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A publication‑wide association 
study (PWAS), historical language 
models to prioritise novel 
therapeutic drug targets
David Narganes‑Carlón 1,2*, Daniel J. Crowther 2 & Ewan R. Pearson 1

Most biomedical knowledge is published as text, making it challenging to analyse using traditional 
statistical methods. In contrast, machine‑interpretable data primarily comes from structured 
property databases, which represent only a fraction of the knowledge present in the biomedical 
literature. Crucial insights and inferences can be drawn from these publications by the scientific 
community. We trained language models on literature from different time periods to evaluate their 
ranking of prospective gene‑disease associations and protein–protein interactions. Using 28 distinct 
historical text corpora of abstracts published between 1995 and 2022, we trained independent 
Word2Vec models to prioritise associations that were likely to be reported in future years. This study 
demonstrates that biomedical knowledge can be encoded as word embeddings without the need for 
human labelling or supervision. Language models effectively capture drug discovery concepts such 
as clinical tractability, disease associations, and biochemical pathways. Additionally, these models 
can prioritise hypotheses years before their initial reporting. Our findings underscore the potential for 
extracting yet‑to‑be‑discovered relationships through data‑driven approaches, leading to generalised 
biomedical literature mining for potential therapeutic drug targets. The Publication‑Wide Association 
Study (PWAS) enables the prioritisation of under‑explored targets and provides a scalable system for 
accelerating early‑stage target ranking, irrespective of the specific disease of interest.

Numerous machine learning strategies have demonstrated the potential to accelerate drug discovery across vari-
ous stages, such as drug repurposing, de novo drug design, clinical trial optimisation, and patient  selection1,2. 
Target identification and prioritisation represent critical initial steps in the drug discovery process. Historically, 
only 10% of drug targets successfully progress through clinical  trials3,4, and the success rate appears even lower for 
novel  targets5,6. Traditionally, individual researchers have relied on their expertise to analyse scientific literature 
and prioritise potential opportunities. Recently, numerous efforts have employed machine learning techniques 
to automate and prioritise gene-disease  associations7–13. However, most of these studies have focused on training 
models and validating them on pre-existing therapeutic targets, rather than adopting a time-sliced approach to 
train on past data and evaluate the models’ prospective predictions. Additionally, these approaches primarily 
rely on structured property databases as their main source of machine-interpretable data, which only encompass 
a limited portion of the knowledge found in the research literature. Paliwal et al. utilised a knowledge graph 
approach combined with link prediction methods to historically prioritise targets, claiming that their method 
successfully identified 1 in 4 therapeutic relationships that were eventually proven true.

Scientific publications contain valuable relationships and inferences that the research community can inter-
pret, with PubMed housing over 35 million publications as of 2023. The volume of scientific literature will only 
continue to grow, creating a vast repository of undiscovered public knowledge. The biomedical domain has 
seen a surge of interest in pre-trained language models, owing to their remarkable success in the general natural 
language domain. The pre-trained models can be classified into two main categories: BERT and GPT, along 
with their respective variants. BERT covers models like  BioBERT14 and  PubMedBERT15, whereas GPT includes 
 BioGPT16. These transformer language models have been pre-trained on biomedical literature. Typically, these 
models are evaluated and benchmarked on tasks such as entity recognition, relationship extraction, and ques-
tion answering for known biomedical applications, following their training on the entirety of the biomedical 
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literature. However, assessing their performance on genome-wide prioritisation of therapeutic targets presents a 
challenge, as these models often divide disease and gene synonyms into multiple tokens, complicating the process 
of consolidating them into a cohesive ranking.

In this study, we introduce a Publication-Wide Association Study (PWAS) to assess the ability of indepen-
dently trained models using historical data to prioritise unstated hypotheses, which could be considered false 
positives or ‘hallucinations’17, and are eventually validated. Additionally, we examine the potential of historical 
Word2Vec models to prioritise yet-unknown hypotheses by utilising future test sets instead of relying on test 
datasets containing already established associations that the language models have already seen. By training 
unsupervised language models on historical subsets of biomedical literature, we explore whether these models 
could have effectively prioritised or suggested novel drug discovery scientific hypotheses in the past. To this 
end, we evaluate the language models on a range of drug discovery-related tasks, including target classifica-
tion, gene-disease prioritisation, and protein–protein interaction prediction, within the context of a historical, 
retrospective study.

Protein–protein interactions are also crucial in drug discovery because data incompleteness in the human 
interactome hinders our understanding of the molecular roots of human  disease18. Drug targets with genetic 
evidence are twice as likely to succeed in clinical  trials19,20. However, most immune-related targets are found in 
the protein–protein interaction vicinity of genetically associated genes rather than being genetically associated 
 themselves21. Therefore, it is essential to understand systems biology to propose novel targets. Moreover, validat-
ing protein–protein interactions can be time-consuming and costly, but computational tools offer a cost-effective 
alternative to prioritise novel protein–protein  interactions18 and suggest new therapeutic targets. There have 
been numerous methods to predict protein–protein interactions using a mixture of traditional machine learn-
ing  methods22 and deep learning  models23–25 that include AlfaFold2 protein structure information. However, 
this work focuses on whether language models could have prioritised novel interactions with the limited data 
available in the past scientific literature.

In this work, we introduce a Publication-Wide Association Study (PWAS) that examines whether language 
models can retrospectively prioritise gene-disease associations before their initial statements, target-disease 
indications before the conception or synthesis of drug-like molecules, and protein–protein interactions before 
their discovery.

Results
Target‑disease prioritisation. We trained multiple  Word2Vec26 language models on an English corpus of 
19.5 million biomedical titles and abstracts to generate embeddings for a vocabulary of approximately 2 million 
phrases (see “Methods” for details). Language models were saved at the end of each year to enable retrospective 
analysis (see “Methods” for details). Language models leverage co-occurrence information from a text corpus 
to estimate the likelihood of two words or phrases co-occurring, even if they have never appeared together in 
the training set. These likelihood scores can be employed to rank gene-disease hypotheses that have not been 
explicitly stated before. We trained language models on literature up to various points in the past and subse-
quently evaluated their ranking on prospective gene-disease associations published in the literature. Specifically, 
we generated 28 distinct historical text corpora consisting of abstracts published between 1995 and 2022, with 
each incrementing the cut-off date by one year. Independent models were trained on these historical datasets and 
used to prioritise associations between genes and diseases that were likely to be reported in future (test) years 
(Figs. 1A, 2D,G).

For each year, the language models were used to make a prediction. We tested which percentage of the top-
ranked genes without prior publications were subsequently reported in the literature (Fig. 1A,D,G for NAFLD, 
SLE and NSCLC). The grey lines correspond to the predictions made by a different language model trained with 
one of the 28 different historical datasets. For example, the grey line labelled ‘2012’ in Fig. 1A depicts the percent-
age of the top 50 novel predictions from the 2012 model that were found to be associated with the following years. 
The cumulative precisions are averaged (red line in Fig. 1A,D,G) and compared to random (bootstrap sampling 
of 50 genes without replacement in 10,000 iterations). Approximately 50% of the top 50 novel genes are reported 
to be associated with diseases in different therapeutic areas (metabolic disorders, immune disease and oncology) 
after several years (Fig. 1A,D,G for non-alcoholic fatty liver disease (NAFLD), systemic lupus erythematosus 
(SLE) and non-small cell lung carcinoma (NSCLC)). Overall, the language model predictions (blue lines in 
Fig. 1A,D,G) were 6 to 10 times more likely to be studied than a random sample of genes (red in Fig. 1A,D,G).

The genome-wide rankings from the language models were then evaluated on prioritising therapeutic drug 
targets before their discovery in a scientific publication and the first clinical trial in Fig. 1B,E,H for NAFLD, SLE 
and NSCLC, respectively. The genome-wide rankings for the human protein-coding genes PNPLA3, FGF21, and 
ANGPTL3 (Fig. 1B) rapidly increased before the first publications relating them to NAFLD: PNPLA3 by Romeo 
et al.27 in 2008 and FGF21 by Inagaki et al.28 and ANGPTL3 by Yilmaz et al.29 in 2007 (Fig. 1B). Furthermore, the 
genome-wide rankings rapidly prioritised these targets before the first clinical trial with compounds modulating 
their activity: ION-839l to inhibit the production of PNPLA3 in 2018, pegbelfermin as a human FGF21 analogue, 
first reported in  200730, Vupanorsen as an N-acetyl galactosamine-conjugated antisense molecule that targets 
ANGPTL3 mRNA in  201531 (Fig. 1B). Language models are sometimes black boxes, but we gained insights into 
what drove the predictions by finding ‘contextual linking words’ already published and then prioritising articles 
containing them. Figure 1C shows the intermediate ‘contextual linking words’ for PNPLA3 and NAFLD. These 
words include hyperinsulinemia, glucose intolerance, hypertriglyceridemia as terms related to the claims from 
research performed from 2004 until 2007, that associated PNPLA3 with obesity, insulin resistance in adipose 
 tissues32–34, the phenotypes of NAFLD.
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Figure 1.  (A,D,G) Prospective gene-disease association predictions based on historical datasets. Grey lines represent the cumulative 
percentage of predicted genes that were subsequently reported in the years following their predictions using abstracts published 
before that year; earlier predictions span longer testing periods. The results are averaged (blue) and compared to a random bootstrap 
sampling of 50 genes in 10,000 iterations. (A) for non-alcoholic fatty liver disease (NAFLD), D) for systemic lupus erythematosus 
(SLE), and (G) for non-small cell lung carcinoma (NSCLC). (B,E,H) Historical gene ranking scores. Each subplot displays genome-
wide ranking scores (n = 19,229) from 1999 to 2017. The first author’s name and publication year are presented in the coloured, 
grey-filled square adjacent to the ranking plot. The drug name and the year of first reported evidence are displayed in the coloured, 
white-filled square adjacent to the ranking plot. (B) for NAFLD, (E) for SLE, and (H) for NSCLC. (C,F,I) Likelihood plots for 
interpretability. (I) Illustrates the likelihood of some oncogene targets of NSCLC co-occurring with NSCLC (x-axis) and the word 
‘oncogene’ (y-axis), coloured by mean gene expression levels from The Cancer Genome Atlas (TCGA). Rankings are enriched (t-test 
with p-value = 1e−189) for genes expressed in lung adenocarcinoma cells (threshold 0.1 transcripts per million, TPM). (J) Subsequent 
target-disease links entering trials. Grey lines indicate the cumulative percentage of top-scoring target-indication pairs reported in 
clinical trials following their 2016 predictions. Each line represents a unique disease in the test set (n = 200). The results are averaged 
(blue with standard deviation). Metrics for the 5-year window prediction from 2015, as described by Paliwal et al.12 Rosalind 
method, are plotted in red. (K) Prospective recall at 200. As more target-indication hypotheses are tested, recall decreases (B) over 
the subsequent years (x-axis) as more target-indication pairs enter clinical trials. The recall for 25 of the 200 diseases in the test set is 
plotted with their names in grey, and the mean for the 200 diseases is plotted in blue. (L) Target z-scoring for SLE. Four rankings are 
compared: PWAS (ours), MAGENTA (MGNT), Pi (Priority Index), and Open Targets (OT). Outer-shaded histograms display the 
normalised z-scores for 19,229 human protein-coding genes. Inner histograms present normalised z-scores for 60 SLE targets with 
FDA-approved drugs or in clinical trials.
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Figure 2.  Uniform Manifold Approximation and Projection (UMAP) visualisation of word2vec embeddings 
for the published human protein-coding genome (n = 19,229 data points). (A) The first two UMAP components 
depict a lower-dimensional representation that visualises several therapeutic drug target classes, including 
enzymes, G-protein-coupled receptors (GPCRs), ion channels, and kinases. Transcription factors, previously 
deemed undruggable, are also shown, with their druggability enabled by the advent of PROTACs. (B) The 
UMAP lower-dimensional representation is coloured according to the word co-occurrence likelihoods of gene 
tokens and several tokens related to the therapeutic target classes (enzyme, GPCRs, voltage-gated, kinases, 
transcription_factors), emphasising the same areas as subplot (A). (C) The same UMAP representation is now 
coloured based on the maximum clinical trial phase achieved, as documented in PharmaProjects. (D) Predicted 
small molecule (SM) and monoclonal antibody (AB) tractability estimates are obtained using a multi-task 
logistic regression classifier, which uses human gene embeddings as input. These gene embeddings can be 
considered fingerprints for downstream estimation tasks. (E) A subset of genes encoding human kinases is 
displayed, with colours denoting different kinase families: AGC for kinase A, G, and C families (PKA, PKC, 
PKG); CAMK for calmodulin-dependent protein kinase; CK1 for casein kinases; CMGC for cyclin-dependent 
kinases, mitogen-activated protein kinases, glycogen synthase kinases, and CDK-like kinases; RGC for receptor 
guanylate cyclases; STE for serine/threonine kinases; TK for tyrosine kinase; and TKL for tyrosine kinase-like. 
(F) The same plot as in (E) is presented, but with colouring based on the predicted clinical tractability of small 
molecules.
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The same applies to the immune-related trait SLE in Fig. 1E. Bruton tyrosine kinase (BTK) ranked in the top-
100 genes in 1999, well before the trial of ibrutinib in  200735. CD19 ranked in the top-300 genes before the first 
trial of obexelimab in  200736. Both interleukin-1 receptor-associated kinase 4 (IRAK4) and Toll-like receptor 7 
(TLR7) were ranked from the top-10000 to the top-1000 genes for SLE before the first publication implicating 
them in the pathology of lupus, in 2009 by  Cohen37 and 2005 by Barrat et al.38, respectively. IRAK4 was consist-
ently ranked in the top-1000 genes prior to the first PF06650833 inhibitor by Pfizer which dates back to  201439. 
Similarly, TLR7 was on the top ranking for several years before the first TLR7 inhibitor that entered the clinic, 
IMO3100, which was discontinued. Enpatoran is another TLR7 inhibitor currently in Phase 2 trials for  lupus40. 
The contextual linking words indicate why the model suggested IRAK4 for lupus, due to its involvement in innate 
immunity through TLR7 that subsequently activates  Myd8841,42 (Fig. 1F).

Figure 1G–I are related to NSCLC. Figure 1H shows that anaplastic lymphoma kinase (ALK) and AXL recep-
tor tyrosine kinase ranked in the top 1000 suggested targets for NSCLC for several years before their first evidence 
by Soda et al.43 in 2007 and Wimmel et al.44 in 2001, and the first trials for the ALK inhibitor crizotinib (originally 
thought as a tyrosine-protein kinase MET specific inhibitor) in  200745 and the AXL inhibitor bemcetinib in 
 201046. The 2006 language model was aware of their role as receptor tyrosine kinase oncogenes (high similarity 
to ‘kinase’ and ‘target’ Fig. 1I) in other cancer  indications47,48 and their potential implication in NSCLC. The 
immunomodulatory role of CD274 in tumours was demonstrated by Honjo’s group, winner of the Nobel Prize in 
 200249. The language model could not prioritise this gene in the top 1000, but it did before the first monoclonal 
antibody nivolumab, in  200650. There was prior evidence of the neurotrophic receptor tyrosine kinase 1 (NTRK1) 
association with types of NSCLC in  199551 but the oncogenic role in lung adenocarcinoma was not confirmed 
until 2008 by Ding et al.51. NRTK1 ranking was consistently in the top 100 genes (Fig. 1H) before Ding results 
and in the top 20 (Fig. 1H) before the first evidence of an NRTK inhibitor, entrecitibib, in 2009. Furthermore, 
back in 2002, language models were able to prioritise several oncogene targets of NSCLC, genes expressed in 
lung adenocarcinoma (LUAD, Fig. 1I) cell lines (see “Methods”, t-test with p-value 1e − 198) but not CD274. 
This suggests that the top-ranking targets are enriched in genes expressed in the tissue of origin of the disease.

The embeddings from 2016 were used as covariate features to estimate the clinical trial success (see “Meth-
ods”) with a multilayer perceptron model (see “Methods”). The output generated another score that was tested 
on prioritising incipient target-disease indications that ended up in clinical trials. On a testing set of 200 diseases 
described by Paliwal et al.12, 5.81% of the top 200 targets per disease novel suggestions ended up in a clinical trial 
after 5 years (Fig. 1J). These results outperform Paliwal et al.12 method with 3.54% precision for 200 targets per 
disease (Fig. 1 top 100a test to compare the performance of PWAS to other genome-wide ranking methods like 
 MAGENTA52 (MGNT in red with Wang et al. 2021  data53 in Fig. 1L), Priority  index21 (Pi in green Fig. 1L), Open 
Targets (OT in purple in Fig. 1L), we found that PWAS prioritises better (mean z-score is 1.86 in Fig. 1L) the 60 
targets of SLE that have approved drugs or drugs in active clinical trials in October 2022 in  Pharmaprojects54 (see 
“Methods”). Furthermore, it is the method that gave the highest z-score to the therapeutic targets TLR7, BTK 
and IRAK4 of which only TLR7 has been reported to have a genetic association with  lupus55 through a single 
gain-of-function  mutation56. These results suggest that language models prioritise gene-disease associations 
before their discovery and validation in clinical trials.

Therapeutic target representation. An in-depth exploratory analysis was conducted using the 2022 
model to investigate how human genes, as a biomedical entity, were represented in a low-dimensional space. 
Employing Uniform Manifold Approximation and Projection (UMAP), we uncovered hidden structures within 
the embeddings in this lower-dimensional space (Fig.  2A–F). Distinct therapeutic drug target families were 
found to cluster in separate regions of this space (Fig. 2A). The mean Silhouette Coefficient, which measures 
the consistency of gene families in the lower-dimensional space, was calculated to be 0.11 (with a maximum 
possible value of 1).

The mean cosine distance, a metric used to measure the similarity between two vectors or embeddings, was 
calculated for different gene families: 0.14 for all human genes, 0.19 for enzymes, 0.28 for G-protein coupled 
receptors (GPCRs), 0.27 for kinases, 0.23 for transcription factors, and 0.38 for voltage-gated ion channels (see 
“Methods” for details). The gene family clusters observed in Fig. 2A overlap when human genes are coloured 
based on the likelihood of co-occurring with phrases describing the respective gene families (Fig. 2B).

Focusing on individual genes, the gene embeddings clustered voltage-gated ion channel genes, such as 
ABCC8, ABCC9, and KCNJ11, which are targets for type 2 diabetes mellitus; JAK1, JAK2, and JAK3 kinases, 
which are therapeutic targets in numerous immune-related disorders; and receptor tyrosine kinases ERBB2 
and ERBB3. Moreover, therapeutic drug targets with programs in clinical trials or with approved drugs were 
predominantly located in the periphery of the UMAP plot (Fig. 2C). These vector embeddings encapsulate 
information from the literature as dense fingerprints, which can be utilised in subsequent classification tasks.

To assess whether the embeddings contained information regarding successful clinical trial targets, the clas-
sification experiment conducted by Ferrero et al.9 in 2017 was replicated. Ferrero et al.9 utilised several manually 
engineered features from the Open  Targets13 platform to predict whether a gene was a therapeutic target or not. In 
this study, the features employed were the word vector embeddings trained until December 2017 (see “Methods”). 
A multilayer perceptron with default parameters and a balanced loss function was used as the model. Genes 
were labelled as targets if  Pharmaprojects54 tagged them in any active clinical trial or as registered or launched in 
2017, following the approach employed by Ferrero et al.9. For targets with programs spanning multiple phases, 
the most advanced stage was considered. The choice of 2017 allowed for a direct comparison with the state of 
literature and clinical trial phases at the time when Ferrero et al.9 conducted their research.

Table 1 presents the classification metrics for the testing set with unseen genes relative to a random forest clas-
sifier. These metrics were calculated using a comparable number of negatives and positives. Precision represents 
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the fraction of actual targets relative to all predicted targets, while recall is the fraction of predicted targets com-
pared to the number of test targets. The f1 score, a metric that averages precision and recall, was found to be 20% 
higher than that reported by Ferrero et al.9 in the Approved or Clinical Trial column. Open Targets integrates 
manually engineered variables from multiple  sources13 to define a gene as a target. These findings suggest that 
word vectors capture more information about therapeutic targets than expert-crafted variables. Classifiers could 
potentially be employed to generate a learned clinical tractability estimate.

The classification experiment was repeated separately for small molecule (SM) and monoclonal antibody (AB) 
targets (Fig. 2G). Figure 2D illustrates the predicted SM clinical tractability probabilities for the entire genome, 
while Fig. 2F displays probabilities for all human kinase genes. Despite the absence of monoclonal antibodies 
against known type-2 diabetes small molecule targets ABCC8, ABCC9, DPP4, and KCNJ11, these genes demon-
strated AB tractability estimates greater than 60%, along with interleukin receptors IL4R and IL17RA (Fig. 2D). 
As transmembrane proteins, these genes are amenable to monoclonal antibody targeting, and the language 
model accurately captured this information despite the lack of evidence in the training set. Similar results were 
observed for ERBB2 and ERBB3, with 90% SM and AB scores, as well as FDA-approved small molecules and 
antibodies against them. Figure 2E contains only the 502 kinases (green Fig. 2A representing all 16,533 genes) 
represented in the lower dimension. In Fig. 2E,F, genes encoding protein kinases cluster based on their biologi-
cal pathways and functions. Receptor-interacting serine/threonine-protein kinases RIPK1, RIPK2, RIPK3, and 
MLKL involved in necroptosis, as well as Janus tyrosine kinases JAK1, JAK2, and JAK3, cluster at the bottom 
centre of Fig. 2E. Additionally, kinases involved in DNA damage repair cluster together in Fig. 2E. Regarding 
small molecule tractability estimates, MLKL, TLK1, and TLK2 receive very low scores, as they are kinase-like 
proteins that have lost their kinase activity. The kinase families in the legend are the acronyms used by Guide to 
Pharmacology  database57. These results suggest that language embeddings contain features valuable for defining 
therapeutic drug targets. However, the critical step in drug discovery is identifying the appropriate therapeutic 
drug target for a specific disease.

Protein interactions. The limitations of the current human interactome pose challenges to comprehend-
ing the molecular underpinnings of human  diseases58–60. For identifying potential therapeutic targets, it is essen-
tial to understand the pathways impacted by the disease and pinpoint nodes within the signalling network whose 
modulation can alleviate the disease  state58–60. We investigated if language models prioritise protein–protein 
interactions (PPIs) before they are published. The historical data of PPIs were obtained from yeast-two-hybrid 
assays of the human  interactome58–60, which consists of four datasets: H-I-05 from 2005, HI-II-14 from 2014, 
HuRI from 2020, and HI-union from 2020. A bona fide negative set was absent. Combinations of ’sticky’ pro-
teins, representing the top 10% of proteins with the highest number of interactions, served as negative examples, 
except when they overlapped with the positive set (refer to “Methods”).

To assess the models’ capacity to accurately predict PPIs that were eventually discovered, new data was treated 
as negative observations for older models. Predictions were evaluated both contemporaneously and prospectively 
(refer to “Methods”). The prospective analysis demonstrated a consistent decline in false positives across each 
prospective dataset (Fig. 3A), accompanied by an increase in precision (Fig. 3B). The disparity in false positives 
between consecutive datasets signifies the number of PPIs that could have been prioritised 6–9 years ahead of 
time (Fig. 3A), with the correctly predicted PPIs ranging between 500 and 2000 in some instances.

True positives that were ultimately discovered in later years, such as 2014 and 2020, were considered as 
negative samples in the 2005 training set. However, they were still prioritised owing to the positive-unlabeled 
learning strategy (refer to “Methods”) (Fig. 3A,B). For instance, the majority of HI-union positive but HuRI 
negative protein interaction pairs were assigned probability scores (HuRI(−) HI-union(+) red histogram in 
Fig. 3C). These elevated scores correspond to the reduction in false positives for the HuRI model in Fig. 3A and 
the increased precision for the same model in Fig. 1B.

The PWAS approach outperformed the L3 method from Kovacs et al.18 in terms of precision-recall curve 
at various thresholds for both training and testing sets (Fig. 3D). Despite slight overfitting in the training set 
(Fig. 3D), the models were able to generalise to previously unseen proteins in the test set. Sixty multilayer percep-
tron (MLP) models were trained using three different hyperparameters: number of hidden layers, hidden layer 
size, and dropout percentage (refer to “Methods”) (one dot per model in contour plot of Fig. 3E). To accurately 
classify PPIs (Matthews correlation coefficient or MCC > 0.8) on the test set, the models required a relatively 

Table 1.  Evaluation of classification metrics on a balanced test set. The classification metrics for different 
classes are derived from  Pharmaprojects54 and are assessed on a balanced test set containing an equal number 
of positive and negative samples. The values enclosed in brackets represent the 5% and 95% confidence 
intervals, which were determined by conducting 100 bootstrap sampling experiments, each maintaining an 
equal distribution of positive and negative samples. This approach provides a more robust estimation of the 
model’s performance and ensures that the observed results are not influenced by any potential sampling bias.

Classification metric Target in clinical trial Target has an approved drug Approved or clinical trial

Accuracy score 0.719 [0.665, 0.849] 0.801 [0.76, 0.841] 0.877 [0.822, 0.908]

F1 score 0.618 [0.558, 0.673] 0.667 [0.602, 0.697] 0.875 [0.808, 0.993]

Precision 0.498 [0.431, 0.531] 0.543 [0.467, 0.574] 0.889 [0.838, 0.932]

Recall 0.816 [0.712, 0.848] 0.864 [0.792, 0.917] 0.862 [0.829, 0.938]
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large hidden layer size (> 10) (Fig. 3E). The best-performing model was D40-N2-S60 (black text in Fig. 3E) with 
40% dropout, two hidden layers, and 60 units on the HI-union dataset.

The MLP models using embedding features were able to accurately predict PPIs because the embeddings 
encode information about the biochemical pathways involving the respective genes (Fig. 3F). For example, 
members of the peroxisome proliferator-activated receptors (PPAR) pathway, which includes 67 genes (such 
as PPARA, PPARD, PPARG, RCRA, RXRG in Fig. 3F) from the Kyoto Encyclopedia of Genes and  Genomes61 

Figure 3.  (A,B) Subplots display the historical prediction accuracies for the Human  Interactome58–60. Subplot 
(A) presents the number of false positives, while subplot (B) illustrates the precision over time for different 
historical datasets (H-I-05 in blue, HI-II-14 in red, HuRI in green, and HI-union in purple), focusing exclusively 
on the testing set. Earlier models are assessed on newer datasets; for instance, the H-I-05 model was trained 
on H-I-05 positive examples and evaluated on subsequent datasets. (C) A histogram of predicted scores for 
positive, not-yet-positive, and negative sets of HuRI and HI-union is shown. The histogram plot displays the 
scores from the model trained on HuRI positive examples, with the x-axis representing the HuRI examples 
and the y-axis representing the number of protein–protein interactions. HuRI negatives are depicted in blue, 
positives in red, and HuRI negatives with HI-union positives in green. The HuRI model achieved an area-
under-the-curve (AUC) score of 86.6% on the HuRI dataset and 89.7% on the HI-union dataset. (D) PWAS 
consistently outperforms the L3 method from Kovacs et al.18 (mean cross-validation in blue). 25% of the genes 
and all their interactions were used in the test set, while the remaining interactions served as input networks 
to predict the remaining protein–protein interactions. (E) A contour ternary plot for three hyperparameters 
and the Matthew correlation coefficient (MCC) on the HI-union dataset is presented. Three hyperparameters 
were tuned: hidden layer size ’S’, number of hidden layers ’H’, and dropout probability ’D’. Higher MCC values 
are indicated by lighter, golden colours, signifying a better model performance on the unseen 25% of genes and 
all their pairs in the testing set. The best model, with a dropout of 40%, 2 layers, and 60 units, is highlighted in 
black with an MCC score of 89%. (F) UMAP coordinates (identical to those in Fig. 1A–D) are coloured based 
on pathways from the Kyoto Encyclopedia of Genes and  Genomes61 (KEGG): ’calcium pathway’ with 130 
genes, ’Gonadotropin-releasing hormone pathway’ (GnRH) (n = 90), ’insulin pathway’ (n = 75), Peroxisome 
proliferator-activated receptors (PPAR) pathway (n = 67), ’transforming growth factor-beta (TGFB) pathway’ 
(n = 85), and ’Toll-like receptor pathway’ (n = 49).
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(KEGG), clustered together with a mean cosine distance of 0.32, compared to 0.14 for any-to-any gene (Fig. 3F). 
Similarly, members of the JAK-signal transducer and activator of transcription (STAT) pathway, comprising 148 
genes (such as JAK1, JAK2, STAT6, IL4R, IL17RA in Fig. 3F) from  KEGG61, also clustered together, exhibiting 
a mean cosine distance of 0.31 compared to 0.14 for any-to-any gene (Fig. 3F).

The MLP model trained with embeddings not only outperformed the L3 method from Kovacs et al.18 (Fig. 3D) 
but also demonstrated the potential to prioritise PPIs for low-throughput experimental validation. Overall, our 
findings reveal that language models can be harnessed to effectively predict and prioritise PPIs before they are 
experimentally validated and published, thereby accelerating the discovery of new molecular targets for human 
diseases.

Prioritising novel mechanisms of action of drugs. Language models, akin to gene-disease associa-
tions (Fig. 4A kinase to cancer indication), can also uncover latent associations between proteins and drug-like 
compounds that modulate their activity (Fig. 4B kinase to kinase inhibitor). A principal component analysis 
demonstrates a consistent vector operation: ’kinase inhibitor’ + ’kinase inhibitor of ’ ≈ ’kinase’ and ’kinase’ + ’gain 
of function in’ ≈ ’cancer’ (Fig. 4A).

We trained multiple Scikit Learn and TensorFlow models (Table 5) using gene and compound word vec-
tors as input, with positive samples from DrugBank and random negative pairs (see “Methods”). The gene and 
compound vectors were concatenated to generate a single fingerprint for each target-compound pair. These 
models were employed to weight features and produce a single score for each gene-compound pair, estimating 
the likelihood of compound modulation of the protein encoded by the gene. The H100-N2-D0.2 model, a mul-
tilayer perceptron classifier with 100 hidden neurons (H100), 2 hidden layers (N2), and 0.2 dropout rate (D0.2), 
delivered the best performance.

The model’s precision was relatively low, with only 17% of true positives correctly predicted with high prob-
ability across all positives (Table 5). However, when grouped by drug-like compound specificity (Table 2), preci-
sion increased from 17% (Table 5) to 86.1% for compounds with 2 targets reported in DrugBank and 95% for 
compounds that act on one human protein target (Table 2, “Pharmacologically active (1 Target)”) while still being 
low for unspecific compounds with more than 2 targets with a 12.7% precision (Table 2).

The H100-N2-D0.2 model demonstrated low specificity (12%) for promiscuous compounds acting on three 
or more targets (Table 2), such as unspecific kinase inhibitors targeting multiple kinases (Fig. 4C). The H100-
N2-D0.2 multilayer perceptron classifier accurately assigned high scores to selective kinase inhibitor targets, 
including vemurafenib and encorafenib for BRAF, osimertinib, erlotinib, gefitinib, and neratinib for EGFR, and 
ibrutinib and acalabrutinib for BTK (Fig. 4B).

As demonstrated in Table 2, the language models could prioritise known mechanisms of action for drug-like 
compounds. Therefore, we tested these models on drugs with unresolved targets, such as metformin, a widely-
used medication for improving glucose metabolism and alleviating diabetes-related complications. Although 
several metformin targets have been identified, including AMPK, the mitochondrial respiratory chain complex 
1, and mitochondrial GPD2, its precise mechanism of action remains  elusive62.

We examined the genome-wide target ranking for metformin in comparison to genome-wide association 
data (refer to “Methods”) for glycemic response (Fig. 4D), focusing on non-synonymous variants that result in 
amino acid changes. The putative metformin targets, such as PRKAB1 (a component of the AMPK complex), 
SIRT1, and GPD2, ranked highly (green dots in Fig. 4D). The language model assigned higher scores to small 
molecule tractable targets (CI50% tractability red line in Fig. 4D, see “Methods”). However, there was a depletion 
of p-values from the GWAS meta-analysis (CI99% p-value grey line in Fig. 4D), and none of the putative targets 
exhibited significant non-synonymous variants.

Five variants in four genes (Table 3) met several criteria: non-synonymous, p-value lower than 10e−9, con-
sistency in the beta coefficient across two studies, and a high likelihood (> 0.3) of being a metformin target. The 

Figure 4.  (A) Latent relationships learnt between kinase inhibitors, oncogene drivers and cancers. The 
embeddings for cancer indications (red), oncogenic tyrosine kinases (blue) and kinase inhibitors (green) 
were projected onto two dimensions using Principal Component Analysis (PCA). There are consistent vector 
operations between words representing ‘kinase inhibitor of ’ and ‘oncogenic gain of function in cancer’. (B,C) 
Predicted links between kinase and kinase inhibitors. The predictions were obtained from the best model called 
H100-N2-D0.2. Network of kinases (blue), kinase inhibitors (green) and their links (true positives) and link 
predictions: true positives in black, false negatives in purple where any in Fig. 2C and false positives in red 
where any. The model did not yield any false positives or false negatives for the kinase inhibitors in Fig. 2B. All 
DrugBank positive links are plotted, and the predicted links with probabilities higher than 0.65. Node size is 
proportional to the out-degree of each node. The width of the links is proportional to the predicted probability. 
(B) Subplot plots specific drugs with a maximum of two targets. There are no false positives or false negatives. 
(C) Subplot plots promiscuous drugs. There are 102 false positives among the drugs and kinases plotted in the 
graph. (D) Target prioritisation plot for metformin. Scatter plot for the likelihood (x-axis) to be the metformin 
target and the −  log10 p-values (y-axis) from the meta-GWAS for non-synonymous variants. The putative targets 
of metformin SIRT1, AMPK subunit and the mitochondrial glycerophosphate dehydrogenase (GPD2) are in 
green. Non-synonymous variants with p-values <  10–6 and two studies with the same direction of the allele 
effect are coloured in red. The non-synonymous variants with high likelihoods and genome-wide significance 
(p-value < 10e−8) are in purple. Two lines were calculated with a range interval moving average from left to 
right. The 99% confidence interval p-value significance from the GWAS meta-analysis is plotted in grey. The 
moving average for druggability, as defined by Berenstein et al.68, is plotted in red.

◂
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highest-ranked variant, rs8179206 (Glu77Gly) in the GCKR gene, has been associated with elevated triglycerides 
in the  blood63 and  obesity64. However, no publications have linked the genetic variants rs7273698 and rs7273698 
in CD40, rs61737461 in AEBP1, and rs147387411 in ACLY to metformin (Table 3, Fig. 4D).

ATP citrate lyase (ACLY) is involved in converting citrate and coenzyme A into acetyl-Coenzyme A and 
 oxaloacetate65 across various high-fat-producing tissues, including the liver, adipocytes, and pancreatic beta 
cells68. Acetyl-CoA contributes to lipogenesis and cholesterogenesis  pathways65. ACLY is a promising therapeu-
tic target for cholesterol reduction and protection against  atherosclerosis66. The ubiquitination and subsequent 
degradation of ACLY shifts cell metabolism from synthesis to fatty acid  oxidation66, correlating with metformin’s 
activation of AMPK, stimulation of fatty acid oxidation, inhibition of cholesterol and triglyceride  synthesis67, 
and increased glucose uptake and insulin sensitivity in skeletal  muscle67.

The Arg592Gln (rs147387411) mutation is located near the coenzyme A binding domain but not directly 
within it. Acetylation at three lysine residues (K540, K546, and K554) by lysine acetyltransferase 2B (KAT2B) has 
been shown to increase ACLY stability by blocking its ubiquitylation and promoting de-novo lipid  synthesis67. 
ACLY is deacetylated and inhibited by SIRT2, but not  SIRT167, a putative metformin target. The Arg592Gln 
ACLY mutant may exhibit altered acetylation, ubiquitination, or phosphorylation upon metformin treatment. 
However, additional experimental work is necessary to confirm its connection with metformin.

Discussion
The Publication-Wide Association Study (PWAS) leverages language models to analyse 19.5 million publications, 
prioritising previously unpublished hypotheses across various contexts: gene-disease associations, target-disease 
clinical trials, protein–protein interactions, and unexplored yet plausible drug mechanisms of action. The study 
demonstrates that word embeddings, or vector representations of words, can effectively encode complex biomedi-
cal knowledge from published literature without requiring a priori biomedical knowledge. These embeddings 
capture intricate biomedical concepts, such as drug target classes, tractability, disease phenotype involvement, 
and protein–protein interactions. Furthermore, language models have successfully ranked novel hypotheses years 
before their publication in top-tier journals, suggesting that the foundations of future discoveries are already 
embedded within existing publications to some extent.

To the best of our knowledge, this is the first attempt to utilise language models for prioritising drug dis-
covery hypotheses prior to their publication. Language-based inference methods may serve as a promising new 
research field at the intersection of natural language processing and target identification, propelling language 
models beyond their traditional use in named entity recognition and normalisation tasks to harness the wealth 
of associations present in biomedical literature. The various tasks for language models will be discussed in the 
following sections.

Table 2.  Classification accuracies grouped by promiscuous drugs. Classification statistics for predicting links 
from compounds whose pharmacological mechanism of action is known or at least reported in DrugBank and 
their protein targets. The results presented in this table are only for the testing set unseen during training. The 
table is grouped by the number of reported protein targets in DrugBank (more than 2, 2 or 1 target).

Metric
No active (Num. 
targets > 2)

Pharmacologically active 
(Num. targets > 2) No active (2 targets)

Pharmacologically active 
(2 targets) No active (1 target)

Pharmacologically 
active (1 target)

Accuracy score 0.835 0.835 0.869 0.869 0.863 0.863

F1 score 0.907 0.221 0.896 0.822 0.871 0.856

Precision score 0.995 0.127 0.873 0.861 0.799 0.950

Recall score 0.834 0.856 0.920 0.786 0.956 0.778

Table 3.  Top-ranking genes. Gene symbol, allele change location in the Genome Reference Contig GRCh37, 
amino acid replacement, reference single nucleotide polymorphism (SNP) identifier, beta coefficient, − log10 
of the p-value, the number of independent studies from the meta GWAS, number of samples as the sum of 
each study, and the direction of the effects: the sign of the beta coefficient (Minus sign for negative, plus sign 
for positive coefficients, interrogation sign for variants not measured and coefficients not calculated). Genes 
in this table were non-synonymous, had a p-value lower than 10e−9, had two studies with the same direction 
in the beta coefficient, and had a high likelihood of being the target of metformin according to the language 
model.

Gene Variant Allele frequency Amino acid change Beta coefficient − log10 p-value
Number meta 
GWAS Samples

Direction 
effects

ACLY rs147387411 < 0.001 Arg582Gln -3.438 14.644 2 7048 ??????–

AEBP1 rs61737461 < 0.001 Ile444Leu -1.595 9.589 2 7048 ??????–

CD40 rs11569321 < 0.001 Ser124Leu -1.673 12.21 2 7048 ??????–

CD40 rs7273698 < 0.001 Phe150Phe -1.675 12.261 2 7048 ??????–

GCKR rs8179206 < 0.001 Glu77Gly -2.945 20.18 2 7048 ??????–
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Target prioritisation. The vector representations of genes contain information about small molecule and 
antibody druggability, disease association, therapeutic target family, pathways and clinical precedence that can 
be generalised to unseen genes (Fig. 2). These embeddings contained more information than manually engi-
neered features by biology  experts13 (Table 1). Around 50% of the top-ranked genes ended up being published 
as associated with the disease within 10 years, a similar percentage to the results from Tshitoyan et al.69. Further-
more, some relevant gene-disease associations validated could have been prioritised one to several years before 
their publication. The PWAS method outperformed the Paliwal et al.12 method at prioritising clinical trial targets 
for 200 diseases in the test set. However, language models cannot make predictions for genes or diseases that are 
not in the training data. Genome-wide association studies have suggested for the first time disease associations 
for novel genes, not previously published (not in the training data). These associations cannot be prioritised with 
language models unless scientists write paragraphs describing the gene function based on experimental work. 
Furthermore, PWAS is another association study far from prioritising causal genes. Paradigm shifts in molecular 
biology and spurious associations between genes and diseases will bias the models. Furthermore, scientific lit-
erature is noisy and often contradictory. Despite these problems, the PWAS could prioritise some targets several 
years before their first publication and before their first clinical trial. Future work will require training more 
complex transformer models at hypothesis generation and question answering.

Protein–protein interactions. In this study, the PWAS exhibited enhanced performance in comparison 
to  L318, as depicted in Fig. 4E. The ability of language models to prioritise protein–protein interactions (PPIs) 
in advance offers a promising opportunity to supplement experimental approaches for completing the human 
interactome. However, there are limitations to consider. Unlike other published  methods23–25, the predictions 
in this study do not identify the interface residues essential for the interaction. Additionally, the current work 
heavily depends on high-throughput yeast-two-hybrid (Y2H) experiments, known for limited sensitivity and 
 specificity58–60. Y2H experiments face a significant drawback, as they cannot capture PPIs requiring post-trans-
lational processing, a common occurrence in humans, and only focus on a single isoform per gene, excluding 
alternative splicing variants that may have crucial roles in protein function and interactions.

Moreover, this study did not incorporate several independent and competing PPI databases, such as  IntAct70 
or  STRING71. These resources offer valuable information on experimentally validated and predicted PPIs, and 
their inclusion could potentially enhance the comprehensiveness and accuracy of human interactome mapping.

Drug target interactions. Language models demonstrated the ability to learn known target-drug relation-
ships for specific compounds effectively. Notably, the putative targets of metformin prioritised by these mod-
els and the genome-wide ranking generated strongly correlated with independent small molecule tractability 
scores. It is hypothesised that the Arg592Gln ACLY mutant might undergo differential acetylation, ubiquitina-
tion, or phosphorylation in response to metformin treatment. However, this hypothesis necessitates further 
experimental validation to establish its veracity conclusively.

Limitations. Despite the vast potential of language models trained on biomedical literature, it is crucial to 
acknowledge their inherent limitations. One primary concern is the presence of biased, erroneous, irrelevant, 
and weak studies within the training data. These suboptimal sources may introduce noise and inaccuracies, 
thereby corrupting the model’s knowledge base and impairing its ability to make accurate predictions or gener-
ate reliable insights. Consequently, the conclusions drawn from such models could be compromised, leading to 
misguided hypotheses and, ultimately, impeding scientific progress. Therefore, it is essential to exercise caution 
when interpreting the outputs of language models and to validate their findings through independent experi-
mental approaches to ensure the veracity and robustness of the generated results.

Named entity recognition (NER) errors can greatly affect the quality and dependability of a publication-
wide association study (PWAS) in target-disease prioritisation. These inaccuracies may result in false or missed 
associations, misrepresented relationships, and diminished trust in the model outputs. While advanced NLP 
techniques and transformer models, such as BioBERT or GPT-based architectures, may offer improvements, they 
still face challenges in ranking extensive lists, like 20,000 human genes. As these models tokenise input sequences 
into smaller units, gene names or symbols can be divided into multiple tokens, complicating the generation of a 
precise genome-wide ranking approach. Future research will need to be made to replicate the PWAS work with 
transformer models and evaluate them in a retrospective analysis to prove they can prioritise novel preclinical 
targets that are eventually successful in the clinic.

A further limitation concerning entity recognition lies in the representation of diseases as singular entities 
with a unified vector representation. However, diseases are heterogeneous, and gene alterations contribute vari-
ably to the onset and progression of the condition. Certain genes may serve as potential targets for the initial 
manifestation, while others play a role in exacerbating and aggravating the disease’s progression. This study 
generates a single genome-wide ranking for each disease, regardless of its state or trajectory. Nonetheless, some 
disease stages are represented by distinct ontology terms within the MeSH ontology, such as the progression 
from NAFLD to non-alcoholic steatohepatitis and ultimately to hepatocellular carcinoma where the rankings will 
be slightly different. Moreover, target prioritisation encompasses a multi-objective ranking approach where the 
target needs to be safe, tractable and associated with the disease. Incorporating additional objectives or keywords 
could help prioritise targets for particular phenotypes of the disease. For example, combining associations to 
DNA-damage repair keywords with safety and tractability keywords along with cancer types to bias the initial 
ranking, similar to how one would pose a question with more detail to a transformer model.
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Conclusion
The findings of this study indicate that to some extent, latent information regarding future discoveries is embed-
ded within past scientific publications. Furthermore, language models present a compelling method for prior-
itising unverified hypotheses derived from the continuously growing corpus of biomedical literature. To our 
knowledge, this work represents the first literature-wide association study that ranks therapeutic drug hypotheses 
for subsequent validation utilising language models trained on historical corpora.

Efficient assimilation of existing knowledge, identification of promising research directions, and avoidance 
of redundant efforts are all vital components for scientific progress and hypothesis generation in target analysis. 
However, with the ever-increasing volume of biomedical literature, this task becomes progressively more chal-
lenging, if not unfeasible, for individual researchers.

Our research has the potential to contribute to a novel paradigm wherein the vast amount of information 
contained in scientific publications becomes readily accessible to individual target analysts, thereby fostering 
machine-assisted breakthroughs in the identification of innovative targets. The Publication-Wide Association 
Study (PWAS) represents a scalable system that facilitates the prioritisation of under-explored targets, expediting 
early-stage drug target selection irrespective of the specific disease of interest. This method holds the potential 
to radically transform the way researchers navigate and leverage the extensive knowledge base within the bio-
medical field.

Methods
Training corpus, vocabularies and preprocessing. The input data for this study comprised roughly 
19.5 million English abstracts sourced from PubMed, which included mentions of any human gene or disease 
synonyms in their titles or abstracts. Abstracts classified as ’Commentary’, ’Correction’, and ’Corrigendum’ in 
PubMed were excluded. In this study, we utilised a comprehensive set of 4,819 disease terms from the Medical 
Subject Headings (MeSH) ontology, which encompasses a diverse range of diseases, phenotypes, and symptoms. 
MeSH, developed by the National Library of Medicine, is a controlled vocabulary used for indexing and cata-
loguing biomedical literature in the MEDLINE/PubMed database. Furthermore, regarding the gene vocabulary, 
we have taken into account 19,229 human protein-coding genes.

The  TrendyGenes72 pipeline was employed to identify biomedical entities, specifically genes and diseases, 
within these abstracts. Standardised identifiers were utilised to normalise genes and diseases, a process that 
involves canonicalising all concept synonyms. For instance, ’Her2’, ’ERBB2’, and ’Neu’ were normalised into 
their Ensembl identifiers, while ’non-insulin-dependent diabetes’, ’diabetes mellitus, type II’, and ’T2DM’ were 
normalised to the corresponding Medical Subject Headings (MeSH) identifier for type 2 diabetes.

Normalisation was implemented for several reasons. Firstly, it reduces the vocabulary size. Secondly, it 
accounts for different research groups using distinct gene synonyms in various research contexts (e.g., genet-
ics using official gene symbols versus biochemistry articles). Canonicalization consolidates information into a 
single token, enabling the generation of a genome-wide ranking of 20,000 human protein-coding genes, rather 
than n_synonyms multiplied by the number of genes. Normalising biomedical entities led to a fivefold reduction 
in gene synonym mentions, from 102,719 to 19,229 human protein-coding gene identifiers. Similarly, disease 
synonym mentions were reduced tenfold, from 53,317 to 4819 human disease identifiers. Proper corpus pre-
processing significantly enhances the performance of language  models69.

The vocabulary for word2vec models included all words that appeared more than ten times and normalised 
gene and disease identifiers, regardless of the number of mentions. As a result, historical models featured differ-
ent vocabularies. If a gene is never mentioned in the training corpus, it is excluded from the language model’s 
vocabulary. For instance, 13,676 distinct human genes were mentioned in the training corpus up to 2005, while 
16,533 different human genes were mentioned until the present, accounting for 86% of the total 19,229 human 
protein-coding genes. Normalised gene and disease mentions refer to the mapping of any textual references to 
a unique identifier from the HUGO or the Medical Subheadings Ontology (MeSH).

Leading statements such as ’Background:’, ’Abstract:’, and ’Introduction:’ were removed. Phrases were gener-
ated using a minimum phrase count of 10, normalised mutual information score greater than 0.7, and phrase 
depth up to three times. This phrasing process was repeated thrice, allowing the generation of up to 8-g. For 
example, the phrase ’g protein coupled receptor’ appeared more than ten times in the corpus and had a normal-
ised mutual information score greater than 0.7, which was then phrased into ’g_protein_coupled_receptor’. The 
text was converted to lowercase and deaccented. Floating decimals and percentage numbers were replaced with 
the word ’< number >’ using regular expressions to decrease vocabulary size. Stop words were retained as they 
constituted approximately 100 tokens within the half-million-token vocabulary.

Language models. We employed the Word2Vec algorithm from the Gensim Python library for our analy-
sis. A range of hyperparameter combinations were explored to identify the optimal configuration for capturing 
gene target to disease indication analogies (Table 4). We selected a window size of 10, which corresponds to the 
median distance (in words) between diseases and genes in PubMed. Based on the work by Yin and  Shen73, an 
embedding size of 255 minimised the Pairwise Inner Product loss, though we also conducted a grid search with 
sizes of 128, 256, and 512. The remaining hyperparameters were set to their default values.

During the 50 training epochs, the learning rate was linearly reduced from 0.01 to 0.0001. We experimented 
with context or distance window sizes of 5, 10, and 15 tokens. Subsampling was performed with a  10−4 threshold, 
targeting approximately the 400 most frequent tokens in the vocabulary. Both Word2Vec variants, skip-gram 
and continuous bag of words (CBOW), were considered. The chosen model, which maximise performance on 
a curated dataset of target-to-disease analogies (Table 4), was the CBOW model with an embedding size of 256 
and a window distance of 10.
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Target‑disease prioritisation. Literature associations between genes and diseases were obtained from 
the TrendyGenes  pipeline72. The clinical stages for the target-disease indications were gathered from the manual 
curation of  Pharmaprojects54 and Open  Targets13 datasets. The ‘chembl’ score from Open  Targets13 was recal-
culated after the integration: a score from 0 to 1 depending on the clinical phase of a target-disease pair: 0.1 for 
phase 1, 0.2 for phase 2, 0.7 for phase 3 and 1.0 if there is an approved and launched drug. This step scored each 
target-disease association depending on the clinical trial stage. Gene expression data in non-small cell lung can-
cer in Fig. 1I was obtained from The Cancer Genome  Atlas74. The threshold was a transcript per million of 0.1 
from the lung adenocarcinoma dataset (TCGA-LUAD).

For Fig. 1J,K, multiple feed-forward neural networks with different amounts of dropout, hidden layer sizes 
and the number of layers were used to regress the ‘chembl’ score from 2016 for Fig. 1J,K. Three hyperparameters 
were tuned: the number of hidden layers (1 or 2), the dropout (0, 10, 20, 30 or 40%) and the size of the hidden 
layers (1, 5, 10, 20, 50, 100). The model with the highest validation accuracy on the future (test) set was selected. 
Embeddings from December 2015 were used as covariate features to regress the ‘chembl’ scores, giving higher 
scores to approved drugs than to target-disease pairs in phase 1. We use data from 2016 to demonstrate the abil-
ity to prioritise prospective associations until 2022. The training and testing data were split according to Paliwal 
et al.12 2020 publication: 200 diseases and all their targets were in the testing set, and the remaining disease and 
their targets were part of the training set. In the supplementary methodology section, Paliwal et al.12 provided 
supplementary information for only 40 out of the 200 diseases. The remaining 160 diseases were randomly 
selected to encompass a variety of disease types, including metabolic, immune, neurological, and oncological 
indications. To achieve this, diseases were first categorised into four groups (metabolic, immune, neurological, 
and oncology). Only diseases with at least three targets in Informa were considered for inclusion in the testing 
set, while over-specific diseases situated at the leaf nodes of the ontology tree were excluded. Utilising a uniform 
distribution, 160 diseases were then randomly selected from each category, 40 diseases from each therapeutic 
area. All remaining diseases with at least one target were allocated to the training and validation sets.

For Fig. 1L, genome-wide summary statistics to run the MAGENTA  pipeline52 were obtained from Wang 
et al. 2021  data53. MAGENTA ran with default parameters with the summary statistics and all data in the genome 
build Genome Reference Consortium 37 (GRCh37). To run the Priority  index21 (Pi in green Fig. 1L), we used a 
genome-wide summary statistics pipeline from Open Targets  Genetics13. A total of 15,901 genes are prioritised, 
based on 6645 single nucleotide polymorphisms (SNPs) scored positively (including 644 ’Lead’ and 6001 ’Link-
age Disequilibrium’ genes); 714 nearby genes within 50,000 base pairs genomic distance window of 6129 SNPs 
2045 expression Quantitative Trait Loci (eQTL) genes with expression modulated by 4677 SNPs; 912 HiC genes 
physically interacted with 4033 SNP; 2900 genes defined as seeds from 6645 SNPs; randomly walk the network 
(15,901 nodes and 318,866 edges from the STRING  database71) starting from 2900 seed genes with a restarting 
probability of 0.75. The Open Targets dataset only gives a score of 0 and 1 to targets with evidence for diseases. 
To generate a genome-wide ranking to calculate the z-scores, the remaining non-associated targets were given a 
random score (uniform distribution) between the minimum association score for the disease and zero. Z-scores 
were calculated with the quantile normalisation function in Scikit Learn.

The list of therapeutic targets in this section was downloaded from Pharmaprojects and included all therapeu-
tic targets for systemic lupus erythematosus that had an active program in the following stages: Phase I Clinical 
Trial, Phase II Clinical Trial, Phase III Clinical Trial, Registered, and Launched. This included the following gene 
symbols: BTK, BTLA, CD200, CD200R1, CD22, CD28, CD38, CD40, CD40LG, CD6, CD79B, CLEC4C, CNR2, 
CRBN, CXCR5, FCGR2B, FCGRT, FKBP1A, ICOSLG, IFNA1, IFNAR1, IKBKE, IL12B, IL1RL2, IL2, IL21, IL23R, 
IL2RA, IL2RB, IL2RG, IRAK1, IRAK4, JAK1, JAK3, LANCL2, LGALS1, LGALS3, LILRA4, MALT1, MASP2, 
MC2R, MIF, MS4A1, NLRP3, NR3C1, PIK3CB, S1PR1, SIK2, SLC15A4, SNRNP70, SOCS1, STING1, SYK, 
TBK1, TLR7, TLR8, TNFRSF13B, TNFRSF13C, TNFRSF4, TNFSF13, TNFSF13B, TYK2, XPO1.

Table 4.  Hyperparameter grid search for various Word2Vec models. The hyperparameters explored include 
the Word2Vec model task, either contextual bag-of-words (CBOW) or skip-gram (SG); the size of the 
embedding vectors, represented by the number of variables in the word vectors as multiples of 2 (128, 256, and 
512); and the window distance, which is the number of tokens (words or phrases) between the central pivot 
word and the surrounding words that the algorithm attempts to predict. Table entries indicate the vocabulary 
ranking of the correct answer for analogies of the form: target A is to disease A as target B is to disease B, as 
originally demonstrated by Mikolov in their  publication26. The best score is highlighted in bold and with an 
asterisk.

Task Embedding size

Window Distance

5 10 15

CBOW 128 1052 856 899

CBOW 256 987 771* 813

CBOW 512 1123 903 964

SG 128 954 899 904

SG 256 943 792 891

SG 512 923 851 903
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Therapeutic target representation. The clinical stages for the targets were gathered from 
 Pharmaprojects54 and Open  Targets13 datasets. The therapeutic target classes and the kinase families were down-
loaded from the Guide to Pharmacology  database57. The Uniform Manifold Approximation and Projection 
(UMAP) low dimensional representation was achieved using the umap-learn package in Python with the follow-
ing hyperparameters: 15 neighbours, cosine similarity as the metric, 1000 epochs, a repulsion strength of 12 and 
local connectivity of 3 neighbours. To measure the consistency of the clusters in Fig. 1A, the differences in the 
cosine distances were compared. The cosine distance represents the angle between two vectors. The more similar 
the vectors, the closer the angle to 1. The intercluster cosine distance was significant for all gene families with the 
following P-values using a t-test with unequal variance and a nonparametric Mann–Whitney U test: 3.03e−251 
and 7.49e−249 for enzymes, 3.17e−321 and 0.0 for G-protein coupled receptors, 2.45e−304 and 6.96e−166 for 
kinases, 4.38e−124 and 3.51e−46 for voltage-gated ion channels (see “Methods”).

We adopted the same hyperparameters as Ferrero et al. in  20179 for the multilayer perceptron, a feed-forward 
neural network with a single layer and a balanced function implemented in SciKit Learn. The solver was Adam, 
and the network stopped if the performance did not improve for two epochs in a validation set. The input data 
was the gene embeddings from the language model from December 2016 to directly compare to Open Targets 
features at the time. The metrics displayed in Table 1 correspond to an independent, balanced test set. The same 
model architecture was used to classify a gene into a tractable target by monoclonal antibodies and small mol-
ecules in Fig. 1G,H. The data for the labels for whether a target is tractable with small molecules or antibodies was 
gathered from manual curation of  Pharmaprojects54 and Open Targets. The datasets in this section were randomly 
split into training and test sets, containing 80 and 20% of the observations (similar to Ferrero et al.9), respectively.

Protein–protein interactions. We used all historical versions of the human  interactome58–60, accounting 
for 64,000 human protein–protein interactions in its latest release. Self-interactions were discarded like self-
phosphorylations in tyrosine kinase receptors. Protein interaction pairs were augmented by reversing the gene 
order (e.g. ’A1BG-ZNF44’ =  > ’ZNF44-A1BG’). These interactions were positive examples. There was no bona 
fide negative set. Therefore, all combinations of the top 10% of proteins with most interactions were negative 
examples unless they intersected with the positive set. For example, even though the genes DVL2 and TRAF2 
had 36 and 69 interaction pairs, the DVL2-TRAF2 pair was excluded from the negative pair set because it was 
in the H-I-05 positive pair set. However, the pair DVL2-NIF3L1, with 36 and 31 interactions respectively in 

Figure 5.  Upset plot of the Human Interactome. The upset plot shows the overall number of unique protein–
protein interactions and the size of the intersecting pairs among the datasets: HuRI published in Nature,  202058; 
HI-union adds literature curated interactions to HuRI; HI-II-14 published in Cell,  201459; and H-I-05 published 
in Nature,  200560. Each count corresponds to a unique, alphabetically sorted protein–protein pair, this is, 
’ZNF44-A1BG’ =  >’A1BG-ZNF44’ based on the approved gene symbol. Self-interactions were discarded like 
auto-phosphorylations in tyrosine receptor kinases. Every possible intersection of protein pairs is represented in 
the histograms. The total number of protein–protein interactions from each historical dataset is displayed in the 
histogram on the left.
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H-I-05, was included in the set of negative pairs. An upset plot for the different protein–protein interactions 
coming from each of the historical datasets can be seen in Fig. 5, where 498 unique protein–protein interactions 
were common across all datasets and HI-union contained a total of 64,006 protein–protein interactions of which 
46,811 were intersecting with HuRI.

To test the ability of the models to eventually recover true protein–protein interactions, the newly positive 
interactions in 2020 were regarded as negative examples to the 2014 and 2005 models. For example, the CCHCR1-
ZWINT interaction introduced in HuRI was a positive example for the 2020 experiment but negative for the 
2014 and 2005 experiments. The idea was to test whether a positive-unlabelled  strategy75 could prioritise future 
protein interaction pairs even if they were presented as negatives. The features were the concatenation of the 
two embeddings for the proteins in the pair. Language models were checkpointed each December. Embeddings 
trained until December 2005 were the features for the model trained on H-I-05 examples, embeddings from 
December 2014 embeddings to train with HI-II-14 positive examples and embeddings from December 2020 
embeddings with positive examples from HuRI and HI-union.

The split into training, validation and test sets was done in two ways. There was a protein-based split for 
testing. A random split of 1:3 for the test and train sets at the protein but not the pair level. 25% of genes and all 
their partners are just on the test set and never seen during the training. Also, there was a time-based split for 
validation. The predictions were also evaluated prospectively in Fig. 3A–C. Language models were trained up to 
different dates in the past. Neural network models with past embeddings were trained with old protein interac-
tion pairs and evaluated on newer datasets. For example, the H-I-05 multi-layer perceptron was trained with 
2005 embeddings and H-I-05 examples. This H-I-05 multi-layer perceptron was evaluated on H-I-05 interaction 
pairs and prospective data: HI-II-14 and HuRI and HI-union (Fig. 3A–C).

A grid search was performed for the hyperparameter tuning. Three hyperparameters were tuned: the number 
of hidden layers (1 or 2), the dropout (0, 10, 20, 30 or 40%) and the size of the hidden layers (1, 5, 10, 20, 50, 
100). This tuning generated 60 different models with different combinations of hyperparameters that resulted 
in the contour ternary plot in Fig. 3E.

Table 5.  Compound-protein model evaluation. Test set results are ranked by Matthews correlation coefficient 
(MCC). The optimal model, H100-N2-D0.2, utilises a neural network with 100 hidden neurons (H), 2 hidden 
layers (N) for pairwise interactions of fingerprint word embeddings, and a 0.2 dropout probability (D). The 
next best model employs a random forest with 100 estimators and Gini entropy for bootstrap selection. All 
models utilise a balanced loss function to address dependent variable imbalance. The logistic regression model 
outperforms a basic neural network with a single hidden layer and a size of 1. The highest score is denoted by 
bold text and an asterisk.

Model Matthews correlation Precision Recall

H100-N2-D0.2* 0.345 0.174 0.876

RFC 0.344 0.261 0.549

H100-N2-D0.0 0.344 0.172 0.882

H100-N3-D0.0 0.343 0.172 0.872

H50-N3-D0.0 0.342 0.175 0.856

H50-N3-D0.2 0.333 0.164 0.878

H50-N2-D0.0 0.325 0.159 0.873

H50-N2-D0.2 0.319 0.153 0.886

H100-N3-D0.2 0.318 0.152 0.888

H100-N1-D0.2 0.308 0.149 0.862

H100-N1-D0.0 0.307 0.147 0.871

H50-N1-D0.0 0.307 0.149 0.859

H50-N1-D0.2 0.307 0.149 0.856

H10-N3-D0.2 0.287 0.144 0.802

H10-N2-D0.0 0.281 0.132 0.853

H10-N2-D0.2 0.273 0.131 0.83

H10-N1-D0.0 0.269 0.128 0.83

H10-N3-D0.0 0.265 0.123 0.847

H10-N1-D0.2 0.265 0.129 0.805

H1-N1-D0.2 0.257 0.13 0.764

Logistic Regression 0.249 0.117 0.821

H1-N1-D0.0 0.244 0.121 0.77

H1-N2-D0.0 0.177 0.086 0.756

H1-N2-D0.2 0.168 0.079 0.795

H1-N3-D0.2 0 0 0

H1-N3-D0.0 0 0 0
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Prioritising novel mechanisms of action of drugs. The compound-protein interaction data was 
sourced from  DrugBank76, comprising over two thousand curated, high-quality binary interactions involving 
human proteins. Positive examples were derived from this dataset, while negative examples were generated by 
combining the 400 most frequently occurring proteins with the 400 least specific compounds. These negative 
examples did not overlap with the positive set. This approach was adopted for three reasons: (i) to improve false 
association discrimination by incorporating non-specific drugs and targets in the negative sets, enabling models 
to better differentiate between true and false protein-drug associations so the models do not just predict that 
staurosporine, sunitinib and sorafenib inhibit all kinases; (ii) to enhance model robustness by introducing dif-
ficult negative examples, leading to more robust and generalisable models; and (iii) to ensure rigorous model 
evaluation by presenting a challenging negative set, characterised by a higher potential for false positives.

Multiple machine learning classifiers were trained to prioritise positive and negative compound-target inter-
actions, including random forest classifiers and logistic regression implemented in Scikit Learn and deep neural 
networks in TensorFlow. The neural networks have a variable number of layers, dropouts and sizes of their hid-
den layers. All models have a balanced loss function to account for the imbalance in the dependent variable. All 
models used are displayed in Table 5.

We used the latest release of the InterPro  database77 for protein-motif links. InterPro classifies protein amino 
acid sequences into families and predicts the presence of functionally essential domains and sites. For the small 
molecule tractability, we followed the implementation of Berenstein et al.68, where each protein target had a 
tractability score. Each protein had the maximum tractability score from the p-value of a Fisher’s exact test for 
their constituent  InterPro77 motifs. InterPro motifs were associated with compounds through a motif-protein-
compound graph. This approach gives non-trivial scores to proteins with druggable motifs if another protein 
with the same motif has been drugged.

The genome-wide association study in Fig. 4D used the combined meta-analysis for glycemic response to 
 metformin78. This dataset contains 1024 Scottish individuals with type 2 diabetes and two replication cohorts: 
1113 individuals from the UK Prospective Diabetes Study and 1783 Scottish individuals.  MyVariant79 was used as 
a service to query multiple variables regarding each single nucleotide polymorphism, including non-synonymous 
replacements and their functional consequences.

Data availability
The datasets employed and analysed in this study can be obtained from the corresponding author upon a reason-
able request. All the datasets mentioned in this work were downloaded on the 28th of February, 2022.
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