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Diabetes mellitus (DM) affects the quality of life and leads to disability, high morbidity, and premature 
mortality. DM is a risk factor for cardiovascular, neurological, and renal diseases, and places a major 
burden on healthcare systems globally. Predicting the one‑year mortality of patients with DM can 
considerably help clinicians tailor treatments to patients at risk. In this study, we aimed to show 
the feasibility of predicting the one‑year mortality of DM patients based on administrative health 
data. We use clinical data for 472,950 patients that were admitted to hospitals across Kazakhstan 
between mid‑2014 to December 2019 and were diagnosed with DM. The data was divided into four 
yearly‑specific cohorts (2016‑, 2017‑, 2018‑, and 2019‑cohorts) to predict mortality within a specific 
year based on clinical and demographic information collected up to the end of the preceding year. 
We then develop a comprehensive machine learning platform to construct a predictive model of 
one‑year mortality for each year‑specific cohort. In particular, the study implements and compares 
the performance of nine classification rules for predicting the one‑year mortality of DM patients. The 
results show that gradient‑boosting ensemble learning methods perform better than other algorithms 
across all year‑specific cohorts while achieving an area under the curve (AUC) between 0.78 and 0.80 
on independent test sets. The feature importance analysis conducted by calculating SHAP (SHapley 
Additive exPlanations) values shows that age, duration of diabetes, hypertension, and sex are the 
top four most important features for predicting one‑year mortality. In conclusion, the results show 
that it is possible to use machine learning to build accurate predictive models of one‑year mortality 
for DM patients based on administrative health data. In the future, integrating this information with 
laboratory data or patients’ medical history could potentially boost the performance of the predictive 
models.

The burden of diabetes is a rising concern in healthcare worldwide. According to the estimates of the Interna-
tional Diabetes Federation (IDF), in 2021, there were 537 million adults living with diabetes, which is 6.79% of the 
world’s  population1. According to the global epidemiological data from 2017, the predicted number of diabetes 
will be 693 million by 2030, while the most recent study projects a rise up to 783 million by 2045. IDF study 
reports that 75% of cases live in low- and middle-income countries, and there were 6.7 million deaths worldwide 
in  20212. In Kazakhstan, overall 472,950 people were listed with Type 1 and Type 2 Diabetes in inpatient and 
outpatient registries in the same  period3.

Diabetes mellitus (DM) affects the quality of life and leads to disability, high morbidity, and premature 
mortality. DM is a risk factor for cardiovascular, neurological, and renal diseases, and places a major burden on 
healthcare systems globally. At the same time, populations around the world are rapidly aging, and that further 
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contributes to a higher number of incident DM cases. Elderly people can have multiple comorbidities and 
complications along with DM, which elevates mortality  rates4. In this regard, predicting the one-year mortality 
of patients with DM is at the core of health management systems as it can help clinicians tailor treatments to 
improve the survival of DM patients.

In recent years, constructing data-driven predictive models using machine learning has found various appli-
cations in health  care5,6.  In7, Random Forest (RF) algorithm was used for the early prediction of diabetes using a 
number of variables such as regular and ultralente insulin dose, socio-demographic factors, and hypoglycemic 
symptoms, to just name a few. In another  study8, different predictive models were examined to predict diabetes 
based on several factors such as glucose level, blood pressure, and insulin. Moreover, machine learning techniques 
were used to predict the mortality of diabetes patients based on HbA1c and lipid  parameters9. With successful 
applications of machine learning in disease and mortality prediction, it is highly anticipated that it can be used 
to predict the one-year mortality of patients with DM based on ordinary clinical variables. Some mortality 
prognostic models have been developed using machine learning approaches on clinical and administrative 
 data9–11. Furthermore, several studies have attempted to predict mortality for DM patients in an intensive care 
unit (ICU)12–15. However, predicting the one-year mortality of DM patients based solely on administrative health 
data including diagnoses, comorbidities, procedures, and demographics have not been used before. This is in 
sharp contrast with the previous studies where additional information including the results of laboratory tests 
or vital signs (e.g., ICU admission) were used for prediction.

In this regard, we used the Unified National Electronic Health System (UNEHS) of Kazakhstan to collect 
ordinary clinical data for a large cohort of DM patients who registered in hospitals across the country between 
January 2014 and December 2019. The detailed description of database is given  elsewhere16. The collected data 
was then divided into four subcohorts to predict mortality within a year (starting from 2016) based on collected 
clinical data up to the end of the preceding year. We then develop a comprehensive machine learning platform 
to construct one predictive model of one-year mortality for each subcohort. Our study points to the feasibility 
and robustness of the developed machine learning (ML) platform for predicting the one-year mortality of DM 
patients in Kazakhstan using aggregated nationwide administrative healthcare data. We also identify and rank 
the importance of clinical variables that were used by the constructed predictive models of mortality.

To our knowledge, there is a lack of models that can distinguish high-risk populations and forestall the 
mortality of individuals with diabetes in Central Asian countries. The development of a prognostic model for 
one-year mortality in diabetes mellitus has the potential to assist healthcare practitioners in devising individu-
alized treatment plans and interventions that can mitigate adverse consequences. Furthermore, this could aid 
in the allocation of resources, as patients who are deemed high-risk may necessitate more frequent monitoring 
or follow-up care.

Results
Data description. The objective of this study is to predict one-year mortality in DM patients based on 
administrative health data. In this regard we collected clinical data for patients diagnosed with DM from 
 UNEHS3, which is a nationwide electronic health record repository of patients admitted to hospitals across 
Kazakhstan between mid-2014 and December 2019. After excluding patients with the missing outcome, which 
is the mortality with possible values being dead or alive, the data was divided into four yearly-specific cohorts 
to predict mortality within a specific year based on clinical information collected up to the end of the preceding 
year. Hereafter, these subcohorts are referred to as 2016-, 2017-, 2018-, and 2019-cohorts and contain 262,212, 
301,563, 337,846, and 370,807 patients, respectively. For example, the cohort of 2018 contains only patients 
who have been admitted to the hospital and were alive on or prior to 31st December 2017 and, at the same 
time, the value of the outcome variable in 2018 is known (see Supplementary materials for more details). The 
data is highly imbalanced with the ratio of death to alive being, 10,490:251,722, 11,568:289,995, 13,168:324,678, 
13,534:357,273, for 2016-, 2017-, 2018-, and 2019-cohorts, respectively. The clinical variables used as predictors 
of mortality in the collected cohorts are listed in Table 1 (more information in the Supplementary Table S1). The 
missing values of numeric and categorical predictors were imputed based on the median and mode of those vari-
ables in training data, respectively. We used a stratified random split to divide each yearly-specific cohort with 

Table 1.  Name and description of predictors (features) used in yearly-specific cohorts. CHD, coronary heart 
disease; CVA, cerebrovascular accident; T1D, type 1 diabetes; T2D, type 2 diabetes.

Feature Description Unit Type

Age Age at the first hospitalisation recorded in the database Years Numeric

Sex Gender: female or male Binary Categorical

Ethnicity Three major categories: Kazakhs, Russians and others Tertiary Categorical

Type of Diabetes Type of diabetes: T1D or T2D, and other types Tertiary Categorical

CHD Comorbidity for diabetes (yes/no) Binary Categorical

CVA Comorbidity for diabetes (yes/no) Binary Categorical

Neoplasms Comorbidity for diabetes (yes/no) Binary Categorical

Hypertension Comorbidity for diabetes (yes/no) Binary Categorical

Hospitalisation Number of hospitalizations during observation period Frequency Numeric

Duration of Diabetes Follow-up time until December 31 the preceding year of prediction Years Numeric
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an 80/20 ratio into training and test sets. The stratification is performed to keep the proportion of samples that 
appear in training and test sets the same as the full cohort. The training set is used for predictive model (classi-
fier) training and selection, while the test set is used for model evaluation. Each year-specific constructed pre-
dictive model classifies the status of the patient (dead or alive) within the next year after collecting the patients’ 
clinical data.

Training and selecting yearly‑specific classifier of one‑year mortality—model training and 
selection. We deployed nine classifiers, namely, Gaussian Naïve Bayes (GNB)17, K-nearest neighbors 
(KNN)17, logistic regression with L2 ridge penalty (LRR)18, random forest (RF)18, AdaBoost with decision 
trees (ADB)19, gradient boosting with regression trees (GBRT)20, XGBoost (XGB)21, linear discriminant analy-
sis (LDA)22, and perceptron (PER)17 (see the Materials and Methods section for more details on the rationale 
behind the selecting these classifiers). The candidate hyperparameter space for each classifier is discussed in the 
Materials and Methods. The developed ML platform performs model selection (including hyperparameter tun-
ing) using each yearly-specific training set by calculating the area under the curve (AUC) performance metric 
using stratified 5-fold cross-validation (5-CV). Table 2 shows the 5-fold CV estimate of the AUC for each classi-
fier. As observed in Table 2, GBRT achieved the highest AUC for the years 2016 and 2017, while XGB showed the 
highest AUC for 2018 and 2019. That being said, both classifiers are from the class of gradient boosting ensemble 
learning. This shows the superiority of gradient-boosting ensemble learning compared with other algorithms in 
our application.

Evaluating year‑specific classifier of one‑year mortality—model evaluation. The best year-spe-
cific classification algorithm and the values of its hyperparameters that were identified in the model selection 
phase were used to train one final year-specific classifier on the entire training set. Then each of these trained 
classifiers is evaluated on the corresponding (year-specific) test set using several performance metrics including 
AUC, balanced accuracy, sensitivity, specificity, and the geometric mean of sensitivity and specificity (G-mean). 
Figure 1 shows the entire process of model selection and evaluation. The results of the model evaluation are 
shown in Table 3. The confusion matrices across all year-specific test sets are presented in Supplementary Mate-
rials (Supplementary Tables S2–S5). All classifiers achieved an AUC greater than 0.78, which is ranked ‘fair’ 
(close to ‘good’) as per objective metrics of diagnostic tests  (see23 for performance guidance based on AUC). At 
the same time, the estimated AUCs on test sets are quite close to the AUCs previously achieved using a 5-fold 
CV. This observation per se shows the robustness of developed classifiers. The results also show that the devel-
oped classifiers have a higher sensitivity than specificity. In the trade-off between sensitivity and specificity of 
our developed classifiers, this is indeed a desirable feature for our application, because the cost of not detecting 
(and no intervention thereof) a patient who will die within a year is (much) higher than a patient who is labeled 
as “death” but will truly survive.

Impact direction and importance of each feature for predicting one‑year mortality. We per-
formed a  SHAP24 (short for SHapley Additive exPlanations) analysis to: (1) infer the direction of impact of each 
feature on mortality prediction made by the year-specific model; and (2) measure the overall importance of 
each feature on outcome prediction. In this regard, we estimated SHAP values for the year-specific classifier that 
was selected in the model selection stage; that is to say, for 2016 and 2017, they were estimated for the GBRT 
classifier, and for 2018 and 2019, they were estimated for the XGB classifier. Furthermore, SHAP values were 
computed for all variables in the training dataset as no feature selection has been performed (see Discussion). 
Figure 2 shows the SHAP summary dot plot and mean absolute SHAP bar plot for the 2016-specific cohort. 
Similar plots for other year-specific classifiers are presented in Supplementary Materials. From Fig. 2a, we also 

Table 2.  The classifier-specific estimated AUC mean ± standard deviation over 5 folds of 5-fold cross-
validation obtained on the training set. The year-specific highest AUC mean and standard deviation is 
identified in bold. GNB, Gaussian Naive Bayes; KNN, K-nearest neighbors; LRR, logistic regression; RF, 
random forest; ADB, Adaboost with decision trees; GBRT, gradient boosting with regression trees; XGB, 
XGBoost; LDA, linear discriminant analysis; PER, perceptron.

Classifier

AUC 

2016 2017 2018 2019

GNB 0.705 ± 0.009 0.697 ± 0.009 0.695 ± 0.009 0.703 ± 0.003

KNN 0.602 ± 0.003 0.585 ± 0.003 0.588 ± 0.003 0.584 ± 0.004

LRR 0.756 ± 0.006 0.744 ± 0.003 0.743 ± 0.002 0.749 ± 0.005

RF 0.687 ± 0.004 0.681 ± 0.009 0.682 ± 0.003 0.689 ± 0.003

ADB 0.770 ± 0.003 0.758 ± 0.005 0.755 ± 0.005 0.764 ± 0.005

XGB 0.793 ± 0.007 0.784 ± 0.002 0.791 ± 0.003 0.797 ± 0.006

GBRT 0.795 ± 0.005 0.786 ± 0.007 0.787 ± 0.002 0.794 ± 0.002

LDA 0.755 ± 0.007 0.742 ± 0.005 0.741 ± 0.005 0.748 ± 0.002

PER 0.593 ± 0.013 0.605 ± 0.012 0.641 ± 0.011 0.596 ± 0.010
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observe that age and duration of diabetes are directly proportional to higher mortality. Considering binary 
values of hypertension, the results show that the lack of hypertension (encoded as 0) is associated with higher 
mortality. To summarize the results of SHAP values across all four cohorts, we determined the average of the 
mean absolute SHAP value (AMAS) for each feature across all years. This result ranks the features (from highest 
to lowest importance) as age, duration of diabetes, hypertension, sex, neoplasms, hospitalisation, CHD, CVA, 
type of diabetes, and ethnicity with AMAS being 0.0129, 0.0097, 0.0041, 0.0034, 0.0003, 0.0018, 0.0013, 0.0010, 
0.0008, 0.0006, and 0.0003, respectively. Based on these findings age, duration of diabetes, hypertension, and sex 
are the top four most important features for predicting one-year mortality.

Discussion
The results in Table 3 show that all trained yearly-specific classifiers achieved a predictive performance in the 
range of 0.78–0.799 in terms of AUC. At the same time, as per objective metrics of diagnostic tests, an estimated 
AUC in the range of 0.7–0.8 is generally considered a ‘fair’ predictive capacity for the  test23.

Several studies have predicted the mortality of DM patients using a combination of clinical and administrative 
data. For instance, a recent  study12 predicted the mortality of diabetic patients admitted to the ICU using nine 
classifiers including LR, RF, AB, XGB, GBM, artificial neural network (ANN) and majority voting. XGB and 
majority voting showed the best performance with an AUC of 0.867 and 0.867, respectively. Similarly, another 
 study13 predicted the mortality of critically ill patients with DM using the Charlson comorbidity index (CCI), 
Elixhauser comorbidity index, the diabetes complications severity index (DSCI), RF, and LR as the main predic-
tion models. The LR achieved an AUC of 0.785, while RF achieved an AUC of 0.787.

Figure 1.  A schematic diagram of the developed machine learning platform.

Table 3.  Performance metrics of year-specific selected classifier evaluated on the test data for the same year. 
GBRT, gradient boosting with regression trees; XGB, XGBoost.

Classifier AUC Balanced accuracy Sensitivity Specificity G-mean

2016-classifier
(GBRT) 0.791 0.698 0.876 0.520 0.722

2017-classifier
(GBRT) 0.787 0.690 0.879 0.502 0.779

2018-classifier
(XGB) 0.787 0.674 0.899 0.499 0.775

2019-classifier
(XGB) 0.799 0.644 0.937 0.352 0.777
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In another  study14, the mortality of heart failure patients with diabetes was predicted using nine classifiers, 
including LR, RF, SVM, KNN, DT, GBM, XGBoost, LightGBM, and Bagging. The RF algorithm outperformed 
other algorithms, achieving an AUC of 0.92. Mortality prediction of patients with diabetes and sepsis in ICU 
using five classifiers were investigated in another  study15. Authors used LR with lasso regularization, Bayes LR, 
decision tree, RF, and XGBoost. Out of five classifiers, the RF model showed the best performance, achieving an 
accuracy of 0.883. In another  investigation9, Random Survival Forest (RSF) was used to predict the mortality of 
patients with diabetes and study the hazardous effects of HbA1C and lipid variability. The RSF model achieved 
an AUC of 0.866. Table 4 provides a summary of studies on predicting mortality of DM patients.

Although our identified models have a ‘fair’ predictive capacity (close to ‘good’), their estimated AUC is 
generally lower than the previous  studies9,12,14,15. This state of affairs can be attributed in part to the availability 

Figure 2.  SHAP analysis of 2016-specific cohort: (a) SHAP summary dot plot for the 2016-specific cohort. A 
red dot shows a high value of the feature for a patient, whereas a blue dot shows a low value. The likelihood of 
mortality increases (decreases) for a positive (negative) SHAP value. Positive SHAP values for red dots show 
a direct dependence on the feature and the outcome, whereas the same values for blue dots imply an inverse 
dependence. (b) The mean absolute SHAP value bar plots for the 2016-specific cohort. The plot shows the 
feature importance on outcome prediction made by the model (a longer bar shows a more important feature).

Table 4.  Comparison of studies and their main predictors (important features), and model performance 
in terms of AUC. MIMIC, Medical Information Mart for Intensive Care; SOFA, Sequential Organ Failure 
Assessment; APS III, Acute Physiology Score (APS) III; eICU-CRD, eICU Collaborative Research Database; 
dtChina, a large critical care database in China; NHIRD, National Health Insurance Research Database; RF, 
random forest.

Study Dataset

Patients amount

Algorithm Performance by AUC Important predictorsAlive Dead Imbalance proportion

Lee, S. et al.9 Dataset from Hong Kong 
hospitals 25,186 12,372 0.491 Regularized and Weighted 

RSF 0.8663
Age, chronic kidney dis-
ease, baseline hemoglobin, 
heart failure

Barsasella, D. et al.10 Dataset from Taiwan 
NHIRD 28,510 883 0.03 RF 0.97

Displacement of lumbar 
intervertebral disc, cerebral 
artery occlusion, age, hear-
ing loss

Ye, J. et al.12 MIMIC-III 8790 1164 0.132 XGBoost
Majority Voting 0.86 DCSI sum, Elixhauser sum, 

CCI sum, mean glucose

Anand, R. S. et al.13 MIMIC-III 3729 382 0.102 RF and LR 0.787
Mean glucose, mean 
HbA1c, type of admission, 
severity scores

Yang, B. et al.14 MIMIC-IV 2815 395 0.140 RF 0.92 APS III, SOFA, urine out-
put minimum, lactate_max

Qi, J. et al.15

MIMIC-IV 5000 896 0.142

RF 0.883
Lactate, age, oxygen 
saturation, systolic blood 
pressure

eICU-CRD 715 727 0.145

dtChina 390 69 0.177
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of clinical information regarding the laboratory tests and vital signs that were used in the previous investigations, 
whereas in our study none of these information were used.

The results of our study show that the top four most important features for predicting one-year mortality 
are age, duration of diabetes, hypertension, and sex. It is worthwhile to mention that throughout the work, the 
“importance” value of a feature is a measure of “association” between the feature and the mortality (rather than 
a notion of “causality”). Nonetheless, from Fig. 2a (and other similar figures in Supplementary Materials), it is 
observed that the age and the duration of diabetes are directly proportional to a higher mortality. Furthermore, 
the results show that the lack of hypertension is associated with higher mortality. In this case, hypertension has a 
paradoxical protective  effect3. It can be partly explained by the reverse epidemiological phenomenon of standard 
risk factors in chronic diseases and chronic infections such as HIV/AIDS25,26. Previous  studies9–15 have reported 
various predictors of mortality in diabetes; however, the identified factors have not been consistently replicated 
across studies, as summarized in Table 4. Age is the only predictor that was consistently shown to be significant 
in several studies, as well as in ours.

The association between age and diabetes mortality has been extensively studied in the literature. A number 
of studies have reported that increasing age is associated with a higher risk of diabetes-related  mortality27–29. 
Research based on nationwide registers in Denmark showed that individuals who are diagnosed with diabetes at 
an older age have a higher mortality risk within the first two years after  diagnosis30. On the other hand, another 
study showed that individuals diagnosed with type 2 diabetes at a younger age had a greater likelihood of mor-
tality compared to those diagnosed at an older  age31. Our findings indicate that elderly age at diabetes diagnosis 
is associated with an elevated risk of mortality.

The association between gender and diabetes mortality has been a topic of interest in recent studies, par-
ticularly in the context of gender influence on diabetes management and outcomes. The systematic review and 
meta-analysis conducted by Wang and colleagues showed that women with diabetes have generally a higher risk 
of coronary heart disease and all-cause mortality compared to men with the same condition. Specifically, women 
with diabetes have a 58% greater risk of CHD and a 13% greater risk of all-cause  mortality32. Another systematic 
review stated that the additional likelihood of developing cancer and the higher risk of death that comes with 
having diabetes are slightly more pronounced in women than in  men33. Although the majority of studies show 
that women with diabetes have higher risk of mortality than men with the same condition, our results indicates 
the opposite, which is supported by several  studies34,35. A study from Germany found that men had a higher 
mortality rate associated with total T2D compared to women due to a greater relative mortality associated with 
undiagnosed T2D in men compared to  women35. One possible explanation for this gender difference could be 
that women in Germany receive a diagnosis for T2D earlier in the course of the disease than men, which could 
lead to better management and outcomes. This explanation may also apply to our study, as women in Kazakhstan 
have greater awareness of the diabetes condition. Moreover, among older people in Kazakhstan, women had 
significantly higher rates of DM control (31.8%) compared to men (22.6%)36.

The studies from Scotland and Sweden found that among diabetic patients, women with congestive heart 
failure (CHF) as a comorbidity have higher mortality rate compared to men with a similar  condition37,38. It can 
be related to differences in diabetes management and access to care, as well as biological factors such as hormo-
nal changes. Moreover, type 2 diabetes is associated with a two to four-fold increase in the risk of developing 
CHF and ischemic  stroke39. Numerous studies show that patients with diabetes and CHF had a significantly 
higher risk of all-cause mortality compared to those without CHF, even after adjusting for various clinical and 
demographic  factors40,41. The increased mortality risk in patients with both CHF and diabetes may be related 
to impaired cardiac function, insulin resistance, and chronic inflammation. The results of the current study are 
consistent with the literature.

Although research shows that comorbid hypertension increases the mortality among diabetes  population42–44, 
the results of this study indicate the opposite. The management of hypertension in individuals with diabetes can 
reduce the mortality risk by reducing the risk of developing complications related to both conditions. Effective 
management of hypertension can help prevent or slow the progression of damage to the blood vessels, reducing 
the risk of heart attack, stroke, and other cardiovascular  complications45–47. Studies have shown that good blood 
pressure control can reduce the risk of cardiovascular disease and mortality in individuals with diabetes. In fact, 
a blood pressure goal of less than 130/80 mmHg is recommended for individuals with diabetes in order to reduce 
their risk of cardiovascular  complications48,49. More profound research on this issue is needed.

The longer duration of hospitalization was significantly associated with severe complications and mortality 
in the Korean diabetic  cohort50. A similar tendency was shown in the results of the current study.

Considering the relatively limited number of features (10 attributes presented in Table 1) and their admin-
istrative types, the reported range of AUC for the constructed classifiers is indeed a considerable achievement 
for predicting the one-year mortality of DM patients. That being said, there are a few limitations in our analysis.

From a clinical perspective, one limitation is that our data neither includes laboratory data nor patients’ medi-
cal history. In addition, the database lacks information on important comorbidities and anthropometric indices 
such as Alzheimer’s disease, renal diseases, amputations, and BMI. Collecting and using this information would 
potentially boost the performance of our predictive models. Nonetheless, including this information would 
require running and retraining all our predictive models. At the same time, collecting further detailed patients’ 
medical history from clinical notes available through UNEHS calls for advanced natural language processing. 
From a machine learning perspective, one limitation of our developed machine learning pipeline is the lack of a 
feature selection stage. Although this is not a critical stage in the current study due to the large sample size and 
a small number of features, adding laboratory data and/or the patient’s medical history would possibly add a 
number of additional features. In that case, having a feature selection would be generally expected and help due 
to the curse of dimensionality in pattern  recognition17 (also known as the peaking  phenomenon51). We leave 
these investigations for future studies.
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Despite the limitations of the study, there are some advantages that are noteworthy. To begin with, the data 
utilized in this study was derived from a population-based registry, which provides a substantial amount of 
information that is representative of a population of roughly half a million data points. Additionally, the data 
collection period was sufficiently long to encompass prevalent diabetes cases. Additionally, this study is the first 
of its kind in Central Asia to anticipate the one-year mortality of diabetes patients, and thus contributes signifi-
cant information to the existing body of literature on this topic. The analysis took into account comorbidities as 
well as demographic factors. These findings can help in the development of improved protocols and strategies 
to manage diabetes in healthcare settings, while also considering socio-demographic factors and cultural vari-
ations. Moreover, the results may aid in increasing community awareness campaigns and promoting healthy 
lifestyles to prevent diabetes mortality. Lastly, these results may be useful in initiating further research on the 
cost-effectiveness of diabetes management in order to assess the economic burden of the disease.

Conclusion
This study developed a comprehensive machine learning platform to predict one-year mortality in patients with 
DM based on administrative health data. The results of the study showed that the constructed data-driven models 
can predict one-year mortality in DM patients with an AUC of more than 0.78, which is considered ‘fair’ (close 
to ‘good’) as per objective metrics of diagnostic tests. The study identified age, duration of diabetes, hypertension 
and sex as the top most important features. These findings could be used to develop better treatment protocols for 
diabetes patients that take into account socio-demographic and cultural factors. Additionally, the results would 
help increase community awareness campaigns and promote healthy lifestyles to prevent diabetes mortality.

Overall, this study demonstrates the potential for using machine learning to build accurate predictive models 
of one-year mortality in DM patients based solely on administrative health data. This focus is warranted because it 
can help healthcare practitioners to develop individualized treatment plans and interventions to mitigate adverse 
consequences for high-risk patients. Furthermore, it could aid in resource allocation, as high-risk patients may 
require more frequent monitoring or follow-up care. Integrating our findings with further information such as 
laboratory data, patients’ medical history, and information on important comorbidities and anthropometric 
indices could potentially improve the performance of the predictive models in the future.

Materials and methods
Study population. In this dataset, patients with Type 1, Type 2, and other types of diabetes were included. 
The database was extracted from UNEHS based on International Classification of Diseases 10 (ICD-10) codes 
for diabetes (Type 1 DM: E10; Type 2 DM: E11). The UNEHS collects individual inpatient and outpatient 
electronic registries with clinical data. All of these patients were registered between 2014 and 2019. The study 
involved secondary data that was derived from the UNEHS. Therefore, the requirement for informed consent 
from study participants was waived by the Nazarbayev University Institutional Review Ethics Committee (NU-
IREC 490/18112021). All methods were carried out in accordance with the “Reporting of studies conducted 
using observational routinely-collected health data” (RECORD) guideline. After cleaning and preprocessing the 
initial dataset, the final cohort consisted of 472,950 DM patients.

Comorbidity selection. There are several key comorbidities that can affect diabetes mortality. Diabetes can 
lead to the development of cardiovascular  diseases52,53, cerebrovascular accident (CVA), also known as  stroke54,55 
and chronic kidney  disease56. In addition, diabetes is associated with  obesity57 and  hypertension42,43 with modifi-
able and non-modifiable risk factors. The UNEHS databases for  hypertension58,  CVA59, coronary heart disease 
and neoplasms were merged using patients’ unique population registry numbers to define comorbid conditions. 
Diabetes Mellitus (DM) and neoplasms, or tumors, have a complex relationship. While there is evidence to sug-
gest that individuals with DM are at an increased risk for certain types of neoplasms, the underlying mechanisms 
are not yet fully understood. According to Zhu and  Qu60, the risk of cancers appears to be increased in both type 
1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Cancer was also reported to be the second 
most common cause of death for people with T1DM.

Model training, selection, and evaluation. We used nine classifiers: (1) Gaussian Naïve Bayes (GNB); 
(2) K-nearest neighbors (KNN); (3) logistic regression with L2 ridge penalty (LRR); (4) random forest (RF); 95) 
AdaBoost with decision trees (ADB); (6) gradient boosting with regression trees (GBRT); (7) XGBoost (XGB); 
(8) linear discriminant analysis (LDA); and (9) perceptron (PER). Table 5 shows the candidate values of hyper-
parameters that were used in the model selection phase for these classifiers.

In this study, the choice of prediction models was based on several principles. First, we selected model types 
that cover five commonly known groups: ensemble, Gaussian process, nearest neighbor, linear models, and dis-
criminant analysis. Second, these models have been used extensively in previous studies to predict comorbidities 
of diabetes, preliminary diagnosis of diabetes, and mortality rate.

Many of our models were used previously for predicting ICU admissions of COVID-19  patients61. LDA has 
been deployed for predicting diabetes through fatty biomarkers in  blood62. KNN was used to predict diabetes 
risk of de-identified patients from the Vanderbilt University Medical Center (VUMC) through the use of the 
Medical Information Mart for Intensive Care III (MIMIC-III)  dataset63. GBM, XGBoost, AdaBoost, LR, and RF 
were utilized to predict one-year mortality rate in heart transplantation patients, including those with diabetes 
 mellitus64. Similarly, other researchers used random forest and logistic regression to predict mortality rate in 
diabetic ICU  patients13.

Studies based on the Istituto Clinico Scientifico Maugeri in Italy predicted diabetes complications using LR, 
NB, and  RF65. A similar problem was addressed by other researchers that showed the superiority of  XGBoost12. 
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The XGBoost itself is considered as one of the best predictive models for tabular data, and it has been widely 
used in Kaggle  competitions66. In our case, XGBoost and GBRT showed the best performance.

The yearly-specific model selection was performed using stratified 5-fold cross-validation (5-CV) applied to 
each yearly-specific training set. Figure 3 shows a schematic diagram of the model selection procedure using a 
5-fold CV. The stratification is performed to keep the proportion of samples that appear in each fold the same 
as the original data. This practice gives a better view of the classifier performance in situations when the prior 
probability of classes is the same as their proportions within the data at hand. Furthermore, in each iteration of 
5-CV, we standardize each feature based on the training data used in that iteration (i.e., full training data with one 
fold excluded). In this regard, we subtract the mean of that feature and divide it by its standard deviation. This 
way the feature vector is centered around zero and will have a standard deviation of one. The statistics obtained 
from the iteration-specific training data are then used to normalize the held-out data in the excluded fold. The 
selection of a year-specific classifier is based on the AUC metric, which is independent of any specific decision 
threshold used in the  classifier67. As a result, the decision threshold of selected classifiers is further tuned using 
training data to maximize the geometric mean of sensitivity and specificity (G-mean). This is in contrast with 
the usual practice of relying on a classifier “default” decision threshold, which may lead to low G-mean values 
for highly imbalanced datasets such as ours.

The best year-specific classification rule and the values of its hyperparameters that were identified from the 
5-CV model selection were used to train one final year-specific classifier on the entire training set after normali-
zation. To normalize the entire training set, the same normalization that was used in each iteration of 5-CV was 
used. For prediction and evaluation on the test set, the statistics that were obtained on the training set are used 
to normalize each observation in the test set before using it as the input for the classifier.

Software and packages. The computations were performed using a virtual server with an AMD Opteron 
Processor 6174-2.19 GHz with 22 processors, 200 GB of RAM, and storage 3.9 TB, running Windows Server 
2019 Standard (64 bit) operating system. The main program was implemented in Python (version 3.10; Python 
Software Foundation) using open-source packages including sklearn (version 1.1.2), xgboost, numpy, pandas, 
seaborn, matplotlib, and shap.

Table 5.  Hyperparameters space for grid search with cross-validation model selection.

Classifiers Hyperparameter Candidate hyperparameter space

Gaussian Naive Bayes
(GNB) – –

K Neighbors Classifier
(KNN) Number of neighbours 3, 5

Logistic Regression
(LRR)

Penalty L2

Regularization parameter C 100, 10, 1.0, 0.1, 0.01

Random Forest Classifier
(RFC)

Number of estimators 10, 100, 1000

Maximum depth 2, 5, 10, 20, 50

Maximum features ’auto’, ’sqrt’, ’log2’

Ada Boost Classifier
(ADB)

Number of estimators 10, 100, 1000

Learning rate 0.001, 0.01, 0.1

Gradient Boost Classifier
(GBC)

Number of estimators 10, 100, 1000

Learning rate 0.001, 0.01, 0.1

XGBoost Classifier
(XGB)

Maximum depth 5, 10, 100

Number of estimators 10, 100, 1000

Learning rate 0.001, 0.01, 0.1

Linear Discriminant Analysis
(LDA)

Solver ‘svd’, ‘lsqr’, ‘eigen’

Tolerance 0.00001, 0.0001, 0.0003

Perceptron
(PER)

Alpha 0.0001, 0.001, 0.01

Penalty L2, L1, None
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Data availability
The data that support the findings of this study are available from the Republican Center for Electronic Health of 
the Ministry of Health of the Republic of Kazakhstan but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly available. Data are however available from 

Figure 3.  A schematic diagram of the implemented model selection with 5-fold cross-validation.
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