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Embracing cohort heterogeneity 
in clinical machine learning 
development: a step 
toward generalizable models
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This study is a simple illustration of the benefit of averaging over cohorts, rather than developing a 
prediction model from a single cohort. We show that models trained on data from multiple cohorts can 
perform significantly better in new settings than models based on the same amount of training data 
but from just a single cohort. Although this concept seems simple and obvious, no current prediction 
model development guidelines recommend such an approach.

Hospitals nowadays collect vast amounts of data, far exceeding what physicians can  process1. There is a growing 
interest in artificial intelligence (AI) models to analyze these data in real-time and provide decision support. 
However, current AI models often show poor generalizability to new settings. A prime example is a widely 
implemented sepsis detection model, which has substantial performance drops in practice and burdens hospitals 
across the United States with alert  fatigue2.

Differences in AI model performance between hospitals often result from variations in case mix (popula-
tion heterogeneity) and local protocols or used devices (operational heterogeneity)3. Traditionally, medical AI 
models are trained on a single cohort, which increases the chances that the model will fit those hospital-specific 
patterns. We hypothesize that AI models trained on multiple cohorts, adding heterogeneity and diluting hospital-
specific patterns, are more generalizable to other settings, which has also been suggested previously in various 
 studies4,5. The current study aims to compare the performance of single versus multicohort trained prediction 
models and uses our recently developed blood culture prediction tool as an  example6. In that study, we extracted 
general laboratory results and vital sign measurements of patients who had a blood culture drawn during their 
emergency department stay in one of included centers. We then used these data to train a machine learning 
model to predict the target of whether the blood culture would become positive or negative (the latter included 
likely contaminants). The Amsterdam University Medical Centers’ (UMC) local medical ethics review committee 
waived the review of the current study as the Act of Research with Human Subjects did not apply (IRB number: 
IRB00002991; case: 2020.486). All methods were carried out in accordance with local guidelines and (privacy) 
regulations, and the need for informed consent was waived due to the deidentified nature of the data.

The data for this study were derived from our previous study of patients undergoing blood culture draws in 
the emergency department of the VU University Medical Center (VUMC), Zaans Medical Center (ZMC), and 
Beth Israel Deaconess Medical Center (BIDMC). Details on the cohorts can be found  elsewhere6. We trained a 
traditional, single-cohort-based model to predict blood culture outcomes (6000 VUMC patients) and validated 
it in the two others. We also trained models on mixed, more heterogeneous data while keeping the training size 
equal (e.g., 3000 VUMC/3000 ZMC patients or 3000 VUMC/3000 BIDMC patients) and validated them in the 
remaining cohort (Fig. 1). The model development is described in the Supplementary Appendix. We compare 
the areas under the curve (AUCs) of the various sets of predictions and estimate the 95% confidence interval 
around the differences in AUC using bootstrap resampling with replacement in 10.000 samples.
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When trained on data from two cohorts (VUMC and ZMC), our model reaches an AUC of 0.756 in the 
complete BIDMC cohort (n = 27.706; Fig. 2a), significantly outperforming the traditional single-cohort approach 
trained on VUMC data (AUC = 0.739; Fig. 2b). The difference between the model is 0.017 (95% CI 0.011 to 0.024). 
The calibration plot of the traditional approach does show a better calibration curve, with a slope round 1, while 
the multicohort model seems to be overconfident in rare cases with higher probabilities.

A model using VUMC and BIDMC data reaches an AUC of 0.752 when tested in the ZMC cohort (n = 5.961; 
Fig. 2c). While higher than the AUC of the traditional single-cohort model trained on VUMC data (AUC = 0.742; 
Fig. 2d), the difference is non-significant (0.010; 95% CI − 0.002 to 0.023). Both models seem to be well-calibrated 
in this dataset.

Combining cohorts to diversify training data can significantly improve the generalizability of medical predic-
tion models. By diluting cohort-specific patterns, models may better detect disease-specific predictors. This could 
provide significant benefits in large-scale clinical implementations as it may limit performance drops, such as 
observed with the sepsis detection  algorithm2. Although it has been suggested that this problem could also be 
restricted by validating and recalibrating models for use in new settings, our approach will be more valuable for 
implementation in smaller hospitals, which may not have the resources to recalibrate a  model7.

Notably, performances of the traditional and mixed models in the ZMC cohort did not differ significantly, 
perhaps due to the smaller sample size. Alternatively, combining two exceptionally different cohorts, such as 
VUMC (Netherlands) and BIDMC (United States), may make finding disease-specific predictors more challeng-
ing, despite a dilution of cohort-specific patterns. The tradeoff between training cohort similarity and heteroge-
neity should be carefully considered. On top of that, it is even more important to consider calibration beyond 
the AUC curves when using models trained on mixed cohorts. We observed a worse calibration in one of the 
multicohort models, which could be for example be caused by differing baseline risks for a positive blood culture, 
which need to be addressed during modeling procedures.

In conclusion, these data on a specific prediction task show that a model trained on combined cohorts reach 
significantly higher AUC scores in a new setting, which makes intuitive sense, but is not yet recommended by 
established development guidelines. The increasing numbers of publicly available datasets, such as the BIDMC 
data, make it feasible to use multiple cohorts for medical AI  development8. We encourage researchers to explore 
the simple yet effective approach of combining cohorts to improve generalizability to new settings, while being 
cautious of model calibration issues.

Figure 1.  A visual representation of the compositions of traditional and mixed training cohort approaches as 
used in our study. The traditional approach uses only one cohort to train a prediction model and validates in 
one or more external cohorts. The mixed training cohort approach uses multiple datasets to train a prediction 
model, increasing heterogeneity and diluting hospital-specific patterns. Consequently, the model may better 
capture genuinely disease-specific predictors, which can significantly improve the performance in external 
validation cohorts.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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Figure 2.  Comparing calibration plots and Areas Under the Curve (AUCs; c-statistics) of prediction models 
trained on mixed populations compared with a traditional approach trained on a single population. We use our 
recently developed prediction tool for the outcomes (positive or negative) of a collected blood culture in the 
emergency  department6. (a) Shows the calibration in the complete BIDMC cohort (n = 27.706) of a traditional 
blood culture prediction model trained on 6000 VUMC patients. (b) Shows the same calibration plot in the 
BIDMC cohort of a model trained on a mixed cohort of 3000 VUMC and 3000 ZMC patients. (c) Shows the 
calibration in the complete ZMC cohort (n = 5.961) of a traditional model trained on 6000 VUMC patients. (d) 
Shows the same calibration plot in the BIDMC cohort of a model trained on a mixed cohort of 3000 VUMC and 
3000 BIDMC patients. VUMC VU University Medical Center, ZMC Zaans Medical Center, BIDMC Beth Israel 
Deaconess Medical Center.
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