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Cough sound‑based estimation 
of vital capacity via cough peak 
flow using artificial neural network 
analysis
Yasutaka Umayahara 1*, Zu Soh 2, Akira Furui 2, Kiyokazu Sekikawa 3, Takeshi Imura 1, 
Akira Otsuka 1 & Toshio Tsuji 2*

This study presents a novel approach for estimating vital capacity using cough sounds and proposes 
a neural network‑based model that utilizes the reference vital capacity computed using the lambda‑
mu‑sigma method, a conventional approach, and the cough peak flow computed based on the cough 
sound pressure level as inputs. Additionally, a simplified cough sound input model is developed, with 
the cough sound pressure level used directly as the input instead of the computed cough peak flow. A 
total of 56 samples of cough sounds and vital capacities were collected from 31 young and 25 elderly 
participants. Model performance was evaluated using squared errors, and statistical tests including 
the Friedman and Holm tests were conducted to compare the squared errors of the different models. 
The proposed model achieved a significantly smaller squared error (0.052  L2, p < 0.001) than the other 
models. Subsequently, the proposed model and the cough sound‑based estimation model were used 
to detect whether a participant’s vital capacity was lower than the typical lower limit. The proposed 
model demonstrated a significantly higher area under the receiver operating characteristic curve 
(0.831, p < 0.001) than the other models. These results highlight the effectiveness of the proposed 
model for screening decreased vital capacity.

Vital capacity is a fundamental parameter used to properly interpret lung function in clinical practice. The loss 
of functioning lung parenchyma contributes to decreased vital capacity in many nonobstructive lung  disorders1. 
Moreover, vital capacity provides prognostic information and is associated with increased mortality in the elderly 
 population2. Conventionally, a spirometer is generally used (Fig. 1a) to measure vital capacity; however, this 
approach is expensive and inconvenient because these devices must be used in hospital settings. Thus, home-
based respiratory function monitoring has attracted considerable  attention3,4. Moreover, this vital capacity meas-
urement method has been improved and uses a smartphone connected to a device such as a flow sensor held 
in the mouth by the  subject5,6. However, a flow sensor is required for measurement and requires a mouthpiece 
and a filter to prevent infection, which is costly. Thus, home respiratory function monitoring would be easier 
and cheaper if vital capacity could be estimated without requiring a device that touches the subject’s mouth.

Vital capacity estimation has been studied for a long time. In a study published in 1948,  Baldwin7 developed 
a multiple regression equation for predicting vital capacity, which depended on the individual’s characteristics, 
such as gender, age, and height. In 2006, the World Health Organization (WHO)8 deprecated the use of regression 
curves to predict references for biological measurements and recommended using the lambda-mu-sigma (LMS) 
method. This method allows simultaneous modelling of the skewness (lambda), which models the departure of 
the variables from normality using a Box‒Cox transformation, the mean (mu), and the coefficient of variation 
(sigma), for the analysis of its recently published growth standard. In 2012, the Global Lung Function Initiative 
announced the global lung function 2012 equations derived using the LMS  method9. In this way, methods for 
calculating the reference value of vital capacity have been established and used all over the  world10–12. The com-
mon point of each method is that aspects of the subject’s physical attributes, such as gender, age, and height, are 
used as explanatory variables. However, the vital capacity estimated using the LMS method (VCLMS) does not 

OPEN

1Graduate School of Health Sciences, Hiroshima Cosmopolitan University, 3-2-1 Otsukahigashi, Asaminami-ku, 
Hiroshima, Japan. 2Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 
Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan. 3Graduate School of Biomedical and Health Sciences, 
Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. *email: umayahara-creha@umin.ac.jp; 
tsuji-c@bsys.hiroshima-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35544-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8461  | https://doi.org/10.1038/s41598-023-35544-3

www.nature.com/scientificreports/

represent actual vital capacity for each individual and is merely a reference value based on the age and height 
of the  individual13.

Previous studies have shown that vital capacity is related to cough strength, such as cough peak flow, which 
can be measured by a spirometer or peak flow  metre14,15. The cough peak flow is an index of airway clearance 
ability and is related to the cough sound pressure  level16,17, which can be easily measured by various microphones, 
such as condenser microphones, microphones in  headsets17 and those built into smartphones 15. Moreover, the 
cough peak flow can be estimated via the cough sound pressure  level17,18, which is referred to as the cough peak 
flow computed via cough sounds in this study. We hypothesize that the actual vital capacity of each individual 
could be estimated by using physical functions such as the cough peak flow computed via cough sound, which are 
related to both vital capacity and the subject’s physical attributes. If vital capacity can be estimated using cough 
sounds, flow sensors, mouthpieces, and filters would be unnecessary. More importantly, abnormal decreases 
in vital capacity could be detected by comparing the estimated vital capacity and the lower limit of the normal 
vital  capacity9, which can be calculated by using the LMS method because pulmonary function varies with age, 
height, sex and  ethnicity9.

Therefore, the purpose of this study was to estimate vital capacity using cough sounds (Fig. 1b). We employed 
an artificial neural network to estimate the vital capacity using the cough peak flow computed via cough sounds 
and VCLMS as inputs. Because it is well known that vital capacity changes nonlinearly with age and height, we 
hypothesized that the artificial neural network, which uses nonlinear  transformations19 to estimate vital capacity, 
could be advantageous. The estimated vital capacity was then used to detect the decrease in vital capacity below 
the lower limit of the normal vital capacity.

Materials and methods
Participants and inclusion criteria. Table 1 shows the participants’ characteristics. A total of fifty-six 
participants were included. Twenty-five elderly (10 male and 15 female) and 31 young (19 male and 12 female) 
adults participated in the experiment. The elderly participants, aged 70 to 91, lived at home where they had been 
receiving routine healthcare services through private arrangements. The following were exclusion criteria: a his-
tory of lung disease, institutionalization, terminal illness, unstable acute or chronic disease, a score of less than 
23 on the Mini-Mental State  Examination20, inability to give informed consent, inability to walk independently 
or use of a cane, and neuromusculoskeletal impairment. The young group consisted of self-reported healthy 
participants with no previous cardiovascular or pulmonary diseases. Participants who failed to manoeuvre the 
respiratory function test were excluded.

Figure 1.  The current vital capacity measurement method and our cough sound-based method. (a) The current 
vital capacity measurement method. (b) The proposed vital capacity measurement method. (c) Data processing 
methods and neural networks analysis techniques for each model.
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Ethical approval. This study was conducted in accordance with the amended Declaration of Helsinki. The 
Hiroshima Cosmopolitan University Institutional Review Board (No. 20200305) approved the protocol, and 
written informed consent was obtained from all participants.

Pulmonary function testing. Pulmonary function tests, as shown in Fig.  1a, were performed using a 
spirometer (Autospiro AS-507; Minato Medical Science Co., Ltd., Osaka, Japan) with the participants in a sit-
ting position according to ATS/ERS  guidelines21. Vital capacity was determined as the largest value from at least 
three acceptable manoeuvres. This measured vital capacity was utilized as the estimation target for the proposed 
model, as explained in subsequent sections. In addition, before the respiratory function test and cough sound 
measurement, an interview was conducted to check for respiratory symptoms such as acute upper respiratory 
tract infection or changes in physical condition. Moreover, the order of the respiratory function test and cough 
test was randomly assigned to minimize the effects of bias due to the measurement order, and the interval 
between the two tests was one week.

Cough sound measurement system. Figures  1b,c show the cough sound measurement system. The 
experiment was performed as previously  described17 using an in-ear microphone to measure cough sounds. A 
previous study on cough peak flow estimation via cough sound measurements reported that an in-ear micro-
phone is suitable for measuring cough sounds due to the constant distance between the mouth of the sound 
source and the  microphone17. The electret condenser microphone (in-ear microphone, ECM-TL3; Sony Cor-
poration, Japan) was attached to the right ear canal. The measured sound signals were digitized using a 16-bit 
analogue-to-digital converter (PowerLab16/35, AD Instruments, Inc., Dunedin, New Zealand) at a 100  kHz 
sampling rate set by analysis software (LabChart version 8, AD Instruments, Inc.), and stored on a personal com-
puter. The digitized cough sound signal was band-pass filtered between 140 and 2000 Hz to minimize artefacts 
caused by heart sounds and muscle interference (see Fig. 1c).

Cough sound measurement protocols. Following thorough instructions on the coughing method pro-
vided to participants, three trials of maximal voluntary coughing were performed during each 20-s measurement 
period. Adequate rest periods were provided between each trial to minimize the potential impact of fatigue.

Feature extraction. A respiratory physiotherapist with expertise in respiratory diseases extracted a 5-s 
segment of cough sound from each 20-s measurement period. The selected 5-s segment included the maximum 
cough sound in all cases. The sound pressure level, measured in dB, was subsequently determined using the fol-
lowing equation:

where Vr(t) represents the measured voltage value, t is the discrete measurement time in the cough sound 
period, P0 = 20 µ Pa is the reference sound pressure, and Vs = 10(S/20) is the voltage output per Pa. Here, 
S = −35.0dB(0dB = 1V/1Pa) is the sensitivity of the in-ear microphone. The maximum sound pressure level 
was calculated for each acceptable trial as follows:

where the superscript (i) indicates the trial. Finally, the cough sound pressure level SPL was determined based 
on at least three acceptable trials as follows:

Cough peak flow is a cough strength parameter that can be estimated via cough sounds, namely, CPS16,17. 
Specifically, it is calculated based on the cough sound pressure level and participant age by using the following 
 Equation18:

where a1, a2 and β are constant parameters determined based on a nonlinear optimization  scheme18.

(1)LP(t) = 20 log10

{
Vr(t)

P0Vs

}
,

(2)L
(i)
p, = max (LP(t)),

(3)SPL = max
(
L
(i)
p,max

)
,

(4)CPS =
(
a1 + a2 age

)(
eβSPL − 1

)
,

Table 1.  Characteristics of the participants. Values are presented as the mean ± standard deviation.

Young participants (mean ± SD) n = 31 (Male: 19) Elderly participants (mean ± SD) n = 25 (Male: 11)

Age, years 21.3 ± 0.5 80.4 ± 6.1

Height, cm 164.3 ± 8.4 154.1 ± 8.3

Weigh, kg 58.0 ± 11.5 55.7 ± 12.0

BMI, kg/m2 21.3 ± 0.7 23.3 ± 4.1
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Proposed model. A previous study reported that vital capacity is related to cough  strength15. We hypoth-
esized that the measured vital capacity can be estimated by correcting the VCLMS value, which reflects the height 
and age of a subject, using the cough peak flow computed via cough sounds. Here, VCLMS in Liter can be esti-
mated based on the previous  literature12, as shown in Eqs. (5) and (6):

where h represents the participant’s height, a represents their age and m-s is the age-specific contribution from 
the spline  function9.

To examine the linear relationships between the measured vital capacity and cough peak flow computed 
via cough sounds, partial correlation analysis was carried out. We then proposed the use of a neural network-
based model to estimate the measured vital capacity from VCLMS and the cough peak flow computed via cough 
sounds (see Fig. 1c and Eq. 4). To estimate the measured vital capacity, a three-layer feedforward perceptron was 
employed, which was composed of an input layer using an identity activation function, a hidden layer using a 
hyperbolic tangent function, and an output layer using an identity activation function. The number of units in 
the input layer was equivalent to the dimension of the input vector I = [CPS,VCLMS]

T
∈ R

2 . The output layer, 
which was used to estimate the vital capacity, was configured with a single unit. The number of units in the hid-
den layer was set as a hyperparameter, denoted by H. Accordingly, the models included a total of 4H + 1 weight 
and bias parameters, which were trained using an error backpropagation algorithm. The objective of the training 
process was to minimize the root mean squared error, which was calculated as follows:

where V̂Ci and VCi represent the estimated and measured vital capacity from observation i, respectively, and N 
is the total number of observations.

To determine the optimal number of units in the hidden layer, a nested cross-validation method was  utilized22. 
The outer loop of this method involved training the model based on N − 1 observations and evaluating its accu-
racy based on the remaining observation. Moreover, the inner loop divided the N − 1 observations into two 
datasets, with one half of the data used to train the model using different unit numbers (H = 1, 2, 3) and the other 
half utilized to assess the estimation accuracy. This process was repeated for all possible combinations of training 
and test sets, and the optimal value of H was selected based on the highest accuracy achieved. The analyses were 
conducted using IBM Statistical Package for Neural Networks (SPSS) version 26.

Verification of the estimation accuracy. To validate the efficacy of the proposed model, we compared 
its estimation accuracy with two different methods. First, the VCLMS and the vital capacity estimated by the pro-
posed model, NNVCCPS, were compared to verify the combined effectiveness of employing the neural network-
based model and the cough peak flow computed via cough sounds. To evaluate the effectiveness of converting 
the cough sound pressure level to the cough peak flow computed via cough sounds with Eq. (4), the input vector 
was modified from I = [CPS,VCLMS]

T to I = [SPL,VCLMS]
T . Hereafter, the vital capacity estimated based on 

the SPL and VCLMS inputs is referred to as NNVCSPL (see Fig. 1c). The estimation accuracy was evaluated using 
the mean square error 1N

∑N
i

(
V̂Ci − VCi

)2
 , where V̂Ci and VCi represent the estimated and measured vital 

capacity from observation i, respectively, and N is the total number of observations, and the Spearman’s rank 
correlation coefficient between the measured vital capacity and the estimated vital capacities (VCLMS, NNVCSPL, 
and NNVCCPS). In addition, the absolute reliability of the model was investigated using regression analysis and 
the Bland‒Altman analysis method to detect systematic errors, such as fixed and proportional  bias23,24. The 
Wilcoxon signed-rank test and, the Friedman and Holm  tests25,26 were used for the comparison, and p < 0.05 was 
considered significant.

Detecting abnormal decreases in vital capacity. The LLN, which can be calculated using the LMS 
method, represents the lower limit of the normal vital capacity, and a vital capacity less than this limit is diag-
nosed as respiratory dysfunction. Therefore, we detected abnormal vital capacity when the estimated vital capac-
ities (NNVCCPS and NNVCSPL) were less than the LNN and verified the discrimination accuracy using the area 
under the receiver operating  characteristic27 curve (AUC). The AUCs resulting from NNVCCPS and NNVCSPL 
were compared using the DeLong test, where p < 0.05 was considered significant.

Statistical analyses other than the neural network analysis were performed with IBM SPSS version 26 and 
EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan)28, which is a graphical user interface for 
R (the R Foundation for Statistical Computing, Vienna, Austria).

Results
Relationships between vital capacity and the body structure parameters and cough peak 
flow. Table 2 shows that the partial correlations between the vital capacity and cough peak flow, age, and 
height were 0.286 (p = 0.038), − 0.718 (p < 0.001), and 0.683 (p < 0.001), respectively. Because there was no sig-
nificant partial correlation between vital capacity and weight, we excluded this parameter from the input for the 
neural network-based model for estimating vital capacity.

(5)Male : VCLMS = exp(−8.8317+ 2.1043 ln(h)− 0.1382 ln(a)+m− s),

(6)Female : VCLMS = exp(−8.0707+ 1.9399 ln(h)− 0.1678 ln(a)+m− s),

(7)

√(
1

N

∑N

i

(
V̂Ci − VCi

)2)
,
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Vital capacity estimation accuracy. Leave-one-out cross-validation analysis showed that the root mean 
squared errors of the NNVCSPL and NNVCCPS against the measured vital capacity were 0.165 L and 0.112 L, 
respectively. Figure 2 shows the relationships between the measured vital capacity and the estimated vital capaci-
ties, indicating correlation coefficients of 0.924 (p < 0.001) for VCLMS, 0.909 (p < 0.001) for NNVCSPL, and 0.944 
(p < 0.001) for NNVCCPS. Figure 3 shows the corresponding Bland‒Altman plots. Neither NNVCSPL nor NNVC-
CPS showed systematic errors, but VCLMS showed a fixed bias (one sample t test; p < 0.001) and a proportional 
bias (r = − 0.414; p = 0.002). Furthermore, the Friedman and Holm tests showed significant differences in the 

Table 2.  Partial correlation analysis results, n = 56. The p values are noted in parentheses, and those less than 
0.05 and 0.01 are labelled * and **, respectively.

Cough peak flow (p value) Age (p value) Height (p value) Weight (p value)

Vital capacity 0.286* (0.038)  − 0.718** (< 0.001) 0.683** (< 0.001) 0.002 (0.987)

Cough peak flow –  − 0.223 (0.108) 0.037 (0.795) 0.131 (0.350)

Age – – 0.388** (0.004) 0.202 (0.148)

Height – – – 0.406** (0.003)

Figure 2.  Estimation accuracy of VCLMS, NNVCSPL and NNVCCPS. (a) Plot of VCLMS versus the measured vital 
capacity. (b) Plot of NNVCSPL versus the measured vital capacity. (c) Plot of NNVCCPS versus the measured vital 
capacity. The linear regression lines are drawn in red, and the corresponding equations are shown in the lower 
part of each figure. The left lower side shows the correlation coefficients and p values for each scatter plot.

Figure 3.  Bland‒Altman plots of the measured and estimated vital capacities. (a) The estimation accuracy of 
VCLMS. (b) The estimation accuracy of NNVCSPL. (c) The estimation accuracy of NNVCCPS. The horizontal line 
shows the mean of the measured and estimated vital capacities. The red line shows the mean of the measured 
and estimated vital capacities. The vertical line represents the difference between the measured and estimated 
vital capacities. The bold black solid lines represent the mean differences between the measured and estimated 
vital capacities, and the green dotted lines represent ± 2 standard deviations of the mean differences.
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squared error between VCLMS and NNVCSPL, VCLMS and NNVCCPS, NNVCSPL and NNVCCPS (median 0.308   L2 
vs. 0.100 L; p = 0.001, 0.308  L2 vs. 0.052 L; p < 0.001, 0.100  L2 vs. 0.052  L2; p = 0.037, respectively) (see Fig. 4a). 
In young participants, the Friedman test showed no significant differences in the squared error (p = 0.198) (see 
Fig. 4b); however, among elderly participants, the Freidman and Holm tests showed significant differences in the 
squared error between the VCLMS and NNVCSPL, VCLMS and NNVCCPS (0.548  L2 vs. 0.110  L2; p < 0.001, 0.548  L2 
vs. 0.034  L2; p < 0.001, respectively) (see Fig. 4c). Figure 5 demonstrates the results of comparing the squared 
error between generations. The Wilcoxon signed-rank test showed significant differences in the squared error 
of VCLMS between young and elderly participants (0.130  L2 vs. 0.548  L2; p < 0.001) (see Fig. 5a); however, there 
were no significant differences in the squared error for NNVCSPL between generations (see Fig. 5b). Although 
there was no significant difference in the NNVCCPS between generations, the squared error among the elderly 
participants was approximately 40% lower than that of the young participants (see Fig. 5c).

Detection accuracy of abnormal decreases in vital capacity. The DeLong test showed a significant 
difference in the AUC between the NNVCSPL and NNVCCPS (0.578 vs. 0.831; p = 0.002, respectively) (see Fig. 6). 
The true positive and false negative rates of the NNVCCPS were 0.731 and 0.269, respectively.

Discussion
This study aimed to develop a simple vital capacity evaluation method. To the best of our knowledge, this was 
the first study that estimated vital capacity based on cough sound. The proposed method demonstrated that 
an accurate vital capacity can be estimated for different individuals by using VCLMS and the cough peak flow 
computed via cough sounds. In addition, we found that an abnormal decrease in vital capacity, which is associ-
ated with respiratory dysfunction, can be detected using the proposed vital capacity estimation method, with 
an AUC of 0.831.

First, to determine the input to the neural network-based model, the relationships between the vital capacity 
and different physical attributes and the cough peak flow were analysed using partial correlations. The results 
showed that cough peak flow, age, and height were significantly correlated with vital capacity. These relationships 
were consistent with those found in previous  studies14,15. Height and age were used as independent variables 

Figure 4.  Comparison of the squared error between the previous and proposed models. (a) Results of all 
participants, n = 56. (b) Results of young participants, n = 31. (c) Results of elderly participants, n = 25. The p 
value was adjusted using the Holm  test25,26 for multiple testing.

Figure 5.  Comparison of the squared error between generations. (a) Results of VCLMS. (b) Results of NNVCSPL. 
(c) Results of NNVCCPS. Young participants, n = 31. Elderly participants, n = 25.
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for calculating the reference value of the vital capacity (VCLMS) via the LMS method. The LMS method has the 
advantage of reflecting age-dependent changes in respiratory function because a nonlinearly smooth fit of the 
vital capacity over the entire age range can be  predicted9. Thus, VCLMS includes information about both age and 
height. In addition, a previous study reported that vital capacity is related to cough peak  flow15, which can be 
estimated via the cough sound pressure level, and its estimated value is CPS17. For these reasons, we hypoth-
esized that vital capacity can be estimated by correcting the VCLMS value using the cough peak flow computed 
via cough sounds or the cough sound pressure level. Thus, two neural network-based models were constructed: 
the first model uses VCLMS and the cough peak flow as inputs, and the other model uses VCLMS and the cough 
sound pressure level as inputs.

The experimental results showed that NNVCCPS led to the best estimation accuracy among the three methods, 
and no systematic error was observed (see Fig. 3c). Furthermore, Eq. (4) incorporates an age factor, indicating 
that an equation that uses the cough peak flow computed via cough sounds as an input is less susceptible to 
the effects of aging. While the cough peak flow computed via cough sounds and cough sound pressure level are 
related, as shown in Eq. (4), they differ in that the age factor is included in the formula for computing the cough 
peak flow computed via cough sounds (Eq. 4) but not in the cough sound pressure level formula (Eq. 3). Previous 
studies reported that vocal fold function, a crucial factor in coughing, is negatively impacted by  aging29,30. Thus, 
it is plausible that NNVCCPS could effectively suppress the effects of aging on vocal cord function and enable the 
detection of decreased vital capacity. In spirometer measurements, if the difference in the vital capacity between 
the largest and second largest manoeuvre exceeds 0.150 L, the measurement is considered a failure, and additional 
trials should be  performed21. In this study, the mean relative difference between the measured vital capacity and 
NNVCCPS was 0.008 L ml (95% CI − 0.082 to 0.098), which is lower than the standard value for additional trials. 
A recent investigation employing dynamic chest radiography estimated the forced vital capacity, yielding a cor-
relation coefficient of 0.86 (95% CI 0.79 to 0.90) between the measured and estimated  values31. Similarly, a recent 
study examining forced vital capacity estimation via vocal analysis in patients with amyotrophic lateral sclerosis 
reported a correlation coefficient of 0.8, with a mean absolute error of 0.54  L32. Our study focused on measuring 
slow vital capacity, which involves slow expiration, while previous studies measured forced vital capacity, which 
involves fast expiration with effort. However, despite the differences in the measurement methods and participant 
attributes, the estimation accuracy of our proposed model is expected to be better than or at least equivalent to 
that of methods proposed in prior investigations. Therefore, the proposed method could have sufficient accuracy 
and be useful in screening tests.

We also attempted to detect abnormal decreases in vital capacity using the estimated NNVCCPS. The efficacy 
of this approach was confirmed, with a high AUC of 0.831 (see Fig. 6). In a previous study that discriminates 
restrictive impairment of lung function, spirometry values were used to calculate the difference between lung 
age and actual age. This method showed an AUC of 0.89133, which is slightly higher than the proposed model. 
Nonetheless, the proposed model significantly outperforms previous studies in terms of ease of measurement.

It should be noted that the false-negative rate was high, and there was a possibility of missing respiratory 
function decline. This suggests the effect of cases with loud cough sounds but low lung capacity. Respiratory 
muscle strength and cough strength have been shown to be positively  correlated15,34. Thus, respiratory muscle 
strength could affect the cough sound pressure level, which was used to calculate the estimated cough peak flow 
computed via cough sounds. The estimation accuracy could be improved further to reduce the false-negative 
rate, such as by adding variables related to respiratory muscle strength to the input layer in the neural network.

Figure 6.  Comparison of the AUCs of NNVCSPL and NNVCCPS using the DeLong test. AUC; area under curve. 
The purple line represents the NNVCSPL. The blue line represents the NNVCCPS.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8461  | https://doi.org/10.1038/s41598-023-35544-3

www.nature.com/scientificreports/

The findings of this study suggest that the vital capacity of individual participants can be estimated with a 
neural network analysis approach using VCLMS and the cough peak flow computed via cough sounds as inputs. 
Unlike linear models, the neural network-based model can handle nonlinear changes and was suggested to be 
promising for respiratory monitoring in a previous  study35. However, the participants of this study were limited 
to young and elderly people without underlying diseases based on self-report. The cough peak flow computed 
via cough sounds used in this study, which reflects cough force, is calculated based on cough sounds. Because 
the cough sound may be affected by the accumulation of secretions such as sputum, narrowing of the airway 
due to some diseases, or inadequate closure of the glottis, it is unclear to what extent the accuracy of vital capac-
ity estimation may be affected. Therefore, it is necessary to clarify the effects of secretions and diseases on the 
accuracy of vital capacity estimation in future studies. In addition, although this study estimated only vital 
capacity, it is necessary to estimate measures that reflect obstructive ventilation disorders, such as forced vital 
capacity, one-second volume, and peak flow, to construct a more comprehensive respiratory function estimation 
system. Moreover, to apply the proposed method to patients in home environments, it would be more conveni-
ent to measure cough sounds with a smartphone. However, it has been found that the measurement accuracy 
of smartphones is lower than that of in-ear  microphones17. Thus, additional studies are needed to implement 
the proposed method for estimating vital capacity on smartphones. In addition, it is essential to improve the 
proposed method in the future so that the error between the measured vital capacity and the estimated vital 
capacity is minimized; then, the same cut-off reference value could be applied. Nonetheless, it should be noted 
that the proposed method is presented as a screening method, and a conclusive diagnosis must be based on a 
thorough examination at a medical institution.

Data availability
The data that support the findings of this study are available in the main text and from the corresponding authors 
upon reasonable request.
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