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Forty thousand kilometers 
under quantum protection
N. S. Kirsanov 1, V. A. Pastushenko 1,2, A. D. Kodukhov 1,2, M. V. Yarovikov 1, 
A. B. Sagingalieva 1, D. A. Kronberg 1, M. Pflitsch 1 & V. M. Vinokur 1*

Quantum key distribution (QKD) is a revolutionary cryptography response to the rapidly growing 
cyberattacks threat posed by quantum computing. Yet, the roadblock limiting the vast expanse of 
secure quantum communication is the exponential decay of the transmitted quantum signal with 
the distance. Today’s quantum cryptography is trying to solve this problem by focusing on quantum 
repeaters. However, efficient and secure quantum repetition at sufficient distances is still far beyond 
modern technology. Here, we shift the paradigm and build the long-distance security of the QKD 
upon the quantum foundations of the Second Law of Thermodynamics and end-to-end physical 
oversight over the transmitted optical quantum states. Our approach enables us to realize quantum 
states’ repetition by optical amplifiers keeping states’ wave properties and phase coherence. The 
unprecedented secure distance range attainable through our approach opens the door for the 
development of scalable quantum-resistant communication networks of the future.

The quantum threat to secure communications makes top headlines and Niagara Falls of reviews and research 
explaining how quantum computers using, for example, Shor’s  algorithm1, devalue the existing cryptographic 
schemes. Remarkably, the same advances in quantum physics that have created this quantum threat enable solu-
tions for quantum security. Building upon quantum phenomena, novel quantum cryptography offers methods for 
unparalleled security, including quantum secure direct  communication2–7, probabilistic one-time  programs8–10, 
and quantum key distribution (QKD)11–17. The QKD, on which we focus in our present work, allows two parties 
to share a secret bit sequence for various applications. The existing QKD protocols are efficient over relatively 
short distances due to the fundamental Pirandola–Laurenza–Ottaviani–Banch (PLOB)  bound18, which dictates 
that secret communication rates decrease exponentially with channel length. The simplest approach to resolve 
this issue is to use the trusted reproduction nodes along the transmission  line19–21, which is a compromise to the 
overall security. The alternative solution is the utilization of quantum  repeaters22–37 which eliminates the need 
for trust in the intermediate relay. However, since quantum repetition manipulates fragile entangled states, its 
implementation at a long scale remains beyond state-of-the-art technologies.

Here, contemplating the physical nature of the quantum states’ transmission, we lift the PLOB bound by 
using restrictions of quantum thermodynamics and the end-to-end physical control over losses in the optical 
quantum channel. We shift the quantum cryptography paradigm building on the same quantum considerations 
that provide the foundations of the Second Law of Thermodynamics. Our approach ensures signal repetition 
through optical amplification, presumes no trust at the intermediate channel points, and expands the secure 
transmission range to global distances. This paves the way for constructing scalable quantum communication 
networks of the future—a problem that has garnered significant interest in recent  years38–40.

General idea
Conventionally, the eavesdropper (Eve) is seen as capable of exploiting all the losses from the transmission 
channel, irrespective of their origin. This puts a strong restriction on the number of photons in the transmitted 
quantum states, which significantly complicates their repetition. However, upon close quantum mechanical 
examination, this presupposition appears unrealistic. In reality, the majority of losses in optical fibers occur due 
to the light scattering on the quenched disorder and are distributed homogeneously along the line (hereinafter, 
we will be referring to such losses as to natural losses). In a single mode silica fiber’s 1530–1565 nm wavelength 
window, the standard for modern telecommunications, these losses amount to approximately 4× 10−5 of the 
passing signal’s intensity per meter.

We describe the information dynamics of the randomized signal transmitted over an optical channel. This 
consideration is carried out analogously to consideration of the Second Law of Thermodynamics, i.e., the dynam-
ics of entropy, through the lens of the microscopic quantum mechanical  laws41–43. Had the system been isolated, 
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its entropy would not decrease, i.e., Eve would not be able to obtain any information. In the presence of natural 
losses, the system can no longer be regarded as isolated, and thus, the eavesdropper gets an opportunity to 
decrease the system’s entropy in analogy with the quantum Maxwell demon. However, in order to glean infor-
mation from the scattering losses of relatively weak signals that we employ for our approach, Eve has to use 
quantum detection devices spanning an unfeasible length of optical fiber, see Supplementary Note 1. That is 
why one concludes that in this weak signal regime, Eve is unable to effectively collect and exploit natural losses.

Losses other than natural ones can, in turn, be physically controlled. We propose a technique of physical loss 
control (line tomography) implying that legitimate users detect local interventions by comparing the constantly 
updated tomogram of the line with the initial one, knowingly obtained in the absence of Eve. Line tomography 
involves sending the high-frequency test light pulses and analyzing their reflected (via the technique known as the 
time-domain  reflectometry44) and the transmitted components. The coupling of photons to any eavesdropping 
system is impossible without modifying the fiber medium, which in turn inevitably changes the line tomogram. 
Unable to perform such radical interventions unnoticed, Eve is thus restricted to introducing small local leakages, 
which are precisely measured by the users. This implicates the possibility of employing the information-carrying 
light states containing the numbers of photons that are sufficient to repeat the states through optical amplification 
yet not enough to be easily eavesdropped on.

Utilizing a cascade of accessible optical amplifiers to counteract the degradation of signals over extensive 
distances, as opposed to the employment of quantum  repeaters22–37, enables global transmission and high key 
distribution rates. It is important to note that these optical amplifiers should not be viewed as trusted nodes, as 
the integrity of the transmission scheme is maintained through end-to-end control by legitimate users, and there 
is no recourse to the form of classical data.

We showcase our approach via a prepare-and-measure QKD protocol utilizing non-orthogonal coherent 
photonic states |γ0� and |γ1� for encoding 0 and 1 bits. In the protocol’s framework, our approach means restricting 
the fraction of photons leaked to Eve, rE , to ensure that the leaked states |√rEγ0� and |√rEγ1� sufficiently overlap, 
i.e., 
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∣ ∼ 1 (these states become mixed if the transmission channel includes amplifiers, but for 
now we ignore this fact for the sake of simplicity). Eve cannot by any means—except by completely blocking part 
of the signal  pulses45 but this is prevented by the line tomography—extract more information than the Holevo 
quantity χE46 which tends to zero when 
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∣ → 1 . The users monitor the value of rE and adapt the 
parameters of |γ0� and |γ1� to ensure that the intercepted pulses are poorly distinguishable.

Thus, we overcome the PLOB bound by what can be called the “channel device-dependent” approach. This 
approach is no less physically justified as a traditional device-dependent scenario where the eavesdropper is 
assumed not to be able to substitute some of the equipment at the sender and receiver side. Hence, there are 
no compromises in security that allow us to increase the secret key distribution distance, only higher device 
dependence, with correct channel work ensured by tomography methods.

Protocol description
We put forth an exemplary QKD protocol based on our physical control approach. Let the legitimate users, the 
sender, Alice, and the receiver, Bob, be connected via a classical authenticated communication channel and 
optical line serving as a quantum channel. The protocol is designed as follows:

Initial preparation

0. Alice and Bob carry out initial line tomography to determine the natural losses that Eve cannot exploit. At 
this and only this preliminary step, the legitimate users must be certain that Eve has no influence on the line. 
The users share the tomogram via the classical channel.

Line tomography

1. Alice and Bob perform the physical loss control over the line and, through comparison with the initial line 
tomogram, infer the fraction rE of the signal possibly seized and exploited by Eve. The users also localize 
the points of Eve’s intervention. To update the line tomogram, users exchange information via the classical 
channel. If the stolen fraction grows too large so that the evaluated legitimate users’ information advantage 
over Eve disappears—the analytical estimate for this advantage is provided below—the transmission is ter-
minated.

Transmission of quantum states

2. Using a random number generator, Alice produces a bit sequence of the length L. Alice ciphers her bit 
sequence into a series of L coherent light pulses, which she sends to Bob. The bits 0 and 1 are encoded into 
coherent states |γ0� and |γ1� , respectively. Their parameters are optimized based on the known fraction of the 
signal seized by Eve rE and Eve’s position in the line. The optimal parameters correspond to the maximum 
key distribution rate at given losses in the channel, the analytical relation for which is presented below. The 
optimal parameters are considered to be known to Alice and Bob and also to Eve.

3. The signals are amplified by the cascade of optical amplifiers installed along the optical line, possibly equi-
distantly. Bob receives the signals and measures them.
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Classical post-procession 

4. Alice and Bob perform the postselection, i.e., they discard the positions corresponding to corrupted measure-
ment outcomes. The postselection criteria are defined by the set of parameters, which are optimally calculated 
by the users.

5. The users perform error correction. The procedure can be done with well-known classical methods, e.g., 
linear  codes47–49, or with methods designed specifically for the QKD, such as the Cascade  protocol50–52.

6. The users estimate Eve’s information obtained at the previous stages and perform the privacy amplification 
procedure to produce a shorter key (e.g., using the universal hashing  method53) on which Eve has none or 
negligibly small information.

The steps from 1 to 6 directly constitute the process of key distribution, and the users must repeat them until 
satisfied with the total shared key length. It is important to note that the key is not generated solely by Alice in 
step 2; instead, it emerges through the collaborative simultaneous actions of both parties, with postprocessing 
playing a vital role in the process.

The particular way of encoding bits 0 and 1 into the parameters of coherent pulses |γ0� and |γ1� may vary. For 
illustrative purposes, we concentrate on the two simplest and straightforward schemes, viz. encoding bits into 
pulses with (a) different photon numbers, |γ0|2 �= |γ1|2 , and phase  randomization54–56, and (b) same photon 
numbers, |γ0|2 = |γ1|2 , and phases different by π . In both encoding schemes, Alice varies |γ0|2 and |γ1|2 . More 
sophisticated encoding schemes, for instance, schemes leveraging the pulses’ shapes, make exploiting the natu-
ral scattering losses even more unsolvable. To complicate the problem further, the cable design may include an 
encapsulating layer of metal of heavily doped silica, transforming the scattering radiation into heat under the 
control of the users; see Supplementary Note 2 for details.

Protocol security
Here, we delve into the security of the described protocol, by building upon the following: 

1. Alice and Bob each generate random numbers that Eve cannot predict.
2. Other from the transmission channel—which is a fiber line with the embedded optical amplifiers—and the 

classical authenticated channel, users’ equipment is isolated from Eve.
3. Eve cannot effectively collect and exploit natural losses from the transmission channel. To eavesdrop on the 

signal, Eve must introduce new artificial local leakages. Eve can also use the local leakages on the original 
fiber discontinuities, such as bends or connections.

4. The transmission line between Alice and Bob is characterized by the initial line tomogram. All losses con-
stituting deviations from the initial tomogram are attributed to Eve.

5. Eve is bound to the beam-splitting attack. She may seize some fraction of the signal at any point of the optical 
line. With that, she is unable to replace any section of the line with a channel of her own creation since this 
action is detectable by the line tomography.

Attacks that deviate from the beam-splitting attack necessitate a significant alteration of the line tomogram, in 
which case the protocol should be terminated; as such, we will not delve into them here. We will refer to the point 
of Eve’s intrusion into the line as the “beam splitter” and assume that any reflection back towards Alice from this 
point is insignificant. As our analysis will demonstrate, the protocol’s efficiency is contingent on Eve’s placement 
along the line. For the sake of simplicity, we will focus on the scenario in which Eve intercepts from a single 
point at the line. Indeed, with some overhead, the case where Eve intercepts from multiple points—stealing r(i)E  
from the i-th local leakage—can be reduced to a situation where Eve is at the single worst location for the users 
among all identified interception points, and she steals the effective overall leakage

where we defined r(0)E = 0 . This effective overall leakage is detectable by transmittometry, see “Physical loss 
control and amplification” for details. The detailed analysis of the multi-point interception and constructive 
interference will be the subject of our forthcoming publication.

To evaluate the protocol’s security, we describe the evolution of Alice’s, Bob’s, and Eve’s quantum systems 
and quantify the information available to different parties. We examine the case in which the beam splitter is 
placed immediately following one of the amplifiers, as this arrangement is most advantageous for Eve, but, with 
minimal adjustments, the same analysis can be applied to any arbitrary beam splitter’s position. We derive an 
analytical expression for the length of the final secure key Lf , which represents the users’ informational advantage 
over Eve given the fixed value of rE and the distance between Alice and Eve DAE . This expression depends on 
the encoding and postselection parameters and should be maximized by the users to determine the parameters’ 
optimal values. The condition Lf/L > 0 for the chosen parameters ensures successful secret key  generation57.

At the beginning of the protocol, Alice encodes the logical bits into the coherent states with the different 
complex amplitudes, 0 → |γ0�, 1 → |γ1� . In the photon number encoding scheme, the pulses are different in 
the average numbers of photons |γ0|2 and |γ1|2 , while the phase of each pulse is random. The photon number 
measurement at Bob’s end is formalized in terms of the projective operators:

(1)rE =
∑

i

r
(i)
E

∏

0≤j<i

(1− r
(j)
E ) = 1−
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i

(1− r
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where Ê0 , Ê1 and Êfail correspond to 0, 1, and failed—meaning that this result should be later discarded—out-
comes respectively, |k� is the Fock state of k photons, 1̂ is the identity operator, µ =

(

|γ0|2 + |γ1|2
)

/2 , and θ1−4 
are the postselection parameters tuned by Bob depending on the proportion of the stolen signal. The photon 
numbers between µ− θ1 and µ+ θ2 are difficult to relate to 0 or 1, while numbers below µ− θ3 and above 
µ+ θ4 are associated with the information corruption: as we show in Supplementary Note 4, optical amplifica-
tion imposes correlations between pulses received by Bob and Eve, and extreme photon numbers at Bob’s end 
also constitute very distinguishable signals for Eve.

For the phase encoding (note that using this scheme requires that the optical fiber is phase-preserving), the 
pulses are characterized by the same average photon number, |γ0|2 = |γ1|2 , but by different, although fixed, 
phases. For instance, the relative phase can be π , γ0 = −γ1 = γ ∈ R , and then, to distinguish the pulses, Bob 
should perform homodyne measurement of the quadrature q̂ corresponding to the real axis in the phase space:

where |q� is the eigenstate of q̂ , and θ ′1,2 play the same role as θ1−4 in the photon number encoding case. With 
this scheme, we deal only with two postselection parameters because probability distributions of measurement 
results for two pulses are symmetric with respect to q = 0.

For both encoding schemes, the operational values of |γ0| , |γ1| and θ1−4 ( θ ′1,2 ) are determined via maximiz-
ing the analytical expression for the predicted length of the final secure key Lf  , which, in turn, depends on the 
proportion of the stolen signal rE and the distance between Alice and Eve DAE . Correlations between the states 
at Eve’s and Bob’s disposal due to optical amplification drastically complicate the analytical description of states’ 
evolution necessary for obtaining the expression for Lf  . We provide such a description in “Methods”, while here 
we write the final state of the combined quantum system of Alice’s random bit (A), the signal component seized 
by Eve (E), and Bob’s memory device storing the measurement outcome (B) after the legitimate users discard 
invalid bits, i.e., conditional to the successful measurement outcome:

where

is the P-function describing amplification (see  “Physical loss control and amplification” and Supplementary Note 
3), and integration operations are performed over the complex plane, i.e., d2α ≡ dRe(α) dIm(α) , T1(2) and G1(2) 
are, respectively, the transmission probability and amplification factor (the ratio of the output photon number 
to the input one of an amplification channel) of the effective loss and amplification channels equivalent to the 
cascade of amplifiers and losses before (after) Eve’s beam splitter (these values depend on the distances between 
Alice and Eve, DAE , between Alice and Bob, DAB , and between neighboring amplifiers, d, see Eqs. (58–60) in 
Supplementary Note 3), p(�|a) is the probability of the successful measurement outcomes in the case that Alice 
sends bit a = {0, 1} (the explicit form is given by Eqs. (17) and (18) in “Methods”).

In the case of photon number encoding, Alice randomizes the phase of each pulse. As a result, neither Bob 
nor Eve would know the phase ϕ of the incident pulse |γa� = ||γa|eiϕ� which effectively means that the final state 
of the combined system is described by ρ̂f

ABE from Eq. (3) averaged over ϕ (see Supplementary Note 4 for details):

After the invalid bits are discarded, the information available to Eve about the bits kept by Alice (per bit) is 
given by

where S(X) = −tr
[

ρ̂X log2 ρ̂X
]

 is the quantum von Neumann entropy of system X (which is A, B, E, or their 
combinations, the corresponding density matrices are obtained from Eq. (3), or Eq. (5) if there is phase rand-
omization, by taking partial traces), and S(Y|X) = S(XY)− S(X) is the conditional entropy. We calculate the 
upper bound of I(A, E) differently in the cases of photon number and phase encoding. In the first case, we use 
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the Holevo  bound46, see Supplementary Note 4. In the second case, we also rely on the concavity of relative 
entropy, see Supplementary Note 5.

By performing the error correction procedure, the legitimate users establish a shared bit sequence (raw key) 
at the price of disclosing an additional error syndrome of the length f · S(A|B) , where f ≥ 1 depends on the par-
ticular error correction code. As we do not intend to address any specific error correction method, we put f = 1 
corresponding to Shannon’s limit. After the procedure, Eve’s information becomes Ĩ(A, E) = I(A, E)+ S(A|B) . 
To eradicate Eve’s information about the raw key, Alice and Bob perform the privacy amplification procedure 
tailored precisely for the estimated information leakage due to the local line losses and error correction, see 
“Methods”. The length of the final key is

where L is the number of originally generated random bits, and p� = 1
2

∑

a,b=0,1 p(b|a) is the proportion of bits 
that are not discarded at the postselection stage.

Taking L and Lf  as the numbers of bits per unit of time, Eq. (7)—the explicit form of which can be obtained 
using Eqs. (2a or 2b), (2 or 4), and Eqs. (17, 18) from “Methods”—gives us the key distribution rate (or key rate 
for short) as a function of rE , |γ0| , |γ1| and θ1−4 (or θ ′1,2 ). Implicitly, the equation also includes the distance between 
two neighboring amplifiers d and the distances between Alice and Bob, DAB , and Alice and Eve, DAE . As we speci-
fied above, the users obtain the optimal values of |γ0| , |γ1| and θ1−4 (or θ ′1,2 ) by maximizing this analytic formula 
for measured values of rE and DAE . To be able to distribute secret keys, the users have to possess an information 
advantage over  Eve57, which in our case is indicated by the positivity of the calculated Lf/L . If the evaluated Lf/L 
is not positive, the protocol should be terminated.

Numerical simulations
Figure 1 displays the results of our numerical simulations. We plot the optimal normalized key rate Lf/L 
as a function of the proportion rE for two different transmission distances: (a, b, c) DAB = 1000 km, (d–f) 
DAB = 40,000 km. The distance between the neighboring amplifiers d = 50 km.

Plots  a, d relate to the photon number encoding with different curves corresponding to different values of 
DAE . We observe that the worst normalized key rate Lf /L occurs when Eve is close to the middle of the trans-
mission line. This is explained by the side effects of signal amplification: the closer Eve is to Bob, the more Eve’s 
part of the signal is correlated with Bob’s, yet, the noisier it becomes (see Supplementary Note 4). With such a 
trade-off, Eve gets the largest amount of information, standing somewhere in the vicinity of the line’s midpoint. 
However, in the phase encoding case, shown in b, e panels, correlations outweigh noise even when Eve is close to 
Bob, resulting in a lower key rate for larger DAB . Plots c, f show the protocol’s performance under both encoding 
schemes in the respective worst-case scenarios: Eve’s position is such that the key rate is the lowest. Therefore, 
as we see from the plots, the photon number encoding scheme appears to be more efficient.

As we show in “Methods”, see Supplementary Note 3 for technical details, the minimal detectable leakage for a 
long line with M equidistant amplifiers is rmin

E ∼ √
MG/n , where G is the amplification factor of a single amplifier, 

and n is the number of photons in a test pulse. With d = 50 km, G = 10 , and n = 1014 , we get rmin
E ∼ 10−6 and 

rmin
E ∼ 10−5 for the 1000 km ( M = 20 ) and 40,000 km ( M = 800 ) lines, respectively. Close to the loss control 

precision limit, both encoding schemes allow for high key rates. For the photon number encoding, the maximum 
Lf/L is 0.99 for 1000 km and 0.57 for 40,000 km. For the phase encoding, the values are 0.98 and 0.27, respectively.

Within the selected ranges of rE , which are above the minimum detectable leakage, and, therefore, such 
losses are resolvable by the physical loss control, and for the photon number encoding we have Lf/L � 10−4 . 
Correspondingly, if the initial random number generation rate L = 1 Gbit/s, then for 1000 km we have 
0.99Gbit/s � Lf � 100Kbit/s and for 40,000 km we have 0.57Gbit/s � Lf � 100Kbit/s. In comparison, the 
asymptotic behavior of the normalized key rate provided by PLOB at a 1000 km distance is limited to values 
around 10−9 , or 1 bit/s for L = 1 Gbit/s, which is several orders of magnitude lower than the rates achievable with 
our method. To the best of our knowledge, there have been no previously reported QKD protocols that cover 
tens of thousands of kilometers without using trusted nodes. Furthermore, state-of-the-art Twin-Field QKD 
 realizations40,58,59 offer key rates that do not exceed a few bits per second at distances comparable to 1000 km. At 
the same time, the QKD realizations featuring high secret key rates of the order of 1 Kbit/s span relatively short 
communication distances of a couple of hundred  kilometers60–62.

Physical loss control and amplification
Now we outline possible implementations of the basic technological components of the protocol, the physical loss 
control, and the signal repetition by optical amplifiers. The physical loss control methods are based on analyzing 
scattered components of the high-energy test pulses sent along the fiber. The optical time-domain reflectometry 
comprises the injection of test pulses into the fiber and subsequent measurement of the temporal sequence of 
their back-scattered components. The response delay defines the distance to a particular scattering point, while its 
magnitude reflects the respective losses. Moreover, characteristic features of the response allow for determining 
the nature of the detected line discontinuity, see the exemplary experimental reflectogram in Fig. 4 in “Methods”.

As illustrated in Fig. 2, a log-linear reflectogram features a sequence of linear drops and steep drops (upper 
trace) corresponding to different discontinuities. To construct a loss profile using this piecewise linear graph, 
one can employ the ℓ1-filtering  technique63, which is commonly used in the processing of reflectometry  data64,65. 
This approach involves fitting the graph with a sum of a single linear decreasing function and a series of weighted 
step-like functions by minimizing the objective function based on the ℓ1 norm. The i-th step-like function’s 
drop (discrete derivative) and its position reveal the corresponding local leak magnitude r(i)E  and its respective 

(7)Lf = p�L ·
(

S(A)− Ĩ(A, E)
)

= p�L · (S(A)− S(A|B)− I(A, E)),
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Figure 1.  Numerical simulations of the protocol for different parameters and encoding schemes. (a) The 
normalized key rate Lf/L as function of the proportion of stolen signal rE for the photon number encoding 
and DAB = 1000 km . (b) The same for the phase encoding. (c) Comparison of the photon number and phase 
encoding schemes for DAB = 1000 km . (d) Lf/L(rE) for the photon number encoding and DAB = 40,000 km . 
(e) The same for the phase encoding. (f) Comparison for the distance DAB = 40,000 km . In all plots, the 
distance between neighboring amplifiers d = 50 km. Different curves in each plot correspond to varying 
distances between Alice and Eve, DAE . The dependence of Lf/L on DAE is due to the fact that the amount of 
eavesdropped information is affected by correlations and noise imposed by optical amplifiers. The comparative 
plots (c,f) of two encoding schemes imply the respective worst conditions (with Eve positioned in her best 
way). In each point of every plot, the protocol’s parameters—i.e., the photon numbers 

∣

∣γ0,1
∣

∣

2 and postselection 
parameters θ1−4 (or θ ′1,2)—are numerically optimized for the fixed values of DAB , DAE and rE with respect to 
Lf/L . Depending on rE , the optimal photon numbers |γ0|2 and |γ1|2 vary from 0.8× 104 to 3.0× 104 photons in 
(a), from 0.4× 103 to 7.2× 103 photons in (b), from 2.0× 105 to 3.0× 105 photons in (d), and from 0.4× 105 
to 3.0× 105 photons in (e).

Figure 2.  Exemplary reflectogram and loss profile. The loss profile, which displays the magnitude r(i)E  of the i-th 
local leakage and its position, is derived from the reflectogram using ℓ1-filtering.
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location (lower trace). In turn, the linear decreasing component defines the homogeneously spread natural 
scattering losses.

Note, that to obtain an accurate reflectogram one has to make averaging over multiple test runs during which 
a test pulse travels to the end of the fiber and all its reflections return back. Accumulating sufficient statistics 
may, in reality, take a few seconds. To resolve this problem and to ensure high operational control speed, we 
develop the component of tomography which we call transmittometry: Alice sends test pulses comprising a 
large number of photons to Bob, they cross-check the sent and received photon numbers and obtain the propor-
tion of the transmitted photons (1− r0)(1− rE) . Knowing the natural losses baseline r0 , which is determined 
during the protocol’s initial preparation, they infer the the effective overall leakage rE as given by Eq. (1). In the 
spirit of the lock-in  method66,67, the power of a test pulse can be modulated at high frequency so that the pulse 
contains a large number of periods. By comparing the input and output spectral power peaks at the modula-
tion frequency, which can be determined through the Fourier transform of the time-dependent transmitted 
and received powers, the users can deduce the proportion of losses. Modulating the power helps to suppress 
the unwanted contribution of classical noise that may be present in the system. As the modulation frequency 
increases, the corresponding value of the noise spectral density tends to decrease, raising the transmittometry 
precision. Unlike reflectometry, transmittometry does not enable the users to localize and identify individual 
leakages but immediately updates the estimate of the effective overall leakage. Thus, the two control methods 
complement each other, the users are constantly aware of the magnitude of leakages and can localize them after 
accumulating sufficient reflectometry statistics.

To discriminate between the intrinsic and artificial line losses, the legitimate users prerecord the initial 
undisturbed line tomogram, including the reflectogram and the total proportion of losses in the line, and use 
this tomogram as a reference. The fiber material, silica, has an amorphous nonreproducible structure, making 
its reflectogram a physically unclonable  function68. With that, the fiber core can be slightly doped, with, e.g., 
Al, P, N, or Ge, to tune its tomography results and achieve the optimal parameters such as dispersion. The most 
general eavesdropping attack implies a unitary transformation of the state of the combined system comprising 
the propagating signal and some ancillary eavesdropping system. However, coupling of photons to devices 
outside the line requires making significant alterations to the fiber medium, which would inevitably change the 
reflectogram and hence will be detected. Quantum cryptography also addresses attacks exercising the partial 
blocking of the signal and the subsequent unauthorized substitution of the blocked part. Any intervention like 
that would inevitably and permanently (even if Eve at some point decided to disconnect from the line) affect the 
tomogram of the transmission line and hence will be detected by the legitimate users.

The key distribution itself should go in parallel with accumulating the reflectometry statistics. If, at some 
point, the reflectogram shows an intrusion into the line, the users should respond with the appropriate post-
processing of the bits distributed during the formation of the reflectogram. This may possibly come down to 
discarding the whole bit sequence. Ideally, the physical loss control should be conducted permanently and should 
not halt even during the pauses in the key distribution. Taking the transmittometry test pulses’ duration of the 
order of 1 ns makes any real-time mechanical intrusion into the line immediately detectable.

The principal task of the physical loss control is to ensure that Eve does not get enough photons to obtain the 
informational advantage over Bob. With that, signal pulses and test pulses still carry large numbers of photons, 
making it possible to repeat them via optical amplification. The repeater can particularly be arranged as a doped 
fiber section embedded into the main line and pumped to produce amplification gain in the primary mode. In 
telecommunications, the most common dopant is erbium. Pumped at the wavelength of 980 nm, the erbium-
doped fiber generates the gain at around 1550 nm which fits into the transmission window of the silica-based 
fiber. Upon absorption of the pumping radiation, erbium ions transit from the ground state (state 0) to a short-
lived state (state 2). From there, they non-radiatively relax to a metastable state (state 1), as illustrated in Fig. 3a. 
As the signal photonic mode passes through the inverted atomic medium, it stimulates the transition from state 1 
to state 0, resulting in a coherently synchronized photon emission. The resulting signal amplification magnitude 
depends on the erbium ion concentration, the length of the doped fiber segment (active fiber), and the power 

Figure 3.  Optical amplification. (a) Energy diagram of the light amplification in the erbium-doped fiber 
section. Pumping radiation excites erbium ions from the ground state 0 into the 2nd energy level. Shortly after, 
ions drop to the metastable level 1. The incident photons stimulate the transition 1 → 0 which results in the 
coherently synchronized radiation of additional photons at the same wavelength. (b) Schematics of the proposed 
bidirectional optical amplifier. The doped fiber section is embedded into the main fiber line and linked to the 
pumping diode through the WDM.
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of the pumping radiation. The interaction between the propagating signal photonic mode (with the annihila-
tion operator â ) and the inverted atoms is determined by the Hamiltonian in the rotating wave approximation

where atoms are indexed by n, N ≫ 1 is the total number of atoms in the medium, κ is the interaction constant, 
and states |0�n and |1�n represent respectively states 0 and 1 of the n-th ion. Since the time of relaxation from 
state 2 to 1 is very small (20 µ s against 10 ms for the relaxation from 1 to 0), we take that an ion is effectively a 
two level system. The Holstein–Primakoff transformation maps the active medium’s state with m atoms in state 
0 and N −m in state 1 to a Fock state |m�b . This state corresponds to m excitations in the auxiliary bosonic mode 
associated with the annihilation operator b̂ . With that, we get the following equation

The evolution operator describing the signal mode propagation is given by

where g = κ
√
Nt/� , and t is the effective time of interaction between the signal mode and active medium. 

Amplification is described by a quantum channel acting on the signal’s density matrix ρ̂

where the partial trace is taken over the states of the auxiliary mode. Within the P-function formalism, Eq. (11) 
translates into Eq. (4). Additional details can be found in Supplementary Note 3.

Usually, doped fiber amplifiers utilize optical isolators, which allow the light to pass only in one direction. 
This minimizes the risk of multiple reflections inside the doped fiber section. In our protocol, however, the opti-
cal isolators would block the reflected light hindering the end-to-end time-domain reflectometry. Besides, the 
amplifiers typically include tap couplers diverting about 1% of the radiation into the photodetectors to monitor 
the amplifiers’ operation, and this fraction can possibly be seized by the eavesdropper. We hence opt out of both 
the optical isolators and tap couplers and utilize the design of the bidirectional optical  amplifier69–71. The ampli-
fier’s sketch is displayed in Fig. 3b. The fiber core is connected to the wavelength-division multiplexing (WDM) 
system. The WDM system is a beam splitter-like device for guiding the radiation of the different wavelengths 
into a single optical fiber. In our case, it is intended to feed the doped fiber section with the pumping radiation 
necessary to excite the active fiber’s dopant atoms. Correspondingly, the WDM is connected to the active fiber 
and the pumping diode. Finally, active fiber is connected to the main fiber line. Provided that the neighboring 
amplifiers are separated enough, they are not subject to significant cross-talk.

Our preliminary experiments reveal how the 1000 km-long line with the standard telecom distance d = 50 km 
between amplifiers can be made stable with the very restricted signal noise in the line, even in the absence of opti-
cal isolators. The stability and scalability of our QKD scheme are supported by the remarkable precision of the loss 
control observed in the experiments. This control precision is accomplished through the use of high-resolution 
reflectometry, complemented by optical amplifiers to extend its range, and lock-in based transmittometry. With 
the ability to capture leakages above the control resolution, the users maintain an information advantage over 
potential adversaries attempting to exploit these leakages, as confirmed by analytical calculations. Coupled with 
the experimentally observed low bit error rates, our QKD system ensures high rates of secure key generation. We 
find that the signal wavelength of 1530 nm—corresponding to the peak of the amplification factor spectrum of 
the erbium-doped fiber amplifier—is more preferable than the standard 1550 nm wavelength. Fixing G = 1/T 
for 1550 nm means greater amplification for the noise in the modes near 1530 nm, which, in turn, may disrupt 
the stability of the amplifiers’ operation, possibly turning them into lasers. But this is not the case if 1530 nm is 
already the target wavelength itself.

A possible eavesdropping attack on the amplifier may consist of increasing the pumping power and stealing 
the surplus of the amplified radiation. Of course, hooking up to the line would change its tomogram and thus 
will be detected. Nevertheless, the following constructive feature of the amplifier will serve as an additional ele-
ment of protection. The doped fiber section will contain the near minimum number of dopant ions necessary to 
amplify the signal with the target amplification factor. Let the operational pumping power Pp match the target 
amplification factor G. With the increase of the pumping power, the relative population inversion asymptoti-
cally approaches unity, which corresponds to the amplification factor G + δG . The fraction of signal that Eve can 
possibly steal by inflating the pumping power is limited by δG/G , which is small, if at Pp almost all of the ions 
are already excited. The number of ions and the value of Pp should be such that the maximum achievable Eve’s 
makeweight, summed over all amplifiers installed into the line, is smaller than the minimum detectable leakage.

Discussion and conclusions
Quantum cryptography typically assumes channel device independence, suggesting that an eavesdropper can 
fully exploit all leakages from the quantum channel. This assumption constrains key rates to the PLOB  bound18, 
where the maximum rate scales as − log2(1− T) bits per channel with the transmittivity T. Consequently, key 
rates become impractically small over long distances.

(8)Ĥint = iκ

N
∑

n=1

(

â† ⊗ |0��1|n − â⊗ |1��0|n
)

,

(9)Ĥint = iκ
√
N
(

â†b̂† − âb̂
)

.

(10)Ûg = e−iĤintt/� = eg(â
† b̂†−â b̂),

(11)AmpG=cosh2(g)[ρ̂] = trb

[

Ûg ρ̂ ⊗ |0��0|b Û†
g

]

,
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By examining the physical quantum principles governing signal transmission and implementing physical loss 
control, we shifted this paradigm. In our approach, legitimate users can determine the fraction of losses accessible 
to an eavesdropper and ensure it contains insufficient information. While Eve struggles to discriminate between 
weak quantum states, Bob receives signals with relatively large numbers of photons, granting him a significant 
information advantage. Our approach employs end-to-end line tomography and leverages the impossibility of 
exploiting natural losses. As a result, the PLOB constraint is lifted, significantly extending the practical imple-
mentation of QKD over long distances without sacrificing security—notably, without relying on trusted nodes. 
Optical amplifiers, unlike trusted nodes, do not convert quantum information into classical form and are directly 
controlled by users through end-to-end control.

In this study, we analyzed a physical model restricting Eve to the possibility of local leakage exploitation, 
demonstrating the security of loss control-based QKD under long-distance transmission and high signal intensity 
conditions. Our forthcoming mathematical research will explore alternative physical models involving more 
complex actions by Eve and will provide further security proofs, particularly dealing with the finite key length 
and security  parameter72.

The proposed approach maintains the fundamental advantage of the QKD, everlasting  security72–75, ensuring 
that distributed keys will remain secure even against future technologies or attacks that may be developed. In 
the forthcoming publication, we will address the experimental realization of the QKD based on our approach 
for the transmission distance over 1000 km.

Methods
Combined quantum state evolution under beam splitting attack. Here we provide the descrip-
tion of states’ evolution in the case of the beam splitting attack. We will use that (a) an amplifier transforms pure 
coherent state into a mixture of the coherent states,

where P(α, γ ,G) is given by Eq.  (4) and integration is performed over the complex plane with 
d2α ≡ dRe(α) dIm(α) ; and that (b) formally, a sequence of losses and amplifications can be reduced to a single 
pair of the loss and amplification quantum channels—see Supplementary Note 3 for details.

The initial density matrix of Alice’s random bit (A) and the corresponding signal (S) is given by

Just before the signal passes the beam splitter, the state of the AS system is

where we use Eq. (12) to describe the state of sequentially attenuated and amplified signal, and T1 and G1 are, 
respectively, the transmission probability and amplification factor of the effective loss and amplification channels 
that are equivalent to the sequence of amplifications and losses prior to the beam splitter, see Supplementary 
Note 3, particularly Eq. (58). Just after the signal passes the beam splitter, the state of the joint system of Alice’s 
random bit, the signal travelling to Bob and the signal component seized by Eve (E) is described by

where rE is the fraction of signal stolen by Eve. After the signal passes the second series of losses and amplifiers 
and right before it is measured by Bob, the state of the joint system is

where we again utilize Eq. (12) to describe the evolved signal state, and T2 and G2 are the effective transmission 
probability and amplification factor of the region between the beam splitter and Bob, see Eq. (60) in Supplemen-
tary Note 3. Bob receives the signal state, measures it and, together with Alice, discards the bits corresponding to 
the failed measurement results. The probability that Bob’s measurement outcome is b = {0, 1} given that Alice’s 
sent bit is a = {0, 1} can be written as

where Êb is given by Eq. (2a) or (2b) depending on the encoding scheme, and trASE[. . . ] is the trace over the ASE 
system. The probability that Bob performs a successful measurement if Alice sends bit a is

(12)|γ � →
∫

d2α P(α, γ ,G)|α��α|,

(13)ρ̂i
AS =

1

2
|0��0|A ⊗ |γ0��γ0|S +

1

2
|1��1|A ⊗ |γ1��γ1|S.

(14)ρ̂→�
AS = 1

2

∑

a=0,1

|a��a|A ⊗
∫

d2α · P(α,
√

T1γa,G1) · |α��α|S,

(15)ρ̂�→
ASE = 1

2

∑

a=0,1

|a��a|A ⊗
∫

d2α · P(α,
√

T1γa,G1)× |
√
1− rEα��

√
1− rEα|S ⊗ |√rEα��

√
rEα|E,

(16)

ρ̂→Bob
ASE = 1

2

∑

a=0,1

|a��a|A ⊗
∫

d2α · P(α,
√

T1γa,G1)

×
(
∫

d2β · P
(

β ,
√

(1− rE)T2α,G2

)

· |β��β|S
)

⊗ |√rEα��
√
rEα|E,

(17)p(b|a) = trASE

[(

2 · |a��a|A ⊗ Êb ⊗ 1̂E

)

ρ̂→Bob
ASE

]

,

(18)p(�|a) = p(0|a)+ p(1|a).
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Equation (2) follows from Eq. (16) after applying measurement operators to the signal subsystem, discarding 
sum components associated with the failed outcomes, and renormalizing.

Privacy amplification. Privacy amplification can be realized through applying the universal hashing 
 method53, which requires the users to initially agree on the family H of hash functions. At the privacy amplifi-
cation  stage50,76,77, they randomly select such a function h : {0, 1}p�L → {0, 1}Lf ∈ H that maps the raw key of 
length p�L to the final key of length Lf  . If Eve is estimated to know p�L · Ĩ(A, E) bits of the raw key, the letter 
must be taken in accord with Eq. (7). Family H can, for example, span Toeplitz  matrices78: a random binary Toe-
plitz matrix T̂ with p�L rows and Lf  columns translates the binary vector representation of the raw key v into 
the vector k representing the final key, k = T̂ · v.

Physical loss control precision. Assume that Bob is equipped with an optical filter with a very narrow 
wavelength band which blocks noise from the secondary light modes (for details on this additional noise, see 
Supplementary Note 3). Assume also that all amplifiers are positioned equidistantly, each having amplification 
factor G = 1/T with T being the transmission probability of the line section between two neighboring ampli-
fiers.

Approaching an amplifier, the test pulse comprising n photons is attenuated down to Tn photons. The ampli-
fier restores the number of photons back to n but adds noise. The photons in the pulse follow the Poisson sta-
tistics; thus, the photon noise just before the amplifier can be taken as a square root of the number of photons 
in the input signal 

√
Tn . The noise is amplified by factor G as well, so after a single amplifier the noise is G

√
Tn . 

Coming through a sequence of M amplifiers which add fluctuations independently, the total noise raises by the 
factor 

√
M  . The noise at Bob’s end is thus δnB ≃ G

√
MTn =

√
GMn . The minimum detectable leakage can be 

calculated as rmin
E ∼ δnB/n = √

MG/n . Our qualitative estimates match with the detailed calculations in Sup-
plementary Note 3.

Experimentally obtained reflectogram. Figure 4 displays an example of an experimentally obtained 
reflectogram. Every particular type of fiber discontinuity, whether it is physical contact, bending, or splice, can 
be identified by its own unique reflectographic pattern, as demonstrated in the inset plots. The appearance of 
peaks signifies the excessive scattering which happens, for instance, at the physical connectors where the signal 
undergoes the Fresnel reflection. The right noisy tail of the main plot corresponds to the end of the backscat-
tered signal. The measurements are carried out with a 2 µ s 1550 nm pulse laser with a power up to 40 mW. The 
experimental data is averaged over 16,000 measurements.

Figure 4.  An exemplary plot obtained with the optical time-domain reflectometer. The device sends the high-
intensity test pulses into the fiber and registers its reflections providing the dependence of the backscattered 
power on the distance to the scattering point defined by the time of the signal’s return.
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