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Fuel‑cell parameter estimation 
based on improved gorilla troops 
technique
Abdullah Shaheen 1, Ragab El‑Sehiemy 2, Attia El‑Fergany 3* & Ahmed Ginidi 1

The parameter extraction of the proton exchange membrane fuel cells (PEMFCs) is an active study 
area over the past few years to achieve accurate current/voltage (I/V) curves. This work proposes an 
advanced version of an improved gorilla troops technique (IGTT) to precisely estimate the PEMFC’s 
model parameters. The GTT’s dual implementation of the migration approach enables boosting the 
exploitation phase and preventing becoming trapped in the local minima. Besides, a Tangent Flight 
Strategy (TFS) is incorporated with the exploitation stage for efficiently searching the search space. 
Using two common PEMFCs stacks of BCS 500W, and Modular SR-12, the developed IGTT is effectively 
applied. Furthermore, the two models are evaluated under varied partial temperature and pressure. In 
addition to this, different new recently inspired optimizers are employed for comparative validations 
namely supply demand optimization (SDO), flying foxes optimizer (FFO) and red fox optimizer 
(RFO). Also, a comparative assessment of the developed IGTT and the original GTT are tested to ten 
unconstrained benchmark functions following to the Congress on Evolutionary Computation (CEC) 
2017. The proposed IGTT outperforms the standard GTT, grey wolf algorithm (GWA) and Particle 
swarm optimizer (PSO) in 92.5%, 87.5% and 92.5% of the statistical indices. Moreover, the viability 
of the IGTT is proved in comparison to various previously published frameworks-based parameter’s 
identification of PEMFCs stacks. The obtained sum of squared errors (SSE) and the standard deviations 
(STD) are among the difficult approaches in this context and are quite competitive. For the PEMFCs 
stacks being studied, the developed IGTT achieves exceedingly small SSE values of 0.0117 and 
0.000142 for BCS 500 and SR-12, respectively. Added to that, the IGTT gives superior performance 
compared to GTT, SDO, FFO and RFO obtaining the smallest SSE objective with the least STD ever.

Due to a number of important factors, including the decline of conventional fuels, the trend of environmental 
concerns, and the rise in their price, clean energy sources have attracted significant interest around the world1. 
The fuel cell (FC), which can transform the chemical energy form into electrical form via chemical processes, is 
a reliable source of clean energy2. Even though there are myriads of FC types in the industry, Proton exchange 
membrane (PEM) FCs (PEMFCs) offer notable qualities such as low operating pressure and temperature, no 
wasted materials, and a high-efficiency level. Depending on the operating conditions, the regular temperature 
level ranges from 50 to 100 °C, and its efficiency is between 30 and 60%3. Over the past few decades, modeling of 
PEMFCs has attracted a lot of interest4. The major goal is to create a PEMFC’s model that is accurate, useful for 
software simulations, and closely resembles experimental models. Time and effort can be saved in this manner.

Each of these models has its own unique mathematical formulations, which include some unidentified 
parameters that are not displayed in the datasheets of manufacturer that are required for building an effective 
and reliable model5. Accordingly, myriads of handling methodologies was manifested to properly recognize 
the unidentified PEMFCs parameters such as adaptive filter-based6, electrochemical impedance spectroscopy-
based techniques7,8, current switching methods9, and black box-based approaches10. However, these conventional 
optimizers are not commonly utilized to attain the adequate parameters of PEMFCs as they are inflexible and 
hard to implement. An electrochemical model that Mann et al.11 has developed in a semi-empirical formulation 
considering the steady state operation to emulate the PEMFC’s electrical characteristics. Mann’s model has gained 
widespread acceptance over the last two decades for its ability to predict the PEMFC’s polarization properties 
with varied operating situations. However, Mann’s unidentified parameters are tightly coupled and dramatically 
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vary according to the load conditions which makes the model a nonlinearity issue. As a result, building the model 
using the aforementioned methods has become time-consuming and more complex12.

Recently, metaheuristic optimization methods have been used by many researchers to derive the PEMFC’s 
model required parameters owing to the major improvement of artificial intelligent-based methodologies. 
Metaheuristic techniques are the most effective and reliable method to use when estimating PEMFCs parameters 
as treated as one of optimization problems4,12,13. Regarding the optimization techniques used in this context, 
shark smell technique14, coyote optimization algorithm15,16, grey wolf algorithm (GWA)17, whale optimization 
algorithm (WOA)18, grasshopper optimization algorithm (GOA)19 bald eagle search optimizer20 and bonobo 
algorithm21. Besides, manta ray forage optimization (MRFO)22, pathfinder algorithm23, chaotic Harris hawk 
algorithm24, jellyfish searching algorithm25 and black widow algorithm26 were used to address the same prob-
lem. In addition to that, artificially ecosystem optimization27, tree-seed algorithm (TSA) and neural network 
algorithm28 have been applied for the same issue. Also, the researchers utilized the similar context of tree-growth 
algorithm29, flower pollination method30, political optimization algorithm, marine predator technique31 and slime 
mould optimization algorithm32 for parameter identification of PEMFCs. In33, a combination between teaching 
learning based optimizer and DE approach has been developed while a modified salp swarm optimizer has been 
presented to identify the optimal PEMFCs stack parameters in34.

Despite the benefits of self-adaptive nature optimizers, the optimizers still in necessity for improving time 
load, statistical analysis, and convergence rate. Accordingly, this article characterizes a Gorilla Troops technique 
(GTT)35,36 that uses a gorilla approach to extract the FC parameters properly. The GTT depends on several 
distinct behaviors of the gorillas that are mathematically simulated. In this context, five regarding behaviors 
are considered including traveling to other gorillas, migration to a strange region, competing for adult females, 
escorting the silverback, and migration toward a specified spot. These five behaviors are divided into two stages. 
In the exploratory stage, dual implementation of the migration approach is adopted enables for preventing 
becoming trapped in the local minima. At first, migration to an uncharted location to boost GTT searching 
capacity. Secondly, another migration approach is adopted towards a known place that greatly improves the 
GTT’s capacity to look for various optimization spaces. Thirdly, a strategy is modeled to improve the equilib-
rium between investigation and exploitation by moving to the other gorillas. Additionally, the exploitation stage 
employs the use of two strategies, which greatly improves search efficacy. This work develops a GTT to precisely 
estimate the PEMFC’s model parameters. The double execution of the mutation approach in the created GTT 
enables for boosting the exploitation phase and preventing becoming trapped in the local minima. The conven-
tional GTT has been successfully implemented in solving different engineering optimization issues. In37, GTT 
has been utilized for optimal tunning of a cascaded controller with type of Proportional Integral (PI)-Fractional 
Order PID to stabilize the frequency response of a microgrid with two-area power systems. In38, GTT has been 
developed in power networks for handling the optimal power flow. In39, GTT has been carried out on electrical 
distribution networks for the allocations of different types of distributed energy sources considering their proba-
bilistic nature simultaneously with the loading uncertainties. In40, GTT has been employed on electric power 
networks to enhance the whole network performance with the addition of Thyristor-Controlled Series Capacitor  
compensators. Based on these successful implementations of the GTT and its magnificent merits of simplicity, 
ease of implementation, and speed of convergence, this work develops a distinctive GTT to accurately predict 
the PEMFC’s model parameters. The GTT has been successfully applied using two practical PEMFCs modules 
of BCS 500W and Modular SR-12. They are also examined at various pressures and temperatures. Additionally, 
several new recently motivated optimization techniques are used for comparison validation, including supply 
demand optimizer (SDO), Flying Foxes Optimizer (FFO) and Red Fox Optimizer (RFO).

The main points of the article are summarized as follows: (i) an advanced Improved GTT (IGTT) with a 
Tangent Flight Strategy (TFS) is efficiently developed for optimal PEMFCs parameters estimation considering 
two common industrial modules of BCS 500W, and Modular SR-12, (ii) The proposed IGTT is precisely applied 
for optimal diagnostics of FC modules with varying PH2/PO2 and temperature levels, (iii) The proposed IGTT 
provides higher accuracy and robustness compared with recently employed techniques of SDO, FFO, and RFO, 
and (iv) The outcomes and statistical assessments manifest the proposed IGTT superiority compared with several 
previously reported results which demonstrate its promising features in defining the PEMFC’s model parameters.

The rest of this article can be arranged as follows: the model of PEMFCs is elaborated in "Model of PEM-
FCs", whilst "Proposed methodology" illustrates the GTT plus problem formulation. In  "Simulation results and 
discussion", the simulation, and discussion of the GTT’s results and comparisons are revealed when applied 
to PEMFCs stack for parameters extraction, whereas the main conclusion of the article and future extension are 
given in "Conclusion".

Model of PEMFCs
PEMFCs stack operation.  In FCs, hydrogen and oxygen gases could be employed as a sustainable fuel for 
generating electrical current depending on chemical processes. In these stacks, a positive anode and a negative 
cathode are separated by the electrolyte. The FC anode and cathode, respectively, would receive the hydrogen 
and oxygen directly. As indicated in Fig. 122, protons shall flow in a transversal manner along the short inter-
nally route after electrons are created because of a sufficient catalyst moving towards the cathode to supply the 
necessary electrical energy to the load in the outward channel. Heat is released during the chemical process that 
creates pure water.

Anode side:

Cathode side:

(1)H2 → 2H+
+ 2e−
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Total chemical reaction:

Mathematical model of PEMFCs.  To form the PEMFC’s model, the I-V characteristics (Polarization 
curves) could be mathematically displayed. The steady state performance of the PEMFCs is described using the 
electrochemical simplified model presented by Mann et al.11. This paradigm is widely employed in numerous 
literature analyses. The mathematical model for the stack’s output voltage ( Vstack ) as illustrated in (4), which 
comprises of several series-connected cells ( Ncells)11,19,41,42.

whereas vact refers to the cell activation overpotential, ENernst is the Nernst voltage per cell, vconc indicates the 
concentration over-potential, and v� refers to the cell ohmic drop in voltage. The voltage ENernst can be calculated 
using Eq. (2) under a reference temperature of 25 °C. Thus, these three voltages drop are provided as depicted 
in Eqs. (5)–(8)11,41.

where PO2 and PH2 illustrate the regulating pressures of oxygen (O2) (atm) and hydrogen (H2), respectively, while 
Tfc represents the working temperature of the FC (K). Moreover, CO2 manifests the concentration of O2 (mol/
cm3), MA signifies the membrane area (cm), whereas Ifc is its current (A) and ξ1 − ξ4 characterizes semiempirical 
coefficients3,41. Besides, l indicates the thickness of membrane (cm), whilst Rc and Rm reveal the leads and the 
membrane ohmic resistances (Ω); respectively. In addition to this, ρm demonstrates the membrane resistiv-
ity (Ω.cm), β is handled as an empirical constant, and λ is treated as a changeable parameter, whilst Jmax and J 
describe the maximum and actual thermal current densities (A/cm2), respectively3,19.

(2)O2 + 4e− → 2O−

(3)H2 +
1

2
O2 → H2O + Electriccurrent + Temperaturerising

(4)Vstack = Ncells .(ENernst − vact − v� − vconc)

(5)ENernst = −0.85
(

Tfc − 298.15
)

/103 + 4.3085/105 × Tfcln
(

PH2

√

PO2

)

+ 1.229

vact = −
[

ξ1 + Tfc

(

ξ2 + ξ3ln(CO2
)+ ξ4ln(Ifc)

)]

(6)whereCO2
=

PO2

5.08× 106
.exp

(

498

Tfc

)

v� = Ifc(Rm + Rc);Rm = ρml/MA

(7)whereρm =

181.6

[

1+ 0.03Ifc/MA + 0.062
(

Tfc/303
)2(

Ifc/MA

)2.5
]

[

�− 0.634− 3Ifc/MA

]

.exp
[

4.18×
(

(Tfc − 303)/Tfc

)]

(8)vconc = −β .ln(1− J/Jmax)

Figure 1.   Fuel cell model.
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where F, ℘ and α represent Faraday’s, ideal gas constants, and charge transfer coefficient, respectively. It becomes 
clear that the temperature and current density can affect the concentrating voltage drop in linear relation based 
on a thorough understanding of Eqs. (5) and (6). To illustrate, at higher cell temperatures and larger current 
densities, the concentration polarization voltage is projected to be increased11,41. It can be deduced that the seven 
parameters are fundamentally approximated to construct an appropriate PEMFC’s model.

Proposed methodology
Problem formulation and description.  Due to a lack of manufacturer data, the PEMFC’s modelling 
has significant non-linear characteristics and various undetermined parameters. This signifies that creating an 
accurate model will be incredibly challenging. Seven parameters should be calculated. The optimization objec-
tive (FCF), in this purpose, is stated as the minimization of the sum squared error between the experimental FC 
voltage and estimated model voltage. Thus, the PEMFCs parameters estimation problem is approached as an 
objective target. The issue in the present work may be thought of as a non-convex optimization issue. The FCF 
is written in Eq. (10) as follows19,43.

where m expresses the iteration counter, Nsamples designates the number of measured voltage data, VFC,est mani-
fests the FC estimated calculated voltage, and VFC,exp represents the measured output voltage of the model. The 
optimization objective is restricted with inequality constraints for unknown seven parameters which are the 
minimum and maximum limits of these parameters. The GTT is applied to optimize these seven unknown 
parameters which are namely, λ, ξ1 − ξ4, Rc, and β that obtain the best value of the SSE.

Gorilla troops technique.  The GTT depends on several distinct behaviors of the gorillas that are math-
ematically simulated. Five behaviors are taken into account in this situation to optimize gorilla behavior: three 
for the exploration stage and two for the exploitation stage. These activities include migration to a strange region, 
traveling to other gorillas, migration toward a specified spot, competing for adult females and escorting the sil-
verback. Two stages represent these strategic options that can be divided into the exploitation stage and explora-
tion stage as will be manifested in the following subsections.

Exploration stage.  Three distinct behaviors, in this stage, are elaborated: the first one is to manifest GTT explo-
ration (which is movement to an unidentified end point), whereas the second tactic represents the traveling 
behavior to other gorillas. Furthermore, the third tactic aims at encouraging GTT competences in determining 
a myriad of calculation spaces that represents the migration toward a specified spot. Equation (11) can represent 
these three behaviors mathematically, where the movement to unidentified end point tactic, in this equation, is 
selected if a random number (rn) is smaller than a factor (Fr). Besides, the traveling to other gorillas or migration 
toward a specified is carefully selected if a random number equals/ (is more than) 50%.

where rn, rn1, rn2, rn3, and rn4 illustrate random values among [0, 1], whilst X(Itn) and GtX(Itn + 1) define 
the full and forthcoming vectors of the gorilla’s position. The arbitrary assignable variables Xr and GtXr could 
be used to ascertain a gorilla’s current group and potential position. The factor (Fr) is, in the range [0:1] and 
characterizes the possibility of deciding on a migrating method to an unsettled location. The LB and UB are 
the variables ’ minimum and maximum bounds. the variables D and Q could be determined mathematically 
by Eqs. (11)–(14). The maximum and present iteration number could be characterized by (Itn) and (MxItn), 
respectively. Besides, the symbol (Z) is [−(D × (1− Itn/MxItn)),D × (1− Itn/MxItn)] , while the symbol (s) 
is random values among [−1:1].

Exploitation stage.  Two tactics in this stage are proposed when the factor D × (1− Itn/MxItn) is compared 
with the variable (Y). These two behaviors are the escorting the silverback and the competing for adult females. 
The first one is determined when the value of Y equals/ (is less than) the value of D × (1− Itn/MxItn) , the tactic 
of the silverback could be selected that can directs the others to food sources. This tactic can be represented 
mathematically as signified in (15) as follows:

(9)β = ℘.Tfc/2αF

(10)FCF = Min(SSE) = Min

(

∑Nsamples

m=1

[

VFC,exp(m)− VFC,est(m)
]2

)

(11)GtX(Itn+1) =







LB+ rn1 × (UB− LB), Fr > rn,

Z × X(Itn)× Q + Xr(Itn)× (rn2 − D × (1− Itn/MxItn)), 0.5 ≤ rn,

X(Itn)+ (X(Itn)− GoXr(t)))× rn3 − ((X(Itn)− GoXr(Itn)× Q2), 0.5 > rn

(12)D = cos(2× rn4)+ 1,

(13)Q = D × (1− Itn/MxItn)

(14)Z = [−(D × (1− Itn/MxItn)),D × (1− Itn/MxItn)].

(15)GtX(Itn+ 1) = Q × R(Itn)× (X(Itn)− Xsb)+ X(Itn)
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where NG is the gorillas’ population; Xsb indicates the silverback (best solution); X(Itn) is the gorilla location 
vector; GtXi (Itn) signifies the gorilla position o in each iteration Itn.

If the value of Y is more than the term D × (1− Itn/MxItn) , the tactic of competing for adult females is 
selected38. This tactic can be represented mathematically as signified in (17) as follows:

where L is the force of impact; rn5 is random number from [0:1]; β is pre-optimization value which is specified 
and set to 3; The factor (A) vector is the violence level in a fight; and E is employed as imitator for the violence 
efficacy.

The GtX(Itn) solution will replace X(Itn) if the fitness value of GtX(Itr) is less than X(Itn).

Improved GTT incorporating tangent flight strategy.  In this part, an improved version of the GTT (IGTT) incor-
porating Tangent Flight Strategy (TFS). The Cauchy is computed as follows, and its tangent function is the same 
for the TFS44:

where pp is a uniformly distributed arbitrary number with a value in the interval [0, 1], and Dim is the number 
of dimensions in the function. This operation is capable of efficiently searching the search space. This function 
is periodic, and it does not break the balance between both exploration and exploitation. The TFS is added to 
Eq. (15) by the suggested IGTT approach. The gorilla and silverback’s separation will narrow as a result of this 
modification, drastically reducing the ultimate step size and improving the objective value. This model may be 
explained mathematically as follows:

where pp is evaluated using Eq. (19). The key steps for the proposed IGTT are illustrated as depicted in Fig. 236. 
As shown, the five behaviors in optimizing the gorillas are highlighted in green.

Simulation results and discussion
Firstly, a comparative assessment of the developed IGTT and the original GTT are demonstrated on the ten 
common, and well-known benchmark mathematical models following to the Congress on Evolutionary Com-
putation (CEC) 2017 unconstrained benchmark functions45. Their mathematical objective model, dimensions, 
ranges of the control variables and their optimal objective value are announced in Table 1. The first function 
(F1) represents a unimodal function while the second one (F2) is a multimodal function. The functions (F3–F6) 
represent mixed functions, and the functions (F7–F10) are composite functions.

Table 2 shows the performance study of the developed IGTT and the original GTT for ten common, well-
known mathematical models and how it compares to two well-established, and well-known optimizers such 
as GWA​46 and particle swarm optimization (PSO)47. Also, the best regarding convergence characteristics are 
displayed in Fig. 3. This Table clearly shows that the IGTT performs and operates more effectively than the 
original GTT, PSO and GWA in the tested mathematical functions, demonstrating the robustness of IGTT in 
finding the best answer to these mathematical functions. From this Table, the suggested IGTT outperforms the 
standard GTT in 92.5% of the statistical indices of the investigated benchmark functions for the best, mean, 
worst, and standard deviations. Similarly, compared to the PSO, the developed IGTT outperforms it in 92.5% of 
the statistical indices of the investigated benchmark functions. Compared to the GWA, the IGTT outperforms 
it in 87.5% of the statistical indices of the investigated benchmark functions.

After that, two instances of common commercial PEMFCs stacks are discussed: the BCS 500-W and the 
Modular SR-12 PEM units in this study to manifest the performances of the developed IGTT to obtain parameter 
extraction of FC. In addition to this, different new recently inspired optimizers are implemented for compara-
tive validation which are the original GTT, SDO, FFO and RFO. The compared techniques are performed in the 
MATLAB environment (MATLAB 2017b) using PC with Intel(R) Core(TM) i7-3632QM CPU @ 2.20 GHz and 
8 GB RAM. For fair comparisons, similar circumstances are taken into considerations with 50 solutions as a 
population size and 100 iterations as a maximum number. It is commonly known that meta-heuristics have a high 
level of randomness. As a result, the exhibited minimal SSE results are obtained after 100 separate executions, as 

(16)R(Itn) =

(

∣

∣

∣

∣

(1/NG)
∑NG

i=1
GtXi(Itn)

∣

∣

∣

∣

2Q
)( 1

2Q
)

(17)GX(Itn) = Xsb − (Xsb × L− X(Itn)× L)× A,

(18)L = 2× rn5 − 1

(19)A = β × E,E =

{

NG1rn ≥ 0.5

NG2rn < 0.5

(20)f = tan
(

pp×
π

2

)

,

(21)pp = randn(1,Dim)

(22)GtX(Itn+ 1) = (
tan(π ×

2pp−1

2
)

100
)× Q × R(Itn)× (X(Itn)− Xsb)+ X(Itn)
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well as efficiency measurements to verify the correctness of the metrics set by: STD, maximum, and mean values. 
Table 3 displays the practical boundaries for the unidentified parameters for BCS 500 W and Modular SR-12.

Test case 2: BCS 500 module.  For the first model, based on the American Company BCS Technologies 
as the main manufacturer, the BCS 500 W PEMFC stack is considered where the maximum current represents 
30 A, and its rated power represents 500 W48. The developed IGTT, the original GTT, SDO, FFO and RFO are 
performed to obtain the best parameter extraction for this model. Table 4 records their best obtained values 

Figure 2.   Steps of the IGTT for identifying the FC unknown parameters.
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and regarding SSE objective are illustrated besides, it tabulates the achieved parameters and the accompany-
ing obtained SSE objectives using different published outcomes of recently inspired optimizers. The compared 
techniques are shuffled multi-simplexes search (SMS) algorithm2, WOA18, ant lion optimizer (ALO)27, GOA27, 
multi-verse optimizer (MVO)27, SSO43, sine STA (STSA)49, MRFO49, equilibrium optimization (EO)49, Improved 
Heap-based optimizer (IHBO)49, HHO50, atom search optimizer (ASO)50, moth-fame optimizer (MFO)51, 
SSO52, modified HHO (MHHO)53, fractional-order MHHO (FMHHO)53, vortex search algorithm (VSA)54 and 
VSA and differential evolution (VSDE)54.

From this table, the developed IGTT derives the best performance with the smallest SSE objective value of 
0.0016977 compared to GTT, SDO, FFO and RFO. The original GTT achieves SSE value of 0.0116982 where FFO, 
SDO and RFO obtain SSE values of 0.0119, 0.0163 and 0.0212, respectively. Moreover, compared to published 
results, the developed IGTT declares very high outperformance over WOA18, GOA27, MVO27, SSO43, STSA49, 
MRFO49, EO49, HHO50, ASO50, SSO52, MHHO53, HHO53 and VSA54. Also, the GTT shows a significant supremacy 
compared to ALO27, MFO51 and VSDE54 which obtain SSE objectives of 0.0119, 0.0119 and 0.01214, respectively. 
Additionally, the developed IGTT shows a small comparable preponderance compared to SMS2, IHBO49 and 
FMHHO53 which obtain SSE objectives of 0.0169778, 0.0117 and 0.01177, respectively.

To contrast the robustness validation of the developed IGTT with GTT, SDO, FFO and RFO, Fig. 4 describes 
the best SSE values of a 30 run times sample. As shown, the relative optimum SSE values are related to the 
developed IGTT where the attained results by the developed IGTT always supersede the GTT, SDO, FFO and 
RFO as represented in that figure. Not only that, but Table 5 illustrates their comparative assessment for the BCS 
500W Stack with several other published results through the best, mean, worst and STD over the separate runs. 
As shown, the proposed IGTT has the best effectiveness since it acquires the least good, mean, worst and STD 
values of 0.011697781, 0.014329, 0.02699 and 0.0053594, respectively.

Also, Fig. 5 depicts the best convergence curves related to the IGTT, GTT, SDO, FFO and RFO for BCS 500W 
Stack. As shown, the IGTT has the fastest response in finding the minimum SSE in approximately 30% of the 
iteration’s axis.

Based on the IGTT parameters extraction for BCS 500W Stack, Fig. 6 shows the regarding I/V and P/V char-
acteristics compared to the related experimental recordings (The regarding values are tabulated in the appendix, 
kindly refer to Table A.1). As shown, excellent fittings among the simulated and measured I/V and P/V charac-
teristics are observed.

In contrast, the described polarization characteristics in terms of I/V and I/P plots are shown in Fig. 7a–c. 
First, the I/V curves are plotted under the pressures of PH2

/PO2
 of 1.000/0.2095 bar, 1.5/1.0 bar, and 2.5/1.5 bar; 

respectively, at a constant cell temperature of 333 K which are shown in Fig. 7a. Then, the temperature’s variations 
are simulated at 303 K, 333 K and 373 K; respectively at constant partial pressures as specified in the datasheet 
(i.e. PH2

/PO2
=1.0/0.2095) which are depicted in Fig. 7b. In addition to that, the I/P curves are plotted under 

varied temperatures at 60 °C, 70 °C, and 80 °C, respectively as depicted in Fig. 7c. These curves are exception-
ally smooth under various operating situations, offering confidence in the IGTT-based model’s high efficiency.

Test case 2: modular SR‑12.  The parameter extraction algorithms are thoroughly validated using the 
Modular SR-12 PEMFCs to verify how well the IGTT based-parameter extraction approach performs. The 
IGTT, GTT, SDO, FFO and RFO are performed to obtain the best parameter extraction for this model where 
their best obtained values and regarding SSE objective are tabulated in Table 6. In addition to this, different 
published outcomes of recently inspired optimizers are added in this table such as WOA18, flower pollination 
algorithm (FPA)30, MRFO49, EO49, STSA49, MFO51, SSO52 and interior search algorithm (ISA)55.

As demonstrated, when compared to SDO, FFO, and RFO, the IGTT besides GTT have the capability to 
achieve the best performance with the smallest SSE target. Additionally, the formed IGTT claims the best per-
formance with the least SSE when compared to published findings. The IGTT with GTT, SDO, FFO, and RFO’s 
best SSE values from a sample of 30 runs are shown in Fig. 8 for the robustness comparison. The relative optimum 
SSE values are related to the IGTT, where the IGTT’s obtained results always take precedence over the GTT, 
SDO, FFO, and RFO given in that figure. Additionally, Table 7 compares their evaluation of the Modular SR-12 
Stack with several other published results using the best, mean, worst, and STD across many runs. As evident, 

Table 1.   Detailed definition of the ten common, well-known mathematical models under consideration.

Function No. Optimal Min Max Dim Function

F1 300 −100 100 30 Shifted and rotated Zakharov function

F2 600 −100 100 30 Shifted and rotated expanded Scaffer’s F6 function

F3 1100 −100 100 30 Hybrid function 1 (N = 3)

F4 1600 −100 100 30 Hybrid Function 6 (N = 4)

F5 1700 −100 100 30 Hybrid function 6 (N = 5)

F6 1900 −100 100 30 Hybrid function 6 (N = 5)

F7 2100 −100 100 30 Composition function 1 (N = 3)

F8 2400 −100 100 30 Composition function 4 (N = 4)

F9 2500 −100 100 30 Composition function 5 (N = 5)

F10 2700 −100 100 30 Composition function 7 (N = 6)
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the IGTT has the best effectiveness since it acquires the least good, mean, worst and STD values of 1.421E-4, 
19.593E-4, 281.22E-4 and 5.277E-3, respectively.

Additionally, Fig. 9 shows the IGTT, GTT, SDO, FFO, and RFO for Modular SR-12 stack’s finest convergence 
properties. As demonstrated, the zooming part in this figure is dedicated for illustrating the capability of the 
IGTT and GTT in faster reaching the optimal solution after only 35% of the iteration journey while the SDO 
approaches to a very close value after 92% of the journey. On the other side, RFO and FFO fails to achieve a close 
value through 100% of the iteration journey.

Interestingly, Fig. 10 depicts the relevant I/V and P/V curves in comparison to the relevant experimental 
recordings based on the IGTT’s parameters extraction for Modular SR-12 Stack. The generated and measured 
I/V and P/V curves provide excellent fits, as seen. Confirmation of this, Fig. 11 displays the regarding absolute 
errors between the experimental and the simulated curves (The regarding values are tabulated in the appendix, 
see Table A.2). It can be noticed that the maximum error of the voltage data points is lesser than 0.016% while 
the maximum error of the power data points is lesser than 0.015%.

Table 2.   Performance study of the IGTT, GTT, PSO and GWA for ten common, well-known mathematical 
models. 1 indicates the advantage of the proposed IGTT while 0 indicates equality or disadvantage.

Function Index

Algorithms

IGTT vs PSO IGTT vs GWA​ IGTT vs GTT​PSO GWA​ GTT​ Proposed IGTT​

F1

Best 300.06 310.48 300.00 300.00 1 1 0

Mean 1578.38 3268.19 300.00 300.00 1 1 1

Worst 20,019.47 15,183.27 300.00 300.00 1 1 1

STD 3546.87 2860.15 0.00 0.00 1 1 1

F2

Best 600.00 600.07 600.18 600.00 0 1 1

Mean 603.45 601.81 608.56 602.07 1 0 1

Worst 616.02 609.28 632.64 611.74 1 0 1

STD 4.08 2.02 6.03 2.37 1 0 1

F3

Best 1103.325 1106.808 1103.007 1101.995 1 1 1

Mean 1205.218 1157.378 1127.185 1111.416 1 1 1

Worst 1816.178 1377.781 1173.228 1127.875 1 1 1

STD 124.8757 56.02409 17.68361 6.631911 1 1 1

F4

Best 1601.427 1607.329 1601.428 1600.738 1 1 1

Mean 1704.993 1750.189 1706.592 1671.014 1 1 1

Worst 1860.675 2155.505 1975.837 1856.503 1 1 1

STD 72.15404 129.1761 107.5027 78.0683 0 1 1

F5

Best 1704.609 1729.231 1719.061 1700.8 1 1 1

Mean 1761.116 1765.681 1743.249 1736.032 1 1 1

Worst 1866.902 1870.742 1782.644 1758.831 1 1 1

STD 34.91874 31.83496 13.93582 12.29503 1 1 1

F6

Best 1917.35 1920.302 1908.523 1905.111 1 1 1

Mean 14,688.71 9463.822 1963.368 1935.025 1 1 1

Worst 91,792.57 23,815.15 2078.074 2027.433 1 1 1

STD 17,861.23 7582.319 47.48994 35.91983 1 1 1

F7

Best 2200.001 2200.933 2200 2200 1 1 1

Mean 2316.145 2304.802 2217.995 2203.876 1 1 1

Worst 2355.174 2339.213 2320.622 2316.188 1 1 1

STD 43.17469 37.30524 39.8798 16.27022 1 1 1

F8

Best 2576.574 2732.078 2500 2500 1 1 1

Mean 2770.463 2749.426 2686.881 2647.925 1 1 1

Worst 2818.748 2780.715 2789.163 2766.639 1 1 1

STD 40.19088 13.31095 112.488 123.906 0 0 0

F9

Best 2898.674 2898.193 2897.81 2897.743 1 1 1

Mean 2962.524 2942.153 2926.967 2927.1 1 1 0

Worst 3019.521 3030.581 3024.302 2950.618 1 1 1

STD 37.59257 20.67387 27.90874 23.25528 1 0 1

F10

Best 3096.771 3089.544 3089.738 3089.297 1 1 1

Mean 3116.86 3100.511 3096.373 3092.899 1 1 1

Worst 3195.082 3203.113 3107.354 3099.196 1 1 1

STD 22.70682 17.39673 4.171774 2.837842 1 1 1
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Conclusion
In this article, an advanced IGTT incorporating a Tangent Flight Strategy (TFS) within the exploitation stage 
has been employed to effectively extract the PEMFC model’s unidentified parameters. A precise model of the 
PEMFCs is created via the IGTT that delivers accurate simulation and modelling results for two industrial FCs 
with type of BCS 500W and Modular SR-12 Stacks. Through the IGTT development, the output voltage model 
of FC’s total squared error between the measured and its optimally estimated is minimized for both PEMFCs 

Figure 3.   Best convergence curves of the IGTT, GTT, PSO and GWA for benchmarks.
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stacks. Following the CEC 2017, a comparison of the established IGTT and the original GTT is performed against 
ten unrestricted benchmark functions. In 92.5%, 87.5%, and 92.5% of the statistical indices, the suggested IGTT 
beats the traditional GTT, the GWA and the PSO. Computer simulations are used to show the robustness of 
the PEMFC’s model across a range of temperature and pressure variations. By contrasting the numerical mod-
eling outcomes against the experimental findings of the commercial PEMFCs stacks under study, the suggested 
model’s effectiveness is assured. For each case study, the simulated results based on the IGTT are compared to 
several new optimization techniques of SDO, FFO and RFO. The employed IGTT provides higher accuracy and 
robustness compared with recently techniques of SDO, FFO, and RFO. Additionally, the outcomes from IGTT 
are contrasted with those from other optimization techniques. The outcomes and statistical assessments mani-
fest the IGTT superiority compared with several previously reported results which demonstrate its promising 
features in defining the PEMFC’s model parameters. This leads to the IGTT-based model having a significant 
advantage over other optimizing method-based models from the literature. Consequently, the IGTT application 
can offer a precise PEMFC’s model.

Table 3.   Datasheets for BCS 500W and modular SR-12 with the practical boundaries for the unidentified 
parameters.

Stack type

Technical specifications Practical boundaries

BCS 500 W Modular SR-12 Parameter Min Max

N 32 48 ξ1 (V) −1.1997 −0.8532

L (µm) 178 25 ξ2.10–3 (V/K) 1 5

Am (cm2) 64.0 62.5 ξ3.10–5 (V/K) 3.6 9.8

Jm (A/cm2) 0.469 0.672 ξ4.10–5 (V/K) −26.00 −9.54

Tc (K) 333 323 Λ 10 23

PH2 (atm) 1 1.47628 Rc (mΩ) 0.1 0.8

PO2 (atm) 0.2095 0.20950 Β (V) 0.0136 0.5000

Table 4.   Extracted parameters using the proposed IGTT, recent, and reported optimizers for the BCS 500W 
stack.

Technique ξ1 (V) ξ2.10–4 (V/K) ξ3.10–5 (V/K) ξ4.10–4 (V/K) Λ Rc (mΩ) β (V) SSE 10–2

Proposed IGTT​ −1.16935 3.1477E−03 3.7232 −1.93017 20.8767777 0.1 1.612586 1.16977808

GTT​ −0.85346 2.18019E−03 3.60104 −1.93009 20.8775 0.100487 1.61243 1.1698187

FFO −0.99989 3.35984E−03 8.36833 −1.93613 21.9056 0.235443 1.55926 1.6297316

SDO −1.14187 3.57691E−03 7.02680 −1.92532 21.2659 0.139594 1.62312 1.1905119

RFO −1.02354 3.18392E−03 6.75645 −1.93501 22.3874 0.336282 1.56605 2.1226738

SMS2 −0.95250673 51.7616193 5.17616193 −0.9540000 12.57433080 0.10000 1.3600 1.69778

WOA18 −1.19693 31.800 3.6000 −1.7700 22.974 0.100 2.216 37.273

ALO27 −1.1880 36.840 6.8200 −1.9000 22.5552 0.290 1.60 1.190

GOA27 −0.8550 30.320 9.0600 −1.9000 21.0423 0.319 1.46 1.710

MVO27 −1.1396 31.910 4.5800 −1.9000 20.5547 0.410 1.41 2.130

SSO43 −0.9719 33.487 7.9111 −0.95435 13.0000 0.10000 5.34 1.219

IHBO49 −1.19970 33.100 4.2000 −1.9300 20.877 0.100 1.613 1.170

EO49 −1.09072 33.300 6.4200 −1.9100 22.177 0.267 1.649 1.462

MRFO49 −1.11262 30.600 4.2300 −1.9500 21.705 0.111 1.718 3.683

STSA49 −0.85320 21.800 3.8300 −1.9100 18.062 0.100 1.383 2.135

HHO50 −1.09311 32.8141 5.67397 −1.89666 20.0436 0.225793 151.48 1.4879

ASO50 −1.0432 36.745 8.8772 1.8775 23.3295 0.581379 1.6495 2.661

MFO51 −1.0079 33.230 7.9800 −1.9000 20.9189 0.154 1.58 1.190

SSO52 −1.0074 33.470 8.1500 −1.9000 18.9165 0.121 1.50 1.610

FMHHO53 −0.87884 30.236 8.2272 −1.1934 22.709 0.40472 1.5289 1.1770

MHHO53 −0.91048 30.661 7.9053 −1.9098 19.384 0.10320 1.5212 1.3511

HHO53 −0.96053 33.505 8.7377 −1.8967 21.821 0.42358 1.5006 1.5753

VSDE54 −1.1970 42.330 9.7990 −1.9201 20.194 0.1108 1.57 1.214

VSA54 −1.0005 3.0053 5.8273 −1.9498 22.322 0.2161 1.58 1.570
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Figure 4.   Sample of the best 30 runs of the proposed IGTT, GTT, SDO, FFO and RFO for BCS 500W stack.

Table 5.   Comparative assessment of the proposed IGTT with reported optimizers for the BCS 500W stack.

Technique Best.(10–2) Mean.(10–2) Worst.(10–2) STD

Proposed IGTT​ 1.16977808 1.4329 2.699 0.005359

GTT​ 1.1698187 2.6388 7.0539 0.016382

FFO 1.6297316 3.4934 10.8863 0.017344

SDO 1.1905119 5.9894 36.3407 0.071129

RFO 2.1226738 23.9040 153.8797 0.308101

WOA18 37.273 256.3700 851.7320 2.55770

ALO27 1.1900 20.6000 60.5200 0.1880

GOA27 1.7100 43.8549 221.0571 67.4693

MVO27 2.1300 5.2500 13.5600 0.1565

STSA49 2.1350 62.114 340.1770 0.70331

MRFO49 3.6830 39.1070 113.428 0.25386

EO49 1.4620 4.6460 13.4140 0.03633

MFO51 1.1900 4.7800 13.5100 0.0434

SSA52 1.6100 16.2300 47.8000 0.1565

FMHHO53 1.7700 37.3710 13.4980 0.13008

MHHO53 1.3511 24.0670 55.45000 0.15958

HHO53 1.5753 28.2000 42.2330 0.13165

Figure 5.   Best convergence patterns of the IGTT, GTT, SDO, FFO and RFO for BCS 500W stack.
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Based on the successful application of the IGTT for PEMFC modules parameter estimation in this paper, as a 
future research trend, the IGTT algorithm is recommended to be employed to solve further advanced engineering 
problems especially in power systems such as controllers design for power system stability including renewable 
sources, battery models identification, optimal operation of power systems with renewable sources penetrations.

Figure 6.   I/V and P/V curves based on the IGTT’s parameters extraction for BCS 500W stack.

Figure 7.   Performance curves based on the IGTT’s parameters extraction for BCS 500W stack under varied 
conditions.
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Table 6.   Extracted parameters using the GTT, recent, and reported optimizers for Modular SR-12.

Technique ξ1 (V) ξ2.10–4 (V/K) ξ3.10–5 (V/K) ξ4.10–4 (V/K) λ Rc (Ω) Β (V) SSE.10–4

Proposed IGTT​ −0.93739 27.52 5.208 −1.06348 21.56945 0.0002728 0.1500116 1.421011

GTT​ −0.86278 24.3984 4.68307 −1.06348 21.58254 0.000273 0.150013 1.421011

FFO −0.89444 23.7241 3.60000 −1.06862 19.22577 0.00032 0.148312 6.900092

RFO −0.86334 27.1255 6.44383 −1.06781 13.72355 0.00011 0.148234 8.619470

SDO −0.97879 30.8768 6.55143 −1.06150 21.90073 0.000298 0.149725 3.637125

WOA18 −1.19970 42.7 9.78 −1.08 18.83208 0.119 0.15125 20.2

FPA30 −0.85320 31.0 9.15 −9.54 13.0000 0.571 0.14548 1598.2

MRFO49 −1.15570 36.5 6.62 −1.05 20.54620 0.224 0.15288 625.6

EO49 −1.08514 31.8 5.03 −1.06 20.39017 0.337 0.14874 12.0

ISA55 −1.16993 36.6 6.45 −1.07 13.92287 0.112 0.14915 1.9

SSO52 −1.03331 37.2 9.57 −9.58 14.30103 0.799 0.14212 968.1

MFO51 −1.12876 39.5 9.13 −1.00 20.14571 0.800 0.14274 433.4

STSA49 −0.85320 22.4 3.60 −1.06 13.0000 0.100 0.14856 8.7
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Figure 8.   Sample of the best 30 runs of the GTT SDO, FFO and RFO for modular SR-12.

Table 7.   Comparison of the IGTT with reported optimizers for Modular SR-12 stack.

Technique Best.(10–4) Mean.(10–4) Worst.(10–4) STD

Proposed IGTT​ 1.421011 19.593 281.22 5.2776 E−3

GTT​ 1.421 37.144 395.870 7.1727E−3

SDO 3.637 200.940 5239.60 5.4800E−2

FFO 6.900 879.720 6600.400 9.5520E−2

RFO 8.619 4209.200 68,075.000 9.5157E−1

FPA30 1589.200 11,575.500 51,239.500 1.04838

STSA49 8.700 1000.200 3351.300 0.09099

EO[ 43] 12.000 195.200 739.600 0.02002

MRFO49 625.600 7872.700 40,135.500 0.89801

MFO51 433.400 1321.600 3518.400 0.05970

SSA52 968.100 1802.800 3663.000 0.08660
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Figure 9.   Best convergence curves of the IGTT, GTT, SDO, FFO and RFO for modular SR-12.

Figure 10.   I/V and P/V curves based on the IGTT parameters extraction for modular SR-12.
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Figure 11.   Absolute errors of the voltage and output power based on the IGTT parameters extraction for 
modular SR-12 stack.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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