , TB and COVID-19 dual infected compartment 
(ITC) , recovered people from both diseases (R). Table 1 describes the suggested model parameters.

We assumed that the susceptible people had been recruited into the constant rate π and the susceptible class 
develops TB through contact with active level TB infected patients by a force of infection �T , expressed as

This expression says that �1 represents the transmission rate of TB infection. The latent TB infection is considered 
asymptomatic and does not spread the disease. Similarly, susceptible people acquire infection with COVID-19 
following effective contact with people infected with COVID-19 at a force of infection for COVID-19 �C , given as

here �2 denotes the COVID-19 disease transmission rate. Furthermore, we considered the individuals in the latent 
level TB infected people compartment ( LT ) leave to active level TB infected people compartment ( IT ) at a rate 
of latent TB infected people to become infected α1 , and to both diseases latent infection compartment at a force 
of infection η�T and some component is the rate of recovered from latent TB infected people ω1 . Additionally, 
individuals with the TB disease infection ( IT ) after recovering from active TB at a rate of ρ1 while the remaining 
component shifted to both diseases infection ( ITC ) at both diseases infectious rate of θ1 or TB infected people die 

�
T =

�1

N

(
LT + IT

)
.

�
C =

�2

N

(
AC + IC + LTC + ITC

)
.

Table 1.  The dependent parameters description of the proposed model.

Parameters Descriptions

π Susceptible people has recruitment rate

�1 Transmission rate of TB

�
T Force of infection for TB

η Latent level TB infected becoming asymptomatic infected with COVID-19

α1 TB infected people to become infected

p1 Recovery rate for latent TB infections in LTC

m1 Recovery rate for latent TB infections in ITC

θ1 Infection rate with COVID-19 from TB individuals

�2 Transmission rate of COVID-19

ρ1 Rate of recovered from TB infected people

ν1 Rate of COVID-19 after recovered from TB infected people

β1 Rate of recovered from TB and COVID-19

ω1 Recovery rate of latent TB infected people

dT Death rate due to TB infectives

�
C Force of infection for COVID-19

ǫ Rate of asymptomatic infected with COVID-19 to becoming latent TB

α2 Asymptomatic infected people with COVID-19 to become infected

p2 Recovery rate for COVID-19 infections in LTC

m2 Recovery rate for COVID-19 infections in ITC

θ2 Infection rate with TB from COVID-19

ρ2 Rate of recovery from COVID-19

ν2 Rate of TB after recovery from COVID-19

ω2 Rate of recovered from asymptomatic infected with COVID-19

r Rate of COVID - 19 is reactivation

β2 Rate of recovered from COVID-19 and TB

dC Death rate due to the COVID-19 infectives

α12 Both diseases latent infected individuals to the co-infection class

dTC Death rate due to the co-infection of both diseases

σ Rate at which people leave the co-infection in LTC

τ Rate at which people leave the co-infected in ITC

µ Natural death rate
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due to the death rate of dT . The recovered from TB ( RT ) has left either compartment ( IRC ), ν1 is respectively, the 
rate of COVID-19 infection after recovery from TB. Then both diseases infected in latent level ( IRC ) move to the 
compartment (R) at a rate of both diseases recovered. Moreover, we considered the individuals in the asympto-
matic COVID-19 compartment ( AC ) leave to infected COVID-19 compartment ( IC ) at a rate of asymptomatic 
COVID-19 infected people α2 , and to both diseases infection a force of infection ǫ�T and some component is 
the recovery rate of asymptomatic COVID-19 infected people ω2.

Similarly, the individuals of the COVID-19 disease infection ( IC ) become recovered from COVID-19 at a rate 
of ρ2 or shifted to both diseases infection ( ITC ) and both diseases are infectious at a rate of θ2 and dC respectively, 
COVID-19 disease death rate in this compartment. In addition, the recovered from COVID-19 ( RC ) has the 
chance to leave either compartment ( IRT ), respectively, at a rate of ν2 . Then both latent COVID-19 and TB co-
infected individuals ( IRT ) move to the compartment (R) at a recovery rate from COVID-19 and TB sequentially. 
The latent co-infection diseases population in the compartment ( LTC ) either progresses to the co-infection ( LTC ) 
at a rate α12 . The remaining component is assumed to be shifted to either compartment at a σ as illustrated in 
Fig. 1. That is, the susceptible people in the compartment ( LTC ) move to ( IT ) with a rate of recovery in COVID-19 
people pσ2  , move to the IC with a rate of recovery in TB infected people of pσ1  , and become recovered at a rate of 
(1− (p1 + p2))σ . Moreover, we considered that both diseases dual infection ITC leave compartments ( IT , IC , and 
R) denoted at a rate of m1τ ,m2τ , or (1− (m1 +m2))τ while the co-infection induced death rate is dTC . Finally, 
recovered from both TB and COVID-19 (R) at the rate of natural death is denoted by µ.

Existence and uniqueness results
In this segment, we utilize the fixed-point procedure to present the existence and uniqueness of the solution for 
the proposed model. Applying the Atangana-Baleanu fractal-fractional integral operator on the model (1) and 
utilizing the initial conditions, we obtain

(2)
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AB (k1)Ŵ(k1)
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Let us consider the function Qi for i = 1, 2, ..., 12 or i ∈ N
12
1  , thus

(H :) For proving our results, we consider the following assumption: For the STC(s) , S̃TC(s) , LT (s) , L̃T (s) , IT (s) , 
ĨT (s) , RT (s) , R̃T (s) , IRC(s) , ĨRC(s) , AC(s) , ÃC(s) , IC(s) , ĨC(s) , RC(s) , R̃C(s) , IRT (s) , ĨRT (s) , LTC(s) , L̃TC(s) , ITC(s) , 
ĨTC(s) , R(s), R̃(s) ∈ L [0, 1] , be continuous function, such that �STC(s)� ≤ L1 , �LT (s)� ≤ L2 , �IT (s)� ≤ L3 , 
�RT (s)� ≤ L4 , �IRC(s)� ≤ L5 , �AC(s)� ≤ L6 , �IC(s)� ≤ L7 , �RC(s)� ≤ L8 , �IRT (s)� ≤ L9 , �LTC(s)� ≤ L10 , 
�ITC(s)� ≤ L11 , �R(s)� ≤ L12 for non-negative constant L1 , L2 , L3 , L4 , L5 , L6 , L7 , L8 , L9 , L10 , L11 , 
L12 > 0.

Theorem 1 The Lipschitz condition is satisfy the Qi for i ∈ N
12
1  , if the assumption H is holds true and fulfills and 

�i < 1 , for i ∈ N
12
1 .

Proof Now, we prove that Q1(s, S
TC) fulfills the Lipschitz condition. For STC(s) , S̃TC(s) , we get
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TC +m2τ I

TC + rRC −
(
ρ2 + θ2 + µ+ dC

)
IC ,

Q8

(
s,RC

)
= ω2A

C + ρ2I
C −

(
ν2 + r + µ

)
RC ,

Q9

(
s, IRT

)
= ν2R

C −
(
β2 + µ+ dT

)
IRT ,

Q10

(
s, LTC

)
= η�CLT + ǫ�TAC −

(
α12 + pσ1 + pσ2 +

(
1−

(
p1 + p2

))
σ + µ

)
LTC ,

Q11

(
s, ITC

)
= α12L

TC + θ1I
T + θ2I

C −
(
m1τ +m2τ +

(
1−

(
m1 +m2

))
τ + µ+ dTC

)
ITC ,

Q12(s,R) = β1I
RC + β2I

RT +
(
1−

(
p1 + p2

))
σLTC +

(
1−

(
m1 +m2

))
τ ITC − µR.
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where, �1 = �
T + �

C + µ . Hence, Q1 satisfies the Lipschitz condition with Lipschitz constant �1 . Similarly, the 
other kernels satisfy the Lipschitz condition as follows:

Hence, all the kernels Qi , i ∈ N
12
1  satisfies the Lipschitz property with constant �i < 1 for i ∈ N

12
1  . The proof is 

completed.   �

Now, Eqs. (2) to (13) can be rewrite as follows:

∥∥∥Q1(s, S
TC)− Q1(s, S̃

TC)

∥∥∥ =

∣∣∣
∣∣∣π − (�T + �

C + µ)STC −

(
π − (�T + �

C + µ)S̃TC
)∣∣∣
∣∣∣,

≤

(
�
T + �

C + µ

)
�STC − S̃TC�,

≤ �1�S
TC − S̃TC�,

∥∥∥Q2(s, L
T )− Q2(s, L̃

T )

∥∥∥ ≤ �2�L
T − L̃T�,

∥∥∥Q3(s, I
T )− Q3(s, Ĩ

T )

∥∥∥ ≤ �3�I
T − ĨT�,

∥∥∥Q4(s,R
T )− Q4(s, R̃

T )

∥∥∥ ≤ �4�R
T − R̃T�,

∥∥∥Q5(s, I
RC)− Q5(s, Ĩ

RC)

∥∥∥ ≤ �5�I
RC − ĨRC�,

∥∥∥Q6(s,A
C)− Q6(s, Ã

C)

∥∥∥ ≤ �6�A
C − ÃC�,

∥∥∥Q7(s, I
C)− Q7(s, Ĩ

C)

∥∥∥ ≤ �7�I
C − ĨC�,

∥∥∥Q8(s,R
C)− Q8(s, R̃

C)

∥∥∥ ≤ �8�R
C − R̃C�,

∥∥∥Q9(s, I
RT )− Q9(s, Ĩ

RT )

∥∥∥ ≤ �9�I
RT − ĨRT�,

∥∥∥Q10(s, L
TC)− Q10(s, L̃

TC)

∥∥∥ ≤ �10�L
TC − L̃TC�,

∥∥∥Q11(s, I
TC)− Q11(s, Ĩ

TC)

∥∥∥ ≤ �11�I
TC − ĨTC�,

∥∥∥Q12(s,R)− Q12(s, R̃)
∥∥∥ ≤ �12�R − R̃�.

(14)

STC(s) = STC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q1(u, S

TC(u))du+
k2(1− k1)

AB (k1)
sk2−1

Q1(s, S
TC(s)),

(15)

LT (s) = LT (0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q2(u, L

T (u))du+
k2(1− k1)

AB (k1)
sk2−1

Q2(s, L
T (s)),

(16)

IT (s) = IT (0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q3(u, I

T (u))du+
k2(1− k1)

AB (k1)
sk2−1

Q3(s, I
T (s)),

(17)

RT (s) = RT (0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q4(u,R

T (u))du+
k2(1− k1)

AB (k1)
sk2−1

Q4(s,R
T (s)),

(18)

IRC(s) = IRC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q5(u, I

RC(u))du+
k2(1− k1)

AB (k1)
sk2−1

Q5(s, I
RC(s)),

(19)

AC(s) = AC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q6(u,A

C(u))du+
k2(1− k1)

AB (k1)
sk2−1

Q6(s,A
C(s)),

(20)

IC(s) = IC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q7(u, I

C(u))du+
k2(1− k1)

AB (k1)
sk2−1

Q7(s, I
C(s)),

(21)

RC(s) = RC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q8(u,R

C(u))du+
k2(1− k1)

AB (k1)
sk2−1

Q8(s,R
C(s)),

(22)

IRT (s) = IRT (0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q9(u, I

RT (u))du+
k2(1− k1)

AB (k1)
sk2−1

Q9(s, I
RT (s)),
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together with initial conditions are given as

Now, we define the recursive formulas for the Eqs. (14)–(25) as follows:

Theorem 2 The model (1) has a solution if the following are holds true:

Proof We define the functions as follows:

Then, we find that

(23)

LTC(s) = LTC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q10(u, L

TC(u))du+
k2(1− k1)

AB (k1)
sk2−1

Q10(s, L
TC(s)),

(24)

ITC(s) = ITC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q11(u, I

TC(u))du+
k2(1− k1)

AB (k1)
sk2−1

Q11(s, I
TC(s)),

(25)R(s) = R(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q12(u,R(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q12(s,R(s)),

STC0 (s) = STC(0), LT0 (s) = LT (0), IT0 (s) = IT (0),RT
0 (s) = RT (0), IRC0 (s) = IRC(0),AC

0 (s) = AC(0), IC0 (s) = IC(0),

RC
0 (s) = RC(0), IRT0 (s) = IRT (0), LTC0 (s) = LTC(0), ITC0 (s) = ITC(0),R0(s) = R(0).

STCn (s) = STC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q1(u, S

TC
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q1(s, S
TC
n−1(s)),

LTn (s) = LT (0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q2(u, L

T
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q2(s, L
T
n−1(s)),

ITn (s) = IT (0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q3(u, I

T
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q3(s, I
T
n−1(s)),

RT
n (s) = RT (0)+

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q4(u,R

T
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q4(s,R
T
n−1(s)),

IRCn (s) = IRC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q5(u, I

RC
n−1us))du+

k2(1− k1)

AB (k1)
sk2−1

Q5(s, I
RC
n−1(s)),

AC
n (s) = AC(0)+

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q6(u,A

C
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q6(s,A
C
n−1(s)),

ICn (s) = IC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q7(u, I

C
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q7(s, I
C
n−1(s)),

RC
n (s) = RC(0)+

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q8(u,R

C
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q8(s,R
C
n−1(s)),

IRTn (s) = IRT (0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q9(u, I

RT
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q9(s, I
RT
n−1(s)),

LTCn (s) = LTC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q10(u, L

TC
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q10(s, L
TC
n−1(s)),

ITCn (s) = ITC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q11(u, I

TC
n−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q11(s, I
TC
n−1(s)),

Rn(s) = R(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q12(u,Rn−1(u))du+

k2(1− k1)

AB (k1)
sk2−1

Q12(s,Rn−1(s)).

� = max�i < 1, i ∈ N
12
1 .

U 1n(s) = STCn+1(s)− STC(s), U 2n(s) = LTn+1(s)− LT (s), U 3n(s) = ITn+1(s)− IT (s),

U 4n(s) = RT
n+1(s)− RT (s), U 5n(s) = IRCn+1(s)− IRC(s), U 6n(s) = AC

n+1(s)− AC(s),

U 7n(s) = ICn+1(s)− IC(s), U 8n(s) = RC
n+1(s)− RC(s), U 9n(s) = IRTn+1(s)− IRT (s),

U 10n(s) = LTCn+1(s)− LTC(s), U 11n(s) = ITCn+1(s)− ITC(s), U 12n(s) = Rn+1(s)− R(s).
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Similarly, we have

Thus, from the above twelve functions, when n → ∞ , then U (s)in → 0, for i ∈ N
12
1  for �i < 1 , (i = 1, 2, ..., 12) 

which completes the proof.   �

Theorem 3 Due to assumption H , the model (1) has unique solution if

Proof We assume that another existing solution 
(
S̃
TC(s), L̃T (s), ĨT (s), R̃T (s), ĨRC(s), ÃC(s), ĨC(s), R̃C(s),

Ĩ
RT (s), L̃TC(s), ĨTC(s), R̃(s)

)
 with initial values, such that

Now, we write

and so

∥∥∥U 1n(s)
∥∥∥ =

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
∥∥∥Q1(u, S

TC
n (u))− Q1(u, S

TC
n (u))

∥∥∥du

+
k2(1− k1)s

k2−1

AB (k1)

∥∥∥Q1(s, S
TC
n1

(s))− Q1(s, S
TC(s))

∥∥∥,

≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]
�1�S

TC
n − STC�,

≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

1 �S
TC
1 − STC�.

∥∥∥U 2n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

2 �L
T
1 − LT�,

∥∥∥U 3n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

3 �I
T
1 − IT�,

∥∥∥U 4n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

4 �R
T
1 − RT�,

∥∥∥U 5n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

5 �I
RC
1 − IRC�,

∥∥∥U 6n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

6 �A
C
1 − AC�,

∥∥∥U 7n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

7 �I
C
1 − IC�,

∥∥∥U 8n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

8 �R
C
1 − RC�,

∥∥∥U 9n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

9 �I
RT
1 − IRT�,

∥∥∥U 10n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

10�L
TC
1 − LTC�,

∥∥∥U 11n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

11�I
TC
1 − ITC�,

∥∥∥U 12n(s)
∥∥∥ ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]n
�n

12�R1 − R�.

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]
�i ≤ 1, for i = 1, 2, ..., 12.

S̃TC(s) = S̃TC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q1(u, S̃

TC(u))du+
k2(1− k1)s

k2−1

AB (k1)
Q1(s, S

TC(s)).

∥∥∥STC − S̃TC
∥∥∥ =

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
∥∥∥Q1(u, S

TC(u))− Q1(u, S̃
TC(u))

∥∥∥du

+
k2(1− k1)s

k2−1

AB (k1)

∥∥∥Q1(s, S
TC(s))− Q1(s, S̃

TC(s))
∥∥∥,



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9012  | https://doi.org/10.1038/s41598-023-35624-4

www.nature.com/scientificreports/

The above inequality (26) is true if �STC − S̃TC� = 0 , then consequently, STC(s) = S̃TC(s) . Hence the uniqueness 
of solution is proved. Similarly, we applying the same process yields LT , IT , RT , IRC , AC , IC , RC , IRT , LTC , ITC 
and R can be proved. So, the model (1) has a unique solution.   �

Ulam‑Hyers stability of the proposed problem
In this segment, we obtain the Ulam-Hyers stability of the proposed model (1). We state the required definition.

Definition 3 The model (1) has Ulam-Hyers stability if there exist constants Ki > 0, i ∈ N
12
1  satisfying: For 

every εi > 0, i ∈ N
12
1  , if

and there exists a solution of the TB and COVID-19 model (1), S̃TC(s) , L̃T (s) , ĨT (s) , R̃T (s) , ĨRC(s) , ÃC(s) , ĨC(s) , 
R̃C(s) , ĨRT (s) , L̃TC(s) , ĨTC(s) and R̃(s) that satisfying the given model, such that

Remark 1 Consider that the function S̃TC is a solution of the first inequality (27), if a continuous function h1 
exists so that

• |h1(s)| < ε1 , and
• FFM

0 D
k1,k2
s STC(s) = Q1(s, S

TC)+ h1(s).

(26)
[
1−

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]
�1

]
�STC − S̃TC� ≤ 0.

(27)
∣∣∣FFM

0 D
k1,k2
s STC(s)− Q1(s, S

TC)

∣∣∣ ≤ ε1,

(28)
∣∣∣FFM

0 D
k1,k2
s LT (s)− Q2(s, L

T )

∣∣∣ ≤ ε2,

(29)
∣∣∣FFM

0 D
k1,k2
s IT (s)− Q3(s, I

T )

∣∣∣ ≤ ε3,

(30)
∣∣∣FFM

0 D
k1,k2
s RT (s)− Q4(s,R

T )

∣∣∣ ≤ ε4,

(31)
∣∣∣FFM

0 D
k1,k2
s IRC(s)− Q5(s, I

RC)

∣∣∣ ≤ ε5,

(32)
∣∣∣FFM

0 D
k1,k2
s AC(s)− Q6(s,A

C)

∣∣∣ ≤ ε6,

(33)
∣∣∣FFM

0 D
k1,k2
s IC(s)− Q7(s, I

C)

∣∣∣ ≤ ε7,

(34)
∣∣∣FFM

0 D
k1,k2
s RC(s)− Q8(s,R

C)

∣∣∣ ≤ ε8,

(35)
∣∣∣FFM

0 D
k1,k2
s IRT (s)− Q9(s, I

RT )

∣∣∣ ≤ ε9,

(36)
∣∣∣FFM

0 D
k1,k2
s LTC(s)− Q10(s, L

TC)

∣∣∣ ≤ ε10,

(37)
∣∣∣FFM

0 D
k1,k2
s ITC(s)− Q11(s, I

TC)

∣∣∣ ≤ ε11,

(38)
∣∣∣FFM

0 D
k1,k2
s R(s)− Q12(s,R)

∣∣∣ ≤ ε12,

∥∥∥STC − S̃TC
∥∥∥ ≤ K1ε1,

∥∥∥LT − L̃T
∥∥∥ ≤ K2ε2,

∥∥∥IT − ĨT
∥∥∥ ≤ K3ε3,

∥∥∥RT − R̃T
∥∥∥ ≤ K4ε4,

∥∥∥IRC − ĨRC
∥∥∥ ≤ K5ε5,

∥∥∥AC − ÃC
∥∥∥ ≤ K6ε6,

∥∥∥IC − ĨC
∥∥∥ ≤ K7ε7,

∥∥∥RC − R̃C
∥∥∥ ≤ K8ε8,

∥∥∥IRT − ĨRT
∥∥∥ ≤ K9ε9,

∥∥∥LTC − L̃TC
∥∥∥ ≤ K10ε10,

∥∥∥ITC − ĨTC
∥∥∥ ≤ K11ε11,

∥∥∥R − R̃
∥∥∥ ≤ K12ε12.
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Similarly, one can indicate such a definition for each of solutions to inequalities (27) by finding hi for i ∈ N
12
2

.
Theorem 4 Under the assumption H , the model (1) is Ulam-Hyers stable.

Proof Let ε1 > 0 and the function STC be arbitrary so that

In view of Remark 1, we have a function h1 with |h1(s)| < ε1 satisfies

Consequently,

Let S̃TC as the unique solution of the given model, then

Hence,

Then

here,

Now, applying a similar approach, we have

∣∣∣FFM

0 D
k1,k2
s STC(s)− Q1(s, S

TC)

∣∣∣ ≤ ε1.

FFM

0 D
k1,k2
s STC(s) = Q1(s, S

TC)+ h1(s).

STC(s) = STC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q1(u, S̃

TC(u))du+
k2(1− k1)s

k2−1

AB (k1)
Q1(s, S

TC(s))

+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1h1(u)du+
k2(1− k1)s

k2−1

AB (k1)
h1(s).

S̃TC(s) = S̃TC(0)+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q1(u, S̃

TC(u))du+
k2(1− k1)s

k2−1

AB (k1)
Q1(s, S̃

TC(s)).

∣∣∣STC(s)− S̃TC(s)
∣∣∣ ≤

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
∣∣∣Q1(u, S

TC(u))− Q1(u, S̃
TC(u))

∣∣∣du

+
k2(1− k1)s

k2−1

AB (k1)

∣∣∣Q1(s, S
TC(s))− Q1(s, S̃

TC(s))
∣∣∣

+
k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
∣∣∣h1(u)

∣∣∣du

+
k2(1− k1)s

k2−1

AB (k1)

∣∣∣h1(s)
∣∣∣,

≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]
�1

∣∣∣STC − S̃TC
∣∣∣

+

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1 + k2)
+

k2(1− k1)

AB (k1)

]
ε1,

�STC − S̃TC� ≤

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1+k2)
+

k2(1−k1)
AB (k1)

]
ε1

1−

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1+k2)
+

k2(1−k1)
AB (k1)

]
�1

.

�STC − S̃TC� ≤ K1ε1.

K1 =

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1+k2)
+

k2(1−k1)
AB (k1)

]

1−

[
k1k2Ŵ(k2)

AB (k1)Ŵ(k1+k2)
+

k2(1−k1)
AB (k1)

]
�1

.
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Hence, we conclude the fractal-fractional model (1) is Ulam-Hyers stable. This completes the proof.  �

Numerical scheme
In this segment, the numerical scheme are analyzes for the proposed model (1). For the numerical scheme, we 
consider the equation of the Atangana-Baleanu fractional operator can also as follows:

Utilizing the fractal-fractional integral operator having generalized Mittag-Leffler type kernel, we obtain

Now, at s = sn+1 , which gives

which can be written as

Utilizing the Lagrange polynomial interpolation to Eq. (39), we obtain

For clarity, we can write the as follows:

Thus, by assuming





�LT − �LT� ≤ K2ε2,

�IT −�IT� ≤ K3ε3,

�RT − �RT� ≤ K4ε4,

�IRC −�IRC� ≤ K5ε5,

�AC − �AC� ≤ K6ε6,

�IC −�IC� ≤ K7ε7,

�RC − �RC� ≤ K8ε8,

�IRT −�IRT� ≤ K9ε9,

�LTC − �LTC� ≤ K10ε10,

�ITC −�ITC� ≤ K11ε11

�R − �R� ≤ K12ε12.

FFM

0 D
k1,k2
s y(s) = k2s

k2−1
Q (s, y(s)).

y(s) = y(0)+
k2(1− k1)s

k2−1

AB (k1)
Q (s, y(s))+

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(s − u)k1−1
Q (u, y(u))du.

(39)

yn+1 = y(0)+
k2(1− k1)s

k2−1
n

AB (k1)
Q (sn, y(sn))+

k1k2

AB (k1)Ŵ(k1)

∫ s

0

uk2−1(sn+1 − u)k1−1
Q (u, y(u))du,

yn+1 = y(0)+
(1− k1)

AB (k1)
U (sn, y(sn))+

k1k2

AB (k1)Ŵ(k1)

n∑

γ=1

[
U (sγ , y(sγ ))

h

∫ sγ+1

sγ

(u− sγ−1)(sn+1 − u)k1−1 du

−
U (sγ−1, y(sγ−1))

h

∫ sγ+1

sγ

(u− sγ )(sn+1 − u)k1−1 du

]
.

yn+1 = y(0)+ k2s
k2−1
n

1− k1

AB (k1)
U (sn, y(sn))+

k1h
k1

AB (k1)Ŵ(k1 + 2)

n∑

γ=1

[
U (sγ , y(sγ ))

×

(
(n+ 1− γ )k1(n− γ + 2+ k1)− (n− γ )k1(n− γ + 2+ 2 k1)

)

−U (sγ−1, y(sγ−1))

(
(n+ 1− γ )k1+1 − (n− γ + 1+ k1)(n− γ )k1

)]
.

yn+1 = y(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q (sn, y(sn))+

k2h
k1

AB (k1)Ŵ(k1 + 2)

n∑

γ=1

[
sk2−1
γ Q (sγ , y(sγ ))

×

(
(n+ 1− γ )k1(n− γ + 2+ k1)− (n− γ )k1(n− γ + 2+ 2 k1)

)

− sk2−1
γ−1 Q (sγ−1, y(sγ−1))

(
(n+ 1− γ )k1+1 − (n− γ + 1+ k1)(n− γ )k1

)]
.

y1(n, γ ) := (n+ 1− γ )k1(n− γ + 2+ k1)− (n− γ )k1(n− γ + 2+ 2 k1),

y2(n, γ ) := (n+ 1− γ )k1+1 − (n− γ + 1+ k1)(n− γ )k1 ,
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the numerical scheme for the integral system Eqs. (2) to (13) is obtained as

Similarly, the rest of the compartments LT , IT , RT , IRC , AC , IC , RC , IRT , LTC , ITC and R we calculate the same 
numerical scheme as follows:

STC(sn+1) = STC(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q1(sn, S

TC(sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q1(sγ , S

TC(sγ ))y1(n, γ )− sk2−1
γ−1 Q1(sγ−1, S

TC(sγ−1))y2(n, γ )

]
.

LT (sn+1) = LT (0)+ k2s
k2−1
n

1− k1

AB (k1)
Q2(sn, L

T (sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q2(sγ , L

T (sγ ))y1(n, γ )− sk2−1
γ−1 Q2(sγ−1, L

T (sγ−1))y2(n, γ )

]
,

IT (sn+1) = IT (0)+ k2s
k2−1
n

1− k1

AB (k1)
Q3(sn, I

T (sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q3(sγ , I

T (sγ ))y1(n, γ )− sk2−1
γ−1 Q3(sγ−1, I

T (sγ−1))y2(n, γ )

]
,

RT (sn+1) = RT (0)+ k2s
k2−1
n

1− k1

AB (k1)
Q4(sn,R

T (sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q4(sγ ,R

T (sγ ))y1(n, γ )− sk2−1
γ−1 Q4(sγ−1,R

T (sγ−1))y2(n, γ )

]
,

IRC(sn+1) = IRC(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q5(sn, I

RC(sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q5(sγ , I

RC(sγ ))y1(n, γ )− sk2−1
γ−1 Q5(sγ−1, I

RC(sγ−1))y2(n, γ )

]
,

AC(sn+1) = AC(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q6(sn,A

C(sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q6(sγ ,A

C(sγ ))y1(n, γ )− sk2−1
γ−1 Q6(sγ−1,A

C(sγ−1))y2(n, γ )

]
,

IC(sn+1) = IC(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q7(sn, I

C(sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q7(sγ , I

C(sγ ))y1(n, γ )− sk2−1
γ−1 Q7(sγ−1, I

C(sγ−1))y2(n, γ )

]
,

RC(sn+1) = RC(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q8(sn,R

C(sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q8(sγ ,R

C(sγ ))y1(n, γ )− sk2−1
γ−1 Q8(sγ−1,R

C(sγ−1))y2(n, γ )

]
,

IRT (sn+1) = IRT (0)+ k2s
k2−1
n

1− k1

AB (k1)
Q9(sn, I

RT (sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q9(sγ , I

RT (sγ ))y1(n, γ )− sk2−1
γ−1 Q9(sγ−1, I

RT (sγ−1))y2(n, γ )

]
,
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Numerical simulation
In this segment, the numerical simulation are examines for the proposed model (1). For this model, the initial 
values are assumed to be STC = 4605410, L

T
= 300000, I

T
= 235000, RT = 20000, I

RC
= 1000, A

C
= 9600,

I
C
= 2600, R

C
= 2200, I

RT
= 745, L

TC
= 1250, I

TC
= 600 and R = 125.

Moreover, we utilized the many parametric values available  from17,18 and also assumed other parametric 
v a l u e s .  T h e  p a r a m e t r i c  v a l u e s  a r e  g i v e n  b y 
π = 6193, �1 = 0.6, �2 = 0.659, α1 = 0.0039, α2 = 1.1148, α12 = 1.60, η = 1.01, ǫ = 1.06, β1 = 0, β2 = 0,

ω1 = 0.0244, ω2 = 0.20, σ = 0.01, τ = 0.0039, ρ1 = 0.0031, ρ2 = 0.1393, r = 0.32, µ = 0.0012, d
T
= 0 and ν2 = 0.

Figure 2 plots the graphs for TB and COVID-19 susceptible individuals against time and varying k1 and k2 . 
This graph shows that the different values of k1 and k2 in favour of STC human individuals decrease rapidly and it 
comes to nearly zero in the long run. In Figs. 3 and 8, the graphs are plotted for the latent TB human population 
and symptomatic infected from COVID-19 against time and varying k1 and k2 . We have found that the cor-
responding to changing k1 and k2 in favour of LT and IT human individuals decreases to nearly zero. Figures 4 
and 6 shows the repercussion of active TB infectious individuals and COVID-19 infected after recovery from 
TB human individuals. The IT and IRC human individuals decreased by enhancing the k1 and k2 value with time, 
it comes to nearly zero. During this time, the recovered TB and COVID-19 also reached their maximum peak 
value concerning k1 and k2 , as shown in Figs. 5 and 9. Then the TB and COVID-19 recovered individuals rapidly 
increased against time with varying values of k1 and k2 . In Figs. 7 and 10, the graph represents the symptomatic 
infectious individuals from COVID-19 and infected with TB after recovery from COVID-19 human individuals 
decrease rapidly with different values of k1 and k2 in the favouring and in the long run, it comes to nearly zero.

In Figs. 11 and 12, the graphs are plotted for both latent TB and COVID-19 co-infection and active TB and 
COVID-19 co-infection individuals against time with varying values of k1 and k2 . This graph shows that the 

LTC(sn+1) = LTC(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q10(sn, L

TC(sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q10(sγ , L

TC(sγ ))y1(n, γ )− sk2−1
γ−1 Q10(sγ−1, L

TC(sγ−1))y2(n, γ )

]
,

ITC(sn+1) = ITC(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q11(sn, I

TC(sn))+
k2h

k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q11(sγ , I

TC(sγ ))y1(n, γ )− sk2−1
γ−1 Q11(sγ−1, I

TC(sγ−1))y2(n, γ )

]
,

R(sn+1) = R(0)+ k2s
k2−1
n

1− k1

AB (k1)
Q12(sn,R(sn))+

k2h
k1

AB (k1)Ŵ(k1 + 2)

×

n∑

γ=1

[
sk2−1
γ Q12(sγ ,R(sγ ))y1(n, γ )− sk2−1

γ−1 Q12(sγ−1, L
T (sγ−1))y2(n, γ )

]
.

Figure 2.  Susceptible to both TB and COVID-19 and time variations for varying values of k1 and k2.
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different values of k1 and k2 in favour of LTC and ITC decrease to nearly zero. Finally, in Fig. 13, the graph is plot-
ted for both disease recovered individuals against time and varying values of k1 and k2 . We have found that the 
different values of k1 and k2 in favour of the number of recovered people are increasing. In Figs. 14 and 15, we 
plotted the graph of IT and RT compared to sensitive parameters infected human individuals for different values 
of ρ1 and varying k1 and k2 against time. Then, the number of active TB infected human individuals decreases 
rapidly, and recovery from TB increases with time. At the same time, we plotted the graph of IC and RC com-
pared to sensitive parameters in reinfected human individuals for different values of ρ2 and varying k1 and k2 
against time in Figs. 16 and 17. Then the symptomatic infection from COVID-19 and recovery from COVID-
19 first increases at the initial stages and decreases with time, it gets very close to zero. Finally, the graphs are 
plotted to compare all compartments against time, with the same values of k1 and k2 (k1 = k2 = 0.95) in Fig. 18. 
Further, in Fig. 19, we obtain the simulated results with the available real data COVID-19 infected Indians in 
World Health Organization from 01st June 2022 to 08th September 2022 for 100 days as a data case and present a 

Figure 3.  Latent level TB infected people and time variations for varying values of k1 and k2.

Figure 4.  Active level TB infected people and time variations for varying values of k1 and k2.
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graphical comparison. We fixed the parameter values in these graphical results and varied the k1 and k2 . We see 
that the graphs of the simulated and real data curves are very close to each other in the final stage at the order of 
k1 = k2 = 0.92 . Our proposed model performance is good because the number of recovered people is increasing. 
Hence, the fractal-fractional operator is an easy tool to understand the TB and COVID-19 co-infected model.

Figure 5.  Recovered from TB infected people and time variations for varying values of k1 and k2.

Figure 6.  Infected with COVID-19 after recovering from TB people and time variations for varying values of k1 
and k2.
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Conclusions
A fractal-fractional TB and COVID-19 co-infection model is investigated in this article. Firstly, we formulated 
a fractal-fractional type TB and COVID-19 co-infection model to demonstrate the theoretical existence and 
uniqueness results under the said derivative by utilizing the fixed point approach. An examination was conducted 
on the criteria proposed by Ulam-Hyers stability. This paper used Lagrange polynomial interpolation to derive 
the numerical scheme for the TB and COVID-19 co-infection model. We can also validate the results through 
a numerical simulation that has been carried out for the different values for fractional order k1 , fractal dimen-
sions k2 and parameters. Based on the numerical simulation, we have a graphical explanation of the model and 
a comparison of the sensitive parameters. The numerical portion of the paper presents highly realistic graphs 
for various orders of k1 and k2 . These comparative results exhibit similar patterns but with slight deviations 
corresponding to the specific orders of fractal-fractional derivatives. The numerical simulation shows that the 
fractal-fractional TB and COVID-19 model has performed very well, as the number of recovered people increases 
against time. To extend the research on the subject, we can use other numerical schemes and comparative analyses 
to the continuation of the study.

Figure 7.  Asymptomatic COVID-19 infected people and time variations for varying values of k1 and k2.

Figure 8.  Symptomatic COVID-19 infected people and time variations for varying values of k1 and k2.
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Figure 9.  Recovered from COVID-19 infected people and time variations for varying values of k1 and k2.

Figure 10.  Infected with TB after recovering from COVID-19 people and time variations for varying values of 
k1 and k2.
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Figure 11.  Both latent TB and COVID-19 co-infected people and time variations for varying values of k1 and k2
.

Figure 12.  Both active TB and COVID-19 co-infected people and time variations for varying values of k1 and 
k2.
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Figure 13.  Both TB and COVID-19 recovered people and time variations for varying values of k1 and k2.

Figure 14.  Comparative study of IT and time variations with k1 = k2 = 0.95 for varying values of infection rate 
ρ1.
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Figure 15.  Comparative study of RT and time variations with k1 = k2 = 0.95 for varying values of infection 
rate ρ1.

Figure 16.  Comparative study of Ic and time variations with k1 = k2 = 0.95 for varying values of infection rate 
ρ2.
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Figure 17.  Comparative study of Rc and time variations with k1 = k2 = 0.95 for varying values of infection rate 
ρ2.

Figure 18.  Comparative study of TB and COVID-19 co-infection population density and k1 = k2 = 0.95 
against time.
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