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An artificial neural network‑based 
radiomics model for predicting 
the radiotherapy response 
of advanced esophageal 
squamous cell carcinoma patients: 
a multicenter study
Yuchen Xie 1, Qiang Liu 2, Chao Ji 1, Yuchen Sun 1, Shuliang Zhang 1, Mingyu Hua 1, Xueting Liu 1, 
Shupei Pan 3, Weibin Hu 1, Yanfang Ma 1, Ying Wang 1 & Xiaozhi Zhang 1*

Radiotherapy benefits patients with advanced esophageal squamous cell carcinoma (ESCC) in terms 
of symptom relief and long-term survival. In contrast, a substantial proportion of ESCC patients 
have not benefited from radiotherapy. This study aimed to establish and validate an artificial neural 
network-based radiomics model for the pretreatment prediction of the radiotherapy response 
of advanced ESCC by using integrated data combined with feasible baseline characteristics of 
computed tomography. A total of 248 patients with advanced ESCC who underwent baseline CT 
and received radiotherapy were enrolled in this study and were analyzed by two types of radiomics 
models, machine learning and deep learning. As a result, the Att. Resnet50 pretrained network 
model indicated superior performance, with AUCs of 0.876, 0.802 and 0.732 in the training, internal 
validation, and external validation cohorts, respectively. Similarly, our Att. Resnet50 pretrained 
network model showed excellent calibration and significant clinical benefit according to the C index 
and decision curve analysis. Herein, a novel pretreatment radiomics model was established based 
on deep learning methods and could be used for radiotherapy response prediction in advanced ESCC 
patients, thus providing reliable evidence for therapeutic decision-making.

Esophageal cancer (EC) is one of the fatal subtypes of malignant tumors and has the seventh-highest mortality 
rate among all subtypes1. For Asia, squamous cell carcinoma is the primary pathological subtype of EC. Radical 
surgery and chemoradiotherapy are crucial treatments for esophageal squamous cell carcinoma (ESCC) patients2. 
Radical radiotherapy is recommended as a preferred treatment for cervical and middle thoracic esophageal car-
cinoma located at a higher position that is difficult to completely resect by surgery. For unresectable advanced 
ESCC, chemotherapy and radiotherapy are still needed to relieve symptoms and extend survival3–5.

Nevertheless, sensitivity to radiotherapy varies among different patients6, leading to significant differences 
in treatment response. Adverse events and side effects are more likely to be observed in patients with radiation-
resistant ESCC7,8. To this end, a practical and noninvasive approach that can estimate radiotherapy precisely 
before treatment implementation needs to be explored in ESCC patients.

In recent decades, the general classification of esophageal contrast (medullary type, fungating type, constric-
tive type, and ulcerative type) to predict the radiotherapy response has been widely used in clinical work9,10. 
However, this prediction is entirely based on empirical evaluation by radiologists, which causes differences among 
actual treatment responses. Otherwise, the molecular biomarkers related to radiotherapy sensitivity have not 
been prospectively validated for routine clinical usage. Recent studies have indicated that radiomics based on 
artificial intelligence (AI) can extract noninvasive radiographic virtual biopsy biomarkers, effectively providing 
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predictive information for treatment response11,12. Lu et al.13 found that the deep learning-based model showed 
high accuracy in identifying the origins of cancers of unknown primary. Zhong14 indicated that multiparametric 
magnetic resonance imaging (mp-MRI)-based radiomics features could be considered prognostic factors in 
patients with localized prostate cancer after radiotherapy. Gao15 showed that radiomics signatures based on lon-
gitudinal diffusion-weighted MRIs could be used to estimate radiotherapy effects preoperatively. Zhu16 reported 
that a nomogram model based on computed tomography (CT) imaging radiomic signatures and clinical factors 
showed proper sensitivity and specificity in estimating the risk of local recurrence in nasopharyngeal carcinoma 
(NPC) after intensity-modulated radiotherapy (IMRT).

Previous radiomics studies reported that radiomics features significantly improved the evaluation of the 
complete pathological response after neoadjuvant chemoradiation in EC patients17. However, few relevant studies 
based on radiomics to predict the response of radiotherapy in ESCC have been reported. Herein, in this study, a 
large cohort of 248 patients with ESCC was used to develop a novel baseline CT-based radiomics signature model 
by a deep learning algorithm to validate their performance in predicting response to radiotherapy.

Materials and methods
Patients.  Baseline information and imaging data, including demographic data, clinical data, pathological 
findings of biopsies before treatment, pre- and postsurgical imaging data, and surgical records, of patients with 
ESCC who underwent radiotherapy at Institution 1 (The First Affiliated Hospital of Xi’an Jiaotong University) 
from 2013 to 2019 were collected and analyzed. Moreover, we also retrieved and collected the same related data 
from patients with ESCC who received radiotherapy at Institution 2 (The Second Affiliated Hospital of Xi’an 
Jiaotong University) from 2017 to 2019. All patients underwent CT examination at the time of positioning before 
the beginning of their radiotherapy, and the CT data were collected retrospectively from 2021 to 2022. The main 
inclusion criteria were as follows: (1) biopsy-diagnosed ESCC; (2) clinically diagnosed advanced ESCC by CT 
and contrast imaging; (3) underwent complete radical radiotherapy (and did not drop out during the treatment); 
and (4) pre- and postradiotherapy imaging data were recorded after the same institution. The main exclusion 
criteria were as follows: (1) no biopsy or pathological confirmation; (2) no surgery or more than two weeks of 
adjuvant chemotherapy before radiotherapy; and (3) no reexamination of imaging data after radiotherapy. The 
general classifications of all patients were based on the Chinese CSCO guidelines18. We used the standard of 
clinical staging for nonoperative esophageal cancer (Draft) for tumor grading19. Written informed consent was 
obtained from all patients in this study. All methods undertaken in this work were carried out in accordance 
with the relevant guidelines and regulations. All patients’ clinical information was consecutively enrolled, and 
the Ethics Committee of Xi’an Jiaotong University approved this study.

Twenty percent of the patients from Institution 1 were randomly selected for the internal validation cohort, 
and the rest of the patients from Institution 1 were grouped into the training cohort. The patients from Institution 
2 were chosen as the external validation cohort. The detailed experimental flow is illustrated in Fig. 1.

Radiotherapy treatment and response assessment.  All patients in our research accepted the local-
izing by Brilliance CT locator (Philps, UK) before radiotherapy. The main operating parameters: tube voltage: 
140 kV; tube electric current: 500 mA; beam spacing: 0.625 layer thickness; rotation time: 0.5 s; matrix: 512 × 512; 
detector size: 24 mm. The scanning parameters: layer thickness ≤ 5 mm; interval ≤ 5 mm.

Before the scanning of CT, two radiotherapy technologists and doctors were required to accompany with the 
patients. All patients were required to fast for 4 to 6 h before CT scanning and drink 0.5 L of water during the 
scanning to make the esophagus dilated as much as possible. All patients were asked to hold their breath during 
using the multi-layer spiral CT machine to continuously scan the chest. The scanning range started from the 
upper edge of the supraclavicular fossa 5 cm above, down to the level of the 1st lumbar vertebra. Then the data 
of CT scanning was passed to the workstation for reconstruction.

All patients in this study received radical radiotherapy, with a dose of radiation ranging from 60 to 66 Gy at 
an energy of 6 MV, 1.8–2.0 Gy/fraction, 5 times per week. Organs at risk (OAR), including the bilateral lungs, 
spinal cord, gastric duct and heart, were outlined for protection. The maximum tolerated doses for key normal 
structures were as follows: spinal cord: < 40 Gy; heart V40 ≤ 30%; bilateral lungs: V20 ≤ 28% and V30 ≤ 20%; and 
stomach: V40 ≤ 40%. However, because the data were retrieved retrospectively, the actual dose of radiotherapy 
for each patient was slightly different. Despite this, each radiotherapy plan fell within the scope of the radical 
dose recommended by the NCCN guidelines20.

Imaging specialists assessed patients’ imaging data to measure the tumor’s maximum diameter in each plane 
recommended by RECIST 1.1 guidelines21. Then, the maximum diameter shrinkage rate of the tumor could be 
calculated (preradiotherapy maximum diameter/postradiotherapy maximum diameter), which is popularly used 
in clinical work to evaluate the treatment response. According to the maximum tumor diameter shrinkage rate 
for all patients, we selected 0.5 as the potential threshold to divide patients into two categories. After experiments, 
we chose the optimal cutoff value, which was 0.5 as the threshold to divide patients (tumor reduction rate greater 
than 50% and tumor reduction rate less than 50%).

Delineation of regions of interest (ROIs).  The continuous planes of CT images in all patients were 
outlined by two radiologists with more than eight years of experience in radiotherapy target area delineation 
using Monaco 5.2. Furthermore, another radiologist with more than 15 years of experience checked the target 
area and obtained the final radiotherapy target area, which guaranteed that the whole tumor of each patient was 
reflected by the target area from continuous planes of CT images. In this trial, we used the outlined target area 
images for the construction of a radiotherapy response model. To minimize the influence of the tumor margin 
on the model, for each patient, we chose the images that best described the tumor site.
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Dataset pre‑processing.  The patient CT and target delineation data collected in this experiment are stored 
in DICOM file format, and the CT data in the DICOM files are converted into 2D PNG format images through 
Python. In this way, we can extract 10 to 60 slices of 2D images outlining the tumor target area from each patient. 
Afterwards, professional radiologists selects the most representative 2D CT images of the tumor (usually images 
around the maximum diameter of the tumor). The dataset collected from institution 1 was randomly divided 
into training set validation sets on a patient basis. The data collected from Institution 2 is distributed to the 
external validation group.

In machine learning experiments, 2D CT images are transformed into feature vectors through feature extrac-
tion and subsequent experiments are conducted. In artificial neural networks, we applied data augmentation 
methods such as rotation, flipping, zooming, and distortion to the CT images. Through data augmentation, the 
dataset of CT images increased to 6000. And the 2D CT images were the direct input to the artificial neural 
network models.

Prediction using machine learning.  In this study, patients from institution one (training cohort and 
internal cohort) were used to construct and verify the classification model. Radiomic features of the CT images 
were extracted using PyRadiomics image extraction software version 3.0. A total of 102 2D features were 
extracted from each patient, including first-order, shape 2D, gray level cooccurrence matrix (GLCM), gray level 
run length matrix (GLRLM), gray level size zone matrix (GLSZM), neighboring gray-tone difference matrix 
(NGTDM), and gray level dependence matrix (GLDM) features22. Moreover, we grouped the correlated features 
(> 0.8) by the Pearson correlation coefficient algorithm, and the less predictive features in the same group were 
ignored in the feature selection algorithm (Supplementary Fig. S1). The random forest algorithm was used to 
decrease the data dimensions and select the most predictive features23. The formula and explanation of the fea-
ture selection algorithm are as follows:

in which X represents the feature, errOOB2 represents the out-of-bag error when we add noise to feature X and 
errOOB1 represents the out-of-bag error without adding noise. Ten sets of experiments with the number of features 
ranging from one to ten were applied to determine the optimal number of features for the model. Hence, the 
five most predictive features were selected to train the classifier and achieved the best performance. Meanwhile, 

(1)Importance(X) =
∑N

i=1 (errOOB2 − errOOB1)
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N
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Figure 1.   Flowchart illustrating the steps for developing the radiomic sensitivity prediction model, which 
includes patient categorization, tumor volume ROI delineation, model selection and output analysis. This flow 
chart shows the superiority of the neural network model in the end-to-end aspect. The prediction results can be 
obtained directly without the tedious feature extraction steps of machine learning. In practical applications, the 
generalization performance of the neural network model is also better.
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multiple classifiers were tested in this study, including support vector machine (SVM) with linear kernel, SVM 
with radial basis kernel linear regression model24,25, linear regression model26 and random forest. After comparing 
the AUCs of the classifiers, we selected the random forest algorithm because it outperformed all other classifiers.

Prediction using deep learning.  In this study, patients from institution one were used to build the train-
ing cohort and internal validation cohort, and patients from institution two were used to build the external 
validation cohort to verify the efficiency of generalization.

The CNN model has been proven to be very effective in the field of image classification27–29. End-to-end 
CNN models provide precise prediction results without additional image feature extractions, which significantly 
improves the model’s efficiency. In this study, multiple neural networks were used to classify the CT images of 
the patients. The model’s learning rate was set to 0.0005, and the root mean square prop (RMSprop) optimizer 
was used. Meanwhile, we used binary cross entropy as the loss function of the mode; the formula is as follows:

in which yi represents the label for each image, p(yi) represents the probability of the image being positive and 
q represents the real distribution. In addition, to prevent overfitting problems, we applied a dropout layer and 
set the dropout rate to 0.2 (randomly ignoring 20% of the neurons). Finally, a sigmoid layer was applied to the 
model before the output layer to normalize the outputs. The sigmoid function is defined as follows:

The batch size was set to 16 and achieved the best performance among other sizes. By training the neural network 
model, the probability statistics of patients’ radiotherapy sensitivity were finally obtained (a probability of more 
than 0.5 is sensitive, and a probability of less than 0.5 is resistant). The detailed structure of the neural network 
models is illustrated in Fig. 2a.

Diverse research on pretrained neural networks has shown state-of-the-art performance in image classifica-
tion tasks30,31. Meanwhile, the channel attention mechanism has been proven to be efficient in improving the 
performance of deep learning models. In this study, a pretrained ResNet50 (trained on ImageNet from Keras) 
with a channel attention layer was applied32–34. The channel attention layer was applied to capture the most critical 
channels from the model’s output; the formula of the function is as follows:

 in which MLP represents the multilayer perceptron and F represents the inputs. The learning rate was set to 
0.01, and the Adam optimizer was used. The loss function in these experiments was also binary cross entropy. 
Meanwhile, the dropout rate of the dropout layer was set to 0.5. After multiple experiments, the batch size was set 
to 32 and achieved the best performance. The pretrained model outperformed all the other methods we applied 
in this study. The optimal classifier with the best AUC was used for further exploration. The detailed structure 
of the neural network models is illustrated in Fig. 2b.

When evaluating the predictive performance of each models, we use the area under the ROC curve (AUC 
value) to measure the accuracy of each predictive models. However, the area under the ROC curve can not take 
into account the clinical practicability of the prediction model. Therefore, we use the decision curve to further 
evaluate each models. The decision curve integrates the preferences of decision makers into the analysis, and 
can actually evaluate the benefit in clinical practice after using this method. Thus, it meets the actual needs of 
clinical decision-making and is increasingly widely used in clinical analysis35
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Figure 2.   (a) CNN model consisting of two convolution layers with a kernel size of 3*3. Each convolutional 
layer follows the ReLU and max-pooling functions. The dropout function can significantly prevent the 
overfitting problems of the model. (b) The pretrained model was mainly built with pretrained ResNet50 from 
ImageNet, and the channel attention layer used both max pooling and average pooling to calculate the channel 
attention feature map.
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Statistical analysis.  We used SPSS statistical software version 18 to calculate the significant differences by 
the X2 test or Fisher’s exact test for categorical variables. A 2-tailed P < 0.05 was considered statistically signifi-
cant. The association analysis of univariate logistic was also calculated by SPSS statistical software version 18. The 
calibration curve and decision curve were performed to test the calibration performance and clinical utility35.  
Python software version 3.8 (Python) was used for graphic depiction.

Results
The baseline clinical characteristics of patients and association analysis with radiother‑
apy.  Our study enrolled 248 ESCC patients, including 154 (62.1%) patients in the training cohort, 45 (18.1%) 
in the internal validation cohort and 49 (19.8%) in the external validation cohort. The clinical characteristics of 
patients in the three cohorts are summarized in Table 1. The mean (SD) ages of the training, internal validation, 
and external validation cohorts were 69.36. The entire cohort comprised 245 patients (98.8%) who were diag-

Table 1.   Patient characteristics in the training, internal validation and external validation cohorts.

Institution 1 Institution 2

Training cohort, NO. (%) Internal validation cohort, NO. (%) External validation cohort, NO. (%)

Characteristic
Respondents 
n = 62 (40.26)

Nonrespondents 
n = 92 (59.74) P value

Respondents 
n = 14 (31.11)

nonrespondentsn = 31 
(68.89) P value

Respondents 
n = 18 (36.73)

nonrespondentsn = 31 
(63.27) P value

Sex

 Female 17 (27) 21 (23)
0.52

4 (29) 12 (39)
0.75

4 (22) 5 (16)
0.88

 Male 45 (63) 71 (77) 10 (71) 19 (61) 14 (78) 26 (84)

Age, mean (SD),y 69.90 (7.69) 69.10 (9.90) 0.65 68.71 (7.89) 68.68 (11.00) 0.61 70.44 (11.50) 69.39 (9.14) 0.72

Regression rate 
(SD),% 70.07 (12.78) 24.84 (22.94) 0 67.29 (12.36) 12.19 (53.15) 0 63.21 (10.15) 9.89 (54.23) 0

Clinical stage

 1 1 (2) 0 (0)

0.83

0 (0) 1 (3)

0.64

1 (5) 3 (10)

0.09
 2 10 (16) 20 (22) 3 (21) 1 (3) 2 (11) 10 (32)

 3 46 (74) 59 (64) 8 (58) 24 (77) 12 (67) 15 (48)

 4 5 (8) 13 (14) 3 (21) 5 (16) 3 (17) 3 (10)

Clinical T stage

 1 1 (1) 0 (0)

0.18

0 (0) 1 (3)

0.81

1 (5) 4 (13)

0.16
 2 11 (18) 24 (26) 3 (21) 5 (16) 3 (17) 11 (35)

 3 24 (39) 39 (42) 3 (21) 9 (29) 8 (45) 8 (26)

 4 26 (42) 29 (32) 8 (58) 16 (52) 6 (33) 8 (26)

Clinical N stage

 0 53 (85) 81 (88)

0.71

12 (86) 27 (87)

0.87

15 (83) 24 (77)

0.67
 1 7 (11) 5 (5) 0 (0) 1 (3) 2 (11) 6 (19)

 2 1 (2) 5 (5) 2 (14) 3 (10) 1 (5) 1 (4)

 3 1 (2) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)

Clinical M stage

 0 60 (97) 84 (91)
0.31

13 (93) 29 (94)
1

17 (95) 28 (90)
1

 1 2 (3) 8 (9) 1 (7) 2 (6) 1 (5) 3 (10)

Tumor location

 Cervical 1 (2) 3 (4)

0.92

0 (0) 0 (0)

0.82

0 (0) 3 (10)

0.17
 Upper thoracic 17 (27) 23 (25) 2 (14) 3 (9) 4 (22) 10 (32)

 Middle thoracic 27 (44) 38 (41) 6 (43) 12 (39) 11 (61) 9 (29)

 Lower thoracic 17 (27) 28 (30) 6 (43) 16 (52) 3 (17) 9 (29)

General type

 Medullary type 35 (56) 56 (61)

0.42

7 (50) 17 (55)

0.53

11  (61) 19  (61)

0.51
 Fungating type 12 (19) 9 (10) 1 (7) 0 3  (17) 3  (10)

 Ulcerative type 12 (19) 21 (23) 6 (43) 12 (39) 3  (17) 3  (10)

 Constrictive type 3 (6) 6 (6) 0 2 (6) 1  (5) 6  (19)

Tobacco use

 No 39 (63) 47 (51)
0.15

10 (71) 20 (65)
0.91

7 (39) 20 (65)
0.08

 Yes 23 (37) 45 (49) 4 (29) 11 (35) 11 (61) 11 (35)

Alcohol use

 No 51  (82) 72  (78)
0.54

10 (71) 23 (74)
1

12 (67) 29 (94)
0.04

 Yes 11  (18) 20  (22) 4 (29) 8 (26) 6 (33) 2 (6)
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nosed with clinical stage III ESCC at the time of treatment. The training cohort comprised 62 responders and 92 
nonresponders, the internal validation cohort comprised 14 responders and 31 nonresponders, and the external 
validation cohort comprised 18 responders and 31 nonresponders. There were no statistically significant differ-
ences in the sex ratio, clinical stage, tumor location, general type, or tobacco use during radiotherapy between 
responders and nonresponders in the training, internal validation, and external validation cohorts (Table 1).

Analyzing the patients’ characteristics by univariate logistic regression showed no associations with radio-
therapy response, including sex, age, maximum diameter of tumor before radiotherapy, clinical tumor stage, 
clinical node stage, clinical metastatic stage, clinical stage, general type, tumor location, alcohol use, and tobacco 
use in each cohort (P > 0.05) (Supplementary Table S1).

Machine learning radiomics models using random forest for predicting response to radiother‑
apy.  Four machine learning classifiers were used to construct radiomics models, including linear regression, 
SVM with linear kernel, SVM with radial basis kernel, and random forest models. The ten most predictive 
features identified by the random forest algorithm were selected to train the classifier. Compared with the per-
formance outcomes of each classifier, the random forest model showed the highest AUCs in the training and 
internal validation cohorts, which were 0.767 (95% CI, 0.734–0.790) and 0.594 (95% CI, 0.562–0.631), respec-
tively. The SVM with a linear kernel achieved an AUC of 0.561 (95% CI, 0.530–0.594) in the internal validation 
cohort, while the SVM with a radial basis kernel model achieved an AUC of 0.539 (95% CI, 0.510–0.564) in the 
internal cohort. The AUC of the linear regression model in the internal validation cohort was 0.589 (95% CI, 
0.561–0.646) (Supplementary Fig. S3a–c). Then, to compare the performance of combined features model with 
independent feature model, we used the five most predictive features of combined model to train the model indi-
vidually by random forest. The performance of each independent feature in the radiomics model showed a lower 
AUC than that of the combined features in the same radiomics model (Fig. 3a and b, Supplementary Table S2).

A deep learning radiomics model using pretrained ResNet50 and a channel attention mecha‑
nism for predicting response to radiotherapy.  The deep learning radiomics model constructed of 
pretrained ResNet50 and the channel attention mechanism outperformed all other methods in predicting radio-
therapy response. The model achieved AUCs of 0 0.876 (95% CI 0.853–0.895), 0.802 (95% CI 0.775–0.837), and 
0.732 (95% CI 0.672–0.797) in primary, internal and external cohorts, while the model trained by a CNN from 
scratch achieved AUCs of 0.805(95% CI 0.774–0.830), 0.770(95% CI 0.729–0.802), and 0.678(95% CI 0.619–
0.738), respectively (Fig. 4a–c). This result indicated that the features of CT were feasible for constructing a 
reliable prognostic radiomics model. In comparing the performance of the machine learning radiomics models, 
the CNN radiomics models showed higher AUCs in all three cohorts, which revealed that the deep learning 
radiomics models, without decreasing data dimensions and removing redundant features, improved the perfor-
mance of the radiomics model. The process of dimensionality reduction of radiomics features may lead to a lack 
of perspective information.

To estimate the predictive stability of the radiomics models and evaluate the benefits in clinical applications, 
decision curves and calibration curve were used to evaluate the performance of two neural network models. 

Figure 3.   (a,b) The random forest model’s receiver operating characteristic curves of radiomic signatures in 
the primary cohort and internal cohort. The thick red line illustrates the ROC curve of the random forest model 
using all top 10 features, while other lines represent random forest models using the top 5 features separately.
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The decision curves showed that with the consideration of preferences of decision, using Att. Pretrained model 
will obtain more benefits than using CNN model in clinical practice (Fig. 4d, e). A calibration curve was applied 
to the pretrained ResNet50 model in the primary and internal cohorts (Fig. 4f), which showed a high degree of 
agreement between the predicted and actual results of the model.

Discussion
Radiotherapy is considered one of the most crucial treatments for ESCC patients36. The construction of models 
for predicting the response to radiotherapy is significantly instructive for individualized precision treatment37. 
What makes radiation response prediction difficult in ESCC is the lack of predictive molecular markers of radia-
tion sensitivity38. Moreover, the traditional clinical characteristics and general type of ESCC showed limited 
correlation with the response to radiotherapy. Thus, an available model that can efficiently predict the response 
to radiotherapy in patients with ESCC needs to be developed. Recently, radiomics signature models based on 
AI have been applied to different areas and have shown incredible performance in predicting the response to 
radiotherapy39–43. Here, we aimed to design a pretreatment CT-based radiomics model for radiotherapy response 
prediction in patients with ESCC, which can cover the shortage of predictive molecular markers.

Machining learning and deep learning models have been widely used in radiomics research44–46. In a previ-
ous study, traditional machining learning algorithms, such as random forest and SVM, were mentioned more 
frequently than deep learning algorithms due to the limitation of the population of cohorts17,47. Moreover, end-
to-end algorithms in deep learning have begun to be used in cancer research in recent years, not only using 
radiographic images but also using histopathological images48,49. Screening the reproducibility of features, which 
is considered an indispensable part of reducing the overfitting of traditional machine learning radiomic models, 
seems to improve the performance of the radiomics model. In contrast, end-to-end algorithms do not need to 
reduce the dimensionality and aim to make full use of all image information to draw conclusions50. However, the 
superiority of these two types of algorithms has not been compared to predict radiotherapy response. To deter-
mine which of these two algorithms can construct a more effective radiomics model, in our study, both algorithms 

Figure 4.   (a,b) and (c), Receiver operating characteristic curves of radiomic signatures in the primary cohort 
(a), internal cohort (b), and external cohort (c), which illustrate the comparison between Att. pretrained 
network and CNN model. D and E, Decision Curve of Att. Pretrained model (d) and CNN model (e). The 
brown line represents all patients who responded to radiotherapy, while the navy blue dotted line represents 
patients who did not respond to radiotherapy. (f), The plot illustrates the calibration of the radiomic signature in 
Att. Pretrained model. The dotted line indicates the ideal model. The orange line represents the calibration curve 
of the primary cohort, and the blue line represents the internal cohort.
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were used to construct radiomics models in the same ESCC patient cohorts. The results implied that whether in 
the training, internal validation or external validation cohorts, the radiomics model constructed by the end-to-
end deep learning algorithm showed better performance. This suggests that end-to-end deep learning algorithms 
should receive more attention in subsequent radiomics studies. Moreover, the CNN model from scratch and 
the CNN pretrained model were also compared in our studies. Although the use of pretrained neural network 
models has become an increasingly mainstream choice in recent research, pretrained and models from scratch 
have rarely been compared in radiomics studies51. Our studies showed some evidence regarding pretrained 
models. Meanwhile, recent studies reported that the channel attention mechanism could significantly improve 
the performance of neural network models. In our study, the channel attention layer significantly improved the 
convergence difficulty caused by too many channels in the pretrained model and improved the performance of 
the model by nearly 3% in the external validation cohort.

Recently, advances in radiogenomics have shown that radiomics signatures have distinct correlations with 
gene expression patterns37. The radiomics signatures driven by different pathways involved in immune regula-
tion, tumor proliferation, treatment responses and cellular functions further explain the biological basis of 
radiomics52. This result suggests that we can reflect intratumoral heterogeneity, to a certain extent, by construct-
ing a radiomics model. Compared with traditional clinical characteristics, radiomics features better predict the 
treatment response to radiotherapy. Therefore, we hypothesize that end-to-end algorithms’ overall utilization 
of CT image information may reflect tumor heterogeneity. The difference in extracting image information may 
cause an apparent discrepancy between these two different algorithms. However, these theories have not been 
elucidated by radiogenomics and multiomics studies.

Our retrospective study was limited to temporal discontinuities in the included patients. Although our study 
minimized differences in imaging data by using a standardizing process, the differences in CT equipment between 
each period and institution may lead to bias in collecting imaging data. To our knowledge, this study is the first 
multicenter study of radiomics in nonsurgical ESCC patients. However, the two institutions of our study are 
located in the same province, and the number of patients is limited. A large patient population of other regions 
is still needed to evaluate the extrapolation of the model. Finally, our study only analyzed the 2D radiomics 
phenotype and clinical characteristics due to the limitation of cohorts, and the 3D radiomics phenotype did not 
show good performance in our model. Therefore, the 3D radiomics phenomenon still needs to be explored in the 
next step. It is also necessary to combine other omics to further reveal the biological significance of radiomics.

This is the first multicenter radiomics study to develop an Att. Resnet50 pretrained network radiomics model 
in patients with advanced ESCC. It enables clinical decision-making, relying not only on the clinical doctors’ 
experience but also on an objective basis. The effective prediction of radiotherapy provides these patients with 
reasonable individualized and precise treatment options, as well as timely alternative curative-intent treatment 
approaches to prevent any unnecessary side effects of radiotherapy and improve the quality of life and survival 
outcomes of advanced ESCC patients. In addition, our study uses existing routine diagnostic CT imaging, which 
does not add additional financial burden to patients. At the same time, the Att. Resnet50 pretrained network 
radiomics model does not require standardized extraction of radiomics signatures, which can be more conveni-
ent in clinical use for oncologists to predict the radiotherapy response during diagnosis.

Conclusion
Developing an Att. Resnet50 pretrained network radiomics model for predicting the response to radiotherapy 
in patients with advanced ESCC can not only help oncologists formulate effective individualized radiotherapy 
plans promptly and guide clinical decision-making but also complement the lack of molecular markers for 
predicting radiosensitivity. It is hoped that our study can be included in the radiomics database of ESCC and 
be considered a baseline study of radiomics in advanced ESCC. The model has the potential to apply to other 
medical image classification tasks.

Data availability
The data sets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.Code of our full approach are publicly available from Github (https://​github.​com/​lqawa​
keme/​RRAES​CC).
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