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Thermal‑optical mechanical 
waves of the microelongated 
semiconductor medium 
with fractional order heat time 
derivatives in a rotational field
Abdulhamed Alsisi 1, Shreen El‑Sapa 2, Alaa A. El‑Bary 3,5 & Khaled Lotfy 4,6*

Outlined here is an innovative method for characterizing a layer of microelongated semiconductor 
material under excitation. Fractional time derivatives of a heat equation with a rotational field are 
used to probe the model during photo‑excitation processes. Micropolar‑thermoelasticity theory, 
which the model implements, introduces the microelongation scalar function to characterize the 
processes occurring inside the microelements. When the microelongation parameters are considered 
following the photo‑thermoelasticity theory, the model investigates the interaction scenario between 
optical‑thermo‑mechanical waves under the impact of rotation parameters. During electronic and 
thermoelastic deformation, the key governing equations have been reduced to dimensionless form. 
Laplace and Fourier’s transformations are used to solve this mathematical problem. Isotropic, 
homogeneous, and linear microelongated semiconductor medium’s general solutions to their 
respective fundamental fields are derived in two dimensions (2D). To get complete solutions, several 
measurements must be taken at the free surface of the medium. As an example of numerical modeling 
of the important fields, we will use the silicon (Si) material’s physicomechanical characteristics. 
Several comparisons were made using different values of relaxation time and rotation parameters, 
and the results were graphically shown.

Abbreviations
�,µ  Lame’s elastic semiconductor parameters.
δn = (3�+ 2µ)dn  The deformation potential difference.
n  Unit vector in the direction of y-axis.
T0  Reference temperature in its natural state.
γ̂ = (3�+ 2µ)αt1  The volume thermal expansion.
σij  The microelongational stress tensor.
ρ  The density of the microelongated sample.
αt1  Coefficients of linear thermal expansion.
e  Cubical dilatation.
Ce  Specific heat of the microelongated material.
K  The thermal conductivity.
DE  The carrier diffusion coefficient.
τ  The carrier lifetime.
Eg  The energy gap.
eij  Strain tensor.
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�,�  Two scalar functions.
j0  The microinertia of microelement.
a0, α0, �0, �1  Microelongational material parameters.
τ0, τθ  Thermal relaxation times.
ϕ  The scalar microelongational function.
mk  Components of the microstretch vector
s = skk  Stress tensor component
δik  Kronecker delta
� = �n  Angular velocity

The significance of semiconductors has lately developed as a result of advancements in materials research. 
Semiconductors play a crucial role in the growth of contemporary industries, particularly those that rely on the 
existence of low-voltage electric currents, such as sensors and transistors. Unlike copper or glass, semiconductors 
are poor electrical conductors and poor insulators under normal conditions. Yet, their internal resistance starts 
to diminish when they are subjected to a steady rise in temperature as a consequence of being impacted by light 
falling on them or laser beams. As a result, the physical characteristics of semiconductors became more of a focus 
in the second part of the twentieth century. It has been discovered that when the temperature of these materials 
changes, so do their interior characteristics, most noticeably their internal composition (microelements). Light-
excited electrons are transferred to the surface, giving rise to the photothermal (PT) hypothesis and the so-called 
electronic deformation (ED). Yet, the thermoelasticity hypothesis emerges when the interior particles begin to 
vibrate, leading to thermoelastic deformation (TD). The preceding elastic deformations and thermodynamic 
deformations cause a crossover between the photo-elastic theory (PT) and the thermoelastic theory (TE), giving 
rise to the photo-thermoelasticity theory. As the microelements of the semiconductor are responsible for the 
variation in internal resistance, their influence during the microinertia process must be considered during the 
interference operations (changing internal structure).

At the macro-scale, where matter is assumed to be continuous, classical continuum mechanics is sufficient 
to describe the mechanical behavior of solids; but, at the micro-scale, where the mechanical behavior is size-
dependent, this theory fails. To explain both the microstructure and the macro-scale size issues, consistent size-
dependent continuum mechanics was necessary. Microelongation parameters and the influence of heat effect 
on the internal structure of semiconductors are investigated. Therefore there are four possible orientations for a 
microelongated semiconductor. One is caused by the rotating movement (microelongation) of electrons during 
ED deformation, while three others are dependent on the change happening during TD  deformation1. In this 
case, the degrees of freedom (director) of semiconductor characteristics rely on the micropolar  theory1. The board 
of directors is unbending when it comes to studying the microstretch and micropolar theories of semiconductors. 
When the directors are orthogonal and contract, the microelongational theory of material arises as a specific 
instance. In introducing the micropolar theory,  Eringen2 considered the microstructure of the elastic body. 
Instead,  Eringen3 presented a new microstretch–thermoelasticity model that captures the interplay between the 
microstretch parameters and thermoelasticity theory. Elastic bodies subjected to external fields are the focus of 
several studies that use the generalized microstretch thermoelasticity  hypothesis4–9. Casson fluid flow over porous 
media of varying thickness was the subject of research by Ramesh et al.10. Hydromechanics of one-relaxation-
time viscoelastic porous media were investigated by Ezzat and Abd-Elaal11 using a viscoelastic boundary layer 
flow. To study the effects of an internal heat source on wave propagation inside a microelongated elastic media, 
researchers have turned to Refs.12, 13. The thermo-elastic microelongated governing equations were established 
by Ailawalia et al.14–16 to analyze the plane strain deformation of an elastic material with an embedded heat 
source. According to thermoelasticity theory, the double porosity structure is developed using the micropolar 
theory of the elastic  body17. Sheoran et al.18–20 studied the wave propagation according to thermo-mechanical 
disturbances in a 2D initially stressed with temperature dependent in a rotating thermo-diffusive medium with 
two-temperature. On the other hand, some applications for a thermodynamical nonlocal micropolar semicon-
ductor media are investigated according to functionally graded  properties21, 22.

The study of semiconductor properties dates back to the late nineteenth century. As a consequence of sci-
entific and economic developments during the twentieth century, semiconductors saw amazing application in 
a wide variety of fields, from the incorporation of medical equipment to electrical circuits and even solar cells 
that create renewable energy. The internal systems of semiconductor implants were discovered to possibly vary 
with temperature, especially when exposed to light or a laser beam (the theory of photothermal (PT))23–25. When 
a semiconductor is exposed to a strong laser beam, heat is often generated as an unwanted  consequence26. To 
fully comprehend how successfully a semiconductor absorbs the laser energy, one must first grasp how freely 
moving electrons and holes interact with one another inside the  material27–29. Heat transfer properties are cru-
cial in semiconductor laser interactions because of their impact on device quality and  performance30–33. For the 
laser to function, pulsed excitations must be applied, which is why semiconductors are so prevalent in optical 
communication systems and energy  pumping34–38. The active zone of lasers that are activated by periodic pulses 
may overheat if their temperature does not fall to that of the heat sink before the next cycle starts. It is important 
to understand the thermodynamic responses, notably the thermal time constant, to get the most out of a laser 
diode’s power  output39–41. Recently, the use of fractional differential equations as a foundation for theoretical 
models has received a lot of attention. Mathematical frameworks with a fractional order differential equation 
may provide a greater understanding of the phenomena due to the memory effect and the fact that it is rotating.

By studying semiconductors, it was found that excited electrons move about and scatter toward the semicon-
ductor’s surface, creating an electron cloud called carrier density (plasma). The finding of this electron cloud is 
significant since it is the source of the diffusion processes that ultimately result in the passage of electric current. 
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In addition, as part of the recombination process, electrons leave holes behind when they go through a material, 
even if they are in the shape of a cloud. These situations often arise during hole diffusion processes, and in recent 
years thermo-optical theory has shown to be a valuable tool for describing the corresponding system of equations. 
Thermoelastic deformation processes for these semiconducting materials may also be described by introducing 
and implementing the notion of thermoelasticity into this area. The primary motivation for introducing this 
subject is to investigate, within the framework of photo-thermoelasticity theory, the impact of microelonga-
tion parameters during the investigation of semiconductor materials. In this study, the photo-thermoelasticity 
theory is used in the investigation of a microelongated semiconductor material in a rotating field. The model 
is formulated using the fractional-order heat conduction equation. Here, we account for the microinertia and 
microelements of the semiconductor medium. Using dimensionless variables, the governing equations in 2D 
deformation are translated into their non-dimensional versions. By using the Laplace and Fourier transforms 
approach, we can derive the physical domain expressions for a variety of physical variables with specific bound-
ary conditions. The rotation field’s influence on the simulated wave propagations is shown visually, along with 
some comparisons, concerning the micro-elongation parameters and fractional parameters.

Theoretical model and basic equations
Plasma wave propagation is described by the optical function, which is the carrier density N . The temperature 
variation T , which quantifies the thermal effect, may be used to illustrate the thermal distribution. It is possible 
to introduce the distribution of elastic waves with the help of the displacement vector ui . Lastly, the effect of 
elongation is described by the scalar micro-elongation function ϕ . A semiconductor medium will undergo a 
phase transition if a uniform rotating velocity ( � = �n ) is supplied along the y-axis (Fig. 1). Assuming that the 
material is homogeneous, isotropic, thermoelastic, and a photothermal semiconductor, the governing equations 
of plasma transport coupling may be written  as42–45:

According to the photo-thermoelasticity theory, the microelongated constitutive equations of semiconduc-
tors in the tensor form  are12–16:

where the "comma" before an index suggests space-differentiation, the dot" above a symbol suggests time-
differentiation, u̇i is the velocity of a particle and e = eII = uI ,I is the volumetric strain.

It is possible to express the plasma transport (diffusion) equation in such a way that it describes the interac-
tion between thermal waves and plasma waves  as46:

When the medium is in a state of microelongation in accordance with the processes of microelements, the 
motion and microinertia equations, which are valid under the influence of the rotating field, may be presented 
as  follows47:

where ui,jj = ∇2�u, uj,ij = ∇(∇ · �u) , ∇ · ⇀u = ui,i , ϕ,ii = ∇2ϕ and T,i = ∇T.

(1)
σiI = (�oϕ + �ur,r)δiI + 2µuI ,i − �γ

�
1+ τθ

∂
∂t

�
TδiI − ((3�+ 2µ)dnN)δiI ,
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s − σ = �oui,i − β1
�
1+ τθ

∂
∂t

�
T +−((3�+ 2µ)dnN)δ2i + �1ϕ.




.

(2)Ṅ = DEN,ii −
N

τ
+ κT .
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∂
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∂
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)
T = 1

2
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Figure 1.  Geometry of the problem.
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Following is a definition that may be presented in accordance with the Riemann–Liouville fractional integral 
 operator20:

The Riemann–Liouville fractional integral of order B is IB of any function X(�) ( Ŵ(B) refers to the gamma 
function). The Caputo fractional derivative is ∂

B

∂tB
 for the continuous function (Lebesgue function) X(�) which 

can be represented  as26–28:

On the other hand, the definition of the fractional derivative proposed by Caputo is:

Elastic-electronic body theory yields the following form for the time-fractional heat conductive equation in 
a microelongated semiconductor medium: (the problem is studied in case of 0<α ≤ 1 , the superconductivity is 
obtained when 1 < B < 2)16:

The analysis is simplified when a 2D problem is considered. In this case, the 2D deformation of the displace-
ment vector and the microelongation scalar function can be represented in xz-plane as:

Microelongation coefficient of the linear thermal expansions is ( αt2 ), κ = ∂n0
∂T

T
τ

 which represents a coupling 
thermal activation parameter and γ̂1 = (3�+ 2µ)αt2 parameter depending on microelongational semiconductor. 
The fundamental governing Eqs. (2)–(5) may be reformulated for 2D perturbation  as37–39:

By substituting a suitable scale, such as a characteristic length, time, or temperature, into the main equations, 
the dimensional (or physical) terms may be transformed into the non-dimensional ones.

By deleting the superscripts, Eq. (13) may be utilized to transform all the primary equations into the form 
below:

(5)IBX(t) = 1

Ŵ(B)

t∫

0

(t −�)B−1X(�)d�.

(6)
∂B

∂tB
X(x, t) =






∂B

∂tB
X(x, t) = X(x, t)− X(x, 0) when B → 0,

IB−1 ∂X(x,t)
∂t when 0 < B < 1 (weak conductivity)

∂X(x,t)
∂t when B = 1 (normal conductivity).

.

(7)DBX(t) = 1

Ŵ(n− B)
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(t −�)n−B−1 d
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∂
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)(
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(9)
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Helmholtz’s theorem allows us to express translations as functions in both scalar �(x, z, t) and vector 
space–time �(x, z, t) = (0,ψ , 0) , which we may write as:

The above set of Eqs. (14)–(17), may be rearranged using Eq. (18) to provide the following:

Recasting the 2D constitutive relations yields:

where a1 = �o

ρc2T
, a2 = �

ρC2
T

, a3 = ρC2
T

µ
, ε = γ̂ 2To

Kρ , ε1 = γ̂1γ̂To
Kρ , ε2 = C2

T
DEω∗ , a∗3 = 2�a3 , a4 = µ

ρC2
T

 , C4 = ρjω∗4

α0C
2
2
, 

ε3 = C2
T

τDEω∗2 , ε4 = κoδnC
2
T

DE γ̂ ω∗2 , ε5 = Eg γ̂C
2
2

τKω∗δn ,C3 = �1ω
∗2

α0C
2
2
, C5 = �oω

∗2
α0C

2
2
, C6 = γ̂1ρω

∗2To
γ̂ α0

.

Initial conditions satisfying the following homogeneous requirements may be considered in finding a solu-
tion to the problem:

Formulation in the transform domain
Using their specified Laplace and Fourier transformations for every function ζ(x, z, t) , in addition, the Laplace 
and Fourier transform form for the Caputo derivative, which is defined as:
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Applying the transformation of Eq. (25) for the basic Eqs. (14) and (19)–(23), yields:

where

Equations (26)–(30) are shown to be linked differential equations from the given set of equations. The fol-
lowing tenth-order differential equation is fulfilled by ϕ̃, Ñ , T̃ , �̃ and ψ̃ may be obtained by using the elimination 
approach to the system of Eqs. (26)–(30) as:

where, B1 = −{A2A7 + C5a1 − A1 − A3 − A4 − A6 − α1} , 
B2 =

{
(−A2A7 − C5a1 + A1 + A3 + A4 + A6)α1 + ((−ξ 2 − A3 − A6)C5 − A5A7)a1 + A2A8C4 + A5A8+
(−ξ 2A2 − A2A3 − A2A4 + ε4)A7 + (A1 + A3 + A4)A6 + (A1 + A3)A4 + A1A3 + A9A10 − ε4ε5

}
 , 

B3 = −






(−C5a1 + A1 + A3 + A4)ε4ε5 + (−ξ 2A7 − A3A7 − A4A7 + A8C5)ε4+
(−A3A4 − A3A6 − A4A6 − A9A10 − A5A8 + A5A7a1 + A2A3A7 + A2A4A7+
A2A7ξ

2 + (ξ 2a1 − A4A8 + A3a1 + A6a1)C5 − A1A4 − A1A6 − A1A3)α1−
A3A5A8 − A1A5A8 − A6A9A10 − A4A9A10 + A2A3A4A7 + A3A5A7a1−
A3A4A6 + (A2A3A7 + A2A4A7 + A5A7a1)ξ

2 + (−A2A3A8 + A3A6a1+
(−A2A8 + A3a1 + A6a1)ξ

2)C5 − A1A3A4 − A1A3A6 − A1A4A6






 , 

B4 =






((((−A3 − A6)ξ
2 − A3A6)α1 + (−A3A6 + ε4ε5)ξ

2 + A3ε4ε5)C5 + (−ξ 2A5A7 − A3A5A7)α1−
A3A5A7ξ

2)a1 + ((ξ2A2A8 + A2A3AA8)α1 + (A2A3A8 − A8ε4)ξ
2 − A3A8ε4)C5+

((−A2A3A7 − A2A4A7)ξ
2 + A1A3A6 + A1A4A6 + A1A5A8 + A1A3A4 + A3A5A8 + A4A9A10

+A3A4A6 + A6A9A10 − A2A3A4A7)α1 + (−A2A3A4A7 + (A3A7 + A4A7)ε4)ξ
2 + A1A3A4A6+

A1A3A5A8 + A4A6A9A10 + A5A8A9A10 + (A3A4A7 + (−A1A3 − A1A4 − A3A4 − A9A10)ε5)ε4





 , 

B5 = −






((A3A5A7 + A3A6C5)ξ
2α1 − ξ 2A3C5ε5ε4)a1 + ((A2A3A4A7 − A2A3A8C5)ξ

2−
A1A3A4A6 − A1A3A5A8 − A4A6A9A10 − A5A8A9A10)α1 + ((A1A3A4 + A4A9A10)ε5+
(−A3A4A7 + A3A8C5)ξ

2)ε4




.

The following is a possible factorization of Eq. (32):

where k2n(n = 1, 2, 3, 4, 5 : Re(kn) > 0) represent the roots of the auxiliary Eq. (33).
General form linear solutions to Eq. (32) may be expressed in terms of their roots which are bounded x → ∞ 

when as:

(25)

L(ζ(x, z, t)) = ζ (x, z, s) =
∞�

0

ζ(x, z, t) exp(−st) dt,

F(ζ (x, z, s)) = ζ̃ (x, ξ , s) = 1√
2π

∞�

−∞
ζ (x, z, s) exp(−iξx) dt,

L(DBζ(x, z, t)) = sBζ (x, z, s)−
n−1�
k=0

ζ(x, z, s)sB−k−1, n− 1 < B < n,

L(DBζ(x, z, t)) = sBζ (x, z, s), (for zero initial values and B > 0).






.

(26)(D2 − α1)Ñ + ε4T̃ = 0,

(27)(D2 − A1)�̃+ A9ψ̃ + A2T̃ + a1ϕ̃ − Ñ = 0,

(28)(D2 − A3)ψ̃ − A10�̃ = 0,

(29)(D2 − A4)ϕ̃ − C5(D
2 − ξ 2)�̃+ A5T̃ = 0,

(30)(D2 − A6)T̃ − A7(D
2 − ξ 2)�̃+ ε5Ñ − A8ϕ̃ = 0,

(31)
σ̃xx = Dũ+ iξa2w̃ − A2T̃ − Ñ + a1ϕ̃,

σ̃zz = a2Dũ+ iξ w̃ − A2T̃ − Ñ + a1ϕ̃,
σ̃xz = a4(iξ ũ+ Dw̃).




,

α1 = ξ 2 + ε3 + ε2ω, A1 = ξ 2 + s2 −�2, A3 = ξ 2 + a3�
2 + a3s

2, A10 = a∗3s

D = d

dx
, A4 = ξ 2 + C3 + C4s

2, A5 = C6(1+ τθ s), A2 = 1+ τθ s,

A6 = ξ 2 + (s + τos
B+1), A7 = ε(s + τos

B+1), A8 = ε1s, i =
√
−1,A9 = 2�s .

(32)
{
D10 − B1D

8 + B2D
6 − B3D

4 + B4D
2 − B5

}
(ϕ̃, Ñ , T̃ , �̃, ψ̃) = 0,

(33)
5∏

n=1

(
D2 − k2n

)(
ϕ̃, Ñ , T̃ , �̃, ψ̃

)
(x, ξ , s) = 0,
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where �n , �′
n , �′′

n , �′′′
n  and �′′′′

n  express arbitrary unknown constants.

The components of displacement and stress components described in Eqs. (18) and (31), in terms of non-
dimensional variables specified, assume the form:

Boundary conditions
At the boundary ( x = 0 ) of the fractional microelongated surface, you may choose certain boundary conditions 
that will determine the values of uncertain parameters �n

44. The requirements might be stated as.
The two mechanical conditions are chosen as loaded ( P ) for normal stress and freely for tangent stress using 

the above transformation, which yields:

(34)T̃(x, ξ , s) =
5∑

i=1

�i(ξ , s) exp(−kix),

(35)ϕ̃(x, ξ , s) =
5∑

i=1

�′
i (ξ , s) e

−kix =
5∑

i=1

h1i�i (ξ , s) exp(−kix),

(36)�̃(x, ξ , s) =
5∑

i=1

�′′
i (ξ , s) e

−kix =
5∑

i=1

h2i�i (ξ , s) exp(−kix),

(37)Ñ(x, ξ , s) =
5∑

i=1

�′′′
i (ξ , s) e−kix =

5∑

i=1

h3i�i (ξ , s) exp(−kix),

(38)ψ̃(x, ξ , s) =
5∑

i=1

�′′′′
i (ξ , s) e−kix =

5∑

i=1

h4i�i (ξ , s) exp(−kix).

h1i =
(
(A2C5+A5)k

6
i + c8k

4
i + c9k

2
i + c10

)
(
k8i + c4k

6
i + c5k

4
i + c6k

2
i + c7

) , h2i =
(
A2k

6
i + c1k

4
i + c2k

2
i + c3

)
(
k8i + c4k

6
i + c5k

4
i + c6k

2
i + c7

) ,

h3i = − (ε4)(
k2i − ε4

) , h4i =
(
A2A10k

4
i + c11k

2
i + c12

)
(
k8i + c4k

6
i + c5k

4
i + c6k

2
i + c7

) ,

c1 = (−A2A3 − A2A4 − A2α1 − A5a1 + ε4),

c2 = (A2A3A4 + A2A3α1 + A2A4α1 + A3A5a1 + A5a1α1 − A3ε4 − A4ε4),

c3 = −A2A3A4α1 − A3A5a1α1 + A3A4ε4,

c4 = C5a1 − A1 − A3 − A4 − α1,

c5 = −ξ2C5a1 − A3C5a1 − C5a1α1 + A1A3 + A1A4 + A1α1 + A3A4 + A3α1 + A4α1 + A9A10,

c6 = ξ 2AC5a1 + ξ 2C5a1α1 + A3C5a1α1 − A1A3A4 − A1A3α1 − A1A4α1 − A3A4α1 − A4A9A10 − A9A10α1,

c7 = −ξ2A3C5a1α1 + A1A3A4α1 + A4A9A10α1,

c8 = (−ξ 2A2C5 − A2A3C5 − A2C5α1 − A1A5 − A3A5 − A5α1 + C5ε4,

c9 = ξ 2(A2A3C5 + A2C5α1 − C5ε4)+ A2A3C5α1 + A1A3A5 + A1A5α1 + A3A5α1 − A3C5ε4 + A5AA9A10,

c10 = −ξ2(A2A3C5α1 −2 A3C5ε4)− A1A3A5α1 − A5A9A10α1,

c11 = A10(−A2A4 − A2α1 − A5a1+ε4),

c12 = A10(A2A4α1+A5a1α1 − A4ε4),

(39)ũ(x) = −
5∑

n=1

�n(knh2n + iξh4n)e
−knx , w̃(x) =

5∑

n=1

�n(iξh2n − knh4n)e
−knx .

(40)

σ̃xx =
5�

n=1

�n

�
h2n(k

2
n − ξ 2a2)− A2 − h3n + a1h1n − iξknh4n(a2 − 1)

�
e−knx ,

σ̃zz =
5�

n=1

�n

�
h2n(a2k

2
n − ξ 2)− A2 − h3n + a1h1n − iξknh4n(1− a2)

�
e−knx ,

σ̃xz = −
5�

n=1

a4�n(iξ(knh2n + iξh4n)+ kn(iξh2n − knh4n)e
−knx .






.
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The thermal condition under the above transformation can be chosen in a thermally shocked with reference 
temperature Q case as:

The elongation can be chosen free under the transformation at x = 0 as:

According to the recombination processes in the semiconductor medium, the plasma condition can be 
chosen when the concentration of the electrons ñ0 is obtained with the speed of recombination s̃ , which can be 
represented in the following form:

Using the expressions of T̃ , σ̃xx , σ̃xz , ϕ̃ and Ñ  under the transformations according to the Eqs. (41)–(44), 
we get:

The complete solutions of the main physical quantities are obtained when the above system of according to 
Eq. (45), which are solved using the inverse of matrix technique to obtain the unknown parameters �n.

Inversion of the Laplace–Fourier transforms
The inversion of the above main equations in the time physical domain is required to get the full solutions of 
the 2D distributions of dimensionless physical field variables. For problems in two dimensions in Cartesian 
coordinates, this is the generic solution in the domain of the Laplace–Fourier transform.

It is possible to express the inverse Fourier transform as:

Nonetheless, a Riemann-sum approximation approach is employed for the numerical inversion of Laplace 
 transforms36.

The inverse of a function ζ (x, z, s) in the Laplace domain may be rewritten as:

where n represents a greater arbitrary constant than all real parts of the singularities of ζ (x, z, s) , s = n+ iM
(n, M ∈ R ), on the other hand, the inverted of Eq. (47) can be represented as:

The Fourier series expansion can be used for the function ζ(x, z, t′) in the closed interval 
[
0, 2t′

]
 , which yields:

where Re represent the real section and i = √−1 . The sufficient N is a large integer that can be chosen  freely36.

(41)σxx = −P ⇒⇒ σ̃xx = −P̃,
σxz = 0 ⇒⇒ σ̃xz = 0, at x = 0.

}
.

(42)∂T

∂x
= Q ⇒ at x = 0 ⇒ dT̃

dx
= Q̃.

(43)ϕ̃ = 0.

(44)
dÑ

dx
= − s̃n0

DE
.

(45)

4�
n=1

�n(h2i(k
2
n − ξ 2a2)− A2 − h3i + a1h1i)− iξk5(a2 − 1)�5 = −P̃,

4�
n=1

iξ�nkn(h2i − 1)+ (1+ k25)�5 = 0,

4�
i=1

−ki�i (s, ξ) = Q̃,

4�
i=1

h1i�i (s, ξ) = 0,

4�
i=1

h3iki�i(s, ξ) = s̃ñ0
DE

.






.

(46)F−1(ζ̃ (ξ , z, s)) = 1√
2π

∞∫

−∞
ζ̃ (ξ , z, s) exp(iξx) d t = ζ (x, z, s).

(47)ζ(x, z, t′) = L−1{ζ (x, z, s)} = 1

2π i

n+i∞∫

n−i∞

exp(st′)ζ (x, z, s) ds.

(48)ζ(x, z, t′) = exp(nt′)
2π

∫ ∞

∞
exp(iβt)ζ (x, z, n+ iβ)dβ .

(49)ζ(x, z, t′) = ent
′

t ′

[
1

2
ζ (x, z, n)+ Re

N∑

k=1

ζ

(
x, z, n+ ikπ

t ′

)
(−1)n

]
.
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Validation
Fractional thermoelastic theory with rotational microelongation. Microelongation theory When 
the plasma wave effect is disregarded, thermoelasticity under the influence of a rotating field is achieved (i.e. 
N = 0 ). This allows us to simplify the governing equations to the following  form14, 15:

The theory of fractional rotational photo‑thermoelasticity. The microelongation effect disappears 
and the rotating photo-thermoelasticity theory is produced when the parameters αo, �o and �1 are ignored in 
the main equations. Yet, the reduction of the governing equations  as28, 30:

Rotational fractional photo‑thermoelasticity models. It is possible to reformulate the numerous 
models of rotational photo-thermoelasticity in the microelongation scenario depending on the varied values 
of the phase-lag thermal relaxation times parameters τθ and τo (the coupled-dynamical (CD) model is appeared 
when τθ = τo = 0 , Lord and Șhulman (LS) model is observed when τθ = 0 and the dual phase-lag model (DPL) 
is appeared when 0 ≤ τθ < τ0)42–44.

The microelongation fractional photo‑thermoelasticity theory. When the influence of the rota-
tion field was neglected (when the angular velocity parameters vanished ( � = 0)), the microelongation photo-
thermoelasticity theory became apparent. As a result, the primary equations may be condensed into the follow-
ing  form25, 27:

Discussion and numerical results
We now carry out some numerical calculations in order to further analyze the problem and determine how 
different characteristics such as rotation parameter, fractional parameter, and phase lag times included in the 
medium affect the physical fields. Input parameters for a fractional microelongated semiconductor material 
such as silicon (Si) are used to run numerical simulations. The numerical findings may be visually shown in 
MATLAB (2022a). The Si parameters needed to create a graphical simulation using the SI unit of the physically 
relevant constants  are45–51:

� = 3.64× 1010 N/m2 ,  µ = 5.46× 1010 N/m2 ,  ρ = 2330 kg/m3 ,  T0 = 800 K  ,  dn = −9× 10−31 m3 , 
DE = 2.5× 10−3 m2/s  ,  Eg = 1.11 eV  ,  s̃ = 2 m/s  ,  τ = 5× 10−5 s  ,  αt1 = 0.04× 10−3 K−1  , 
αt2 = 0.017× 10−3 K−1  ,  K = 150 Wm−1K−1  ,  Ce = 695 J/(kg K)  ,  j = 0.2× 10−19 m2  , 
γ = 0.779× 10−9 N  ,  k = 1010 Nm−2  ,  �0 = 0.5× 1010 Nm−2  ,  t = 0.001 ,  �1 = 0.5× 1010 Nm−2  , 
α0 = 0.779× 10−9N, τ0 = 0.00005, ν0 = 0.0005, ñ0 = 1020 m−3.

In this work, we calculate the wave distributions of the principal fields in 2D using non-dimensional variables. 
Small-time numerical simulations are performed in the 0 ≤ x ≤ 10 range.

Impact of thermal memories. The influence of relaxation time on the variation of basic fractional physi-
cal variables as a function of horizontal distance ( 0 ≤ x ≤ 10 ) is shown in Fig.  2. According to the various 
models in photo-thermoelasticity theory, the relaxation times are selected in this situation (three models: CD, 
LS and DPL). When, six different types of wave propagation are depicted: thermal (temperature distributions), 
microelongation, elastic (displacement), plasma (carrier intensity), and mechanical (stresses σxx and σxz ). The 
free surface of the excited fractional microelongated semiconductor is shown in Fig. 2 to have physical distribu-
tions that conform to the boundary conditions when t = 0.001 , B = 0.0 and � = 0.3 . Light’s thermal loads cause 
a thermal wave distribution to begin at the positive value at the surface and grow until they reach their maximum 

(50)
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∂
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�
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τ
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value in the first range. In the second range, for both the CD and LS models, the thermal wave gradually drops to 
its lowest value at the zero line, but for the DPL model, the thermal wave first grows and then gradually decreases 
to its minimum value at the zero line. For CD and LS models, however, the wave distributions of plasma and 
elastic (displacement) waves follow the same pattern as the thermal wave distribution. The DPL model’s distri-
bution, on the other hand, exhibits the same behavior as the CD model (exponential behavior), however, the 
magnitude varies with the values of thermal relaxation durations. All three sets of numerical findings (tempera-
ture, displacement, and carrier density) are in agreement with the experimental  data52. For three distinct photo-
thermoelasticity models, the distribution of microelongation vibration against distance is shown in the second 
inset figure. Three different instances of the thermal relaxation time (CD, LS and DPL) are shown in Fig. 2 as a 

Figure 2.  The relationship between the main physical fields and horizontal distance, as determined by the 
variations in thermal relaxation times under the influence of the rotation parameter and fractional parameter.
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fluctuating field of microelongation changes with increasing horizontal distance. Microelongation starts at zero 
at the free surface and declines monotonously to its lowest, as seen in this picture, before gradually rising and 
reducing periodically until it again reaches zero (equilibrium state). It is observed that the factor of relaxation 
times has a substantial impact on the behavior of the microelongation function under different conditions of 
microelongation. As can be seen in the Figure, as the relaxation duration increases, so does the amplitude of the 
microelongation field. When TE and ED deformations occur, the mechanical wave’s (normal stress’s) surface-to-
depth gradient begins at negative and rapidly declines to its minimal peak value. When we go farther from the 
surface, the waves’ propagation pattern starts to rise gradually, peaks at its greatest value, then fluctuates between 
a minimum and maximum values a few times before disappearing altogether. Yet, because of the thermal influ-
ence of light, the tangent stress distribution first rises before plateauing at the free surface. In contrast, in the 

Figure 3.  The relationship between the significant physical fields and horizontal distance as a function of 
fractional parameter differences with rotation parameter and DPL model.
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second band, the wave behavior is waveform, with the wave’s propagation decreasing until it coincides with the 
zero line, and then disappearing entirely when the system reaches equilibrium.

Impact of fraction parameter. In this section (Fig. 3), a comparison study illustrates the influence of 
the fractional time derivative B on the examined system variables against location x for three distinct values 
of B equal to B = 0.0 , B = 0.5 , and B = 1.0 under the effect of rotation at t = 0.001 . These values were chosen 
because they represent the range of possible values for B . In the second category, a new framework that is based 
on the DPL model and takes into account the impact of rotation was established. As can be seen in the subfig-

Figure 4.  The GL model’s main physical field changes against the horizontal distance and the fractional effect’s 
impact from the rotation field and its absence.
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ures, the boundary conditions for all of the physical quantities are satisfied, and all of the curves coincide as the 
variable x approaches infinity. The wave propagation of the primary physical variables saw a rise in amplitude in 
response to an increase in the fractional time derivative parameter.

Impact of rotation parameter. In two instances in the range 0 ≤ x ≤ 10 , Fig. 4 (composed of six sub-
figures) depicts how the propagation of thermal, microelongation elastic, plasma, and mechanical waves (and) 
change for constant values of dimensionless time t = 0.001 . According to the DPL model, there are two possible 
scenarios: one in which the medium is studied while under the influence of a rotation effect ( � = 0.3 ), and 
another in which it is studied independently of any such effect ( � = 0.0 ). All the wave propagations of the con-
sidered fields are shown to be significantly affected by the rotation field parameter in this figure.

Conclusion
With a set of input physical parameters, an analytical formulation is offered and visually shown for a rotation 
field with fractional order to heat equation acting on an isotropic-homogeneous-microelongated semiconduct-
ing elastic material. According to the generalized photo-thermoelasticity theory, the main equations in 2D are 
established, which describe the interplay between thermal, mechanical, microelongation, and carrier intensity. 
The photo-excitation transport mechanisms in the microelongated semiconductor material are investigated. 
According to the various types of thermal memory, three models of the photo-thermoelasticity theory are 
considered (CD, LS, and DPL). Microelongated silicon semiconducting media are simulated numerically under 
controlled circumstances. All physical distributions of waves in propagation have been shown to eventually settle 
into a stable equilibrium. All physical quantities tend to vary more consistently. It was also discovered that the 
wave propagation of the physical variables under examination is significantly affected by the relaxation times. 
Compared to the LS, and CD theories of photo-thermoelasticity, DPL has been shown to have superior vibra-
tional behavior. The results of the thermoelastic heat equation are significantly impacted by the existence of the 
fractional time derivative. Moreover, the propagating waves show an obvious influence on the rotation parameter. 
Microelongated semiconductor silicon is very important to research and has several potential applications in 
today’s state-of-the-art electronic gadgets, including but not limited to sensors, computer processors, diodes, 
accelerometers, inertial sensors, and electric circuits.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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