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PANoptosis‑related prognostic 
signature predicts overall 
survival of cutaneous melanoma 
and provides insights into immune 
infiltration landscape
Wei Wang 1,3, Qingde Zhou 1,3, Lan Lan 2 & Xinchang Xu 1*

Cutaneous melanoma (CM) is a highly malignant tumor originating from melanocytes, and its 
metastasis and recurrence are the major causes of death in CM patients. PANoptosis is a newly 
defined inflammatory programmed cell death that crosstalk pyroptosis, apoptosis, and necroptosis. 
PANoptosis participates in the regulation of tumor progression, especially the expression of 
PANoptosis related genes (PARGs). Although pyroptosis, apoptosis, and necroptosis have received 
attention in CM, respectively, the link between them remains elusive. Therefore, this study aimed 
to investigate the potential regulatory role of PANoptosis and PARGs in CM and the relationship 
among PANoptosis, PARGs and tumor immunity. We identified 3 PARGs associated with prognosis in 
CM patients by The Cancer Genome Atlas. Risk model and nomogram were established. Enrichment 
analysis of differentially expressed genes indicated that CM was immune‑related. Subsequent 
analyses indicated that prognosis‑related PARGs were associated with immune scores and infiltration 
of immune cells in CM patients. In addition, immunotherapy and drug sensitivity results indicated 
an association between prognosis‑related PARGs and drug resistance in CM patients. In conclusion, 
PARGs play a key role in the progression of tumors in CM patients. PARGs can be used not only for risk 
assessment and OS prediction in CM patients, but also reflect the immune landscape of CM patients, 
which can provide a novel reference for individualized tumor treatment.

Among all skin tumors, cutaneous melanoma (CM) is the skin tumor with the highest mortality  rate1. Accord-
ing to the GLOBOCAN 2020 cancer report prepared by the International Agency for Research on Cancer, there 
will be nearly more than 300,000 new cancer cases and 60,000 new cancer deaths in 2020  alone2. Notably, the 
mortality rate of CM is four times higher than that of non-melanoma skin  tumors2. The 5-year survival rate 
of CM patients remains unsatisfactory due to the fact that CM is a highly metastatic  malignancy3. Therefore, 
early detection and diagnosis of CM can be of great help in the treatment of  CM4. Nowadays, research on the 
diagnosis and treatment of CM still worthwhile, especially the discovery of some reliable prognostic biomarkers 
will be  crucial5.

The imbalance between apoptosis and proliferation was the direct cause of  tumorigenesis6. Notably, altera-
tions in the apoptotic program can also affect tumor response to  drugs7,8. Therefore, understanding the new 
programmed death pathways is essential for tumor prevention, diagnosis, and treatment. PANoptosis is a recently 
newly defined inflammatory programmed cell death that is based on an inflammatory vesicle complex (PANo-
ptosome)9. It has been shown that PANoptosis, which contains molecules which associated with pyroptosis, 
apoptosis, and necroptosis, can crosstalk them and influence their relationship with each  other10–14.

The key role of PANoptosis in many tumors has been reported, such as colorectal  cancer15, gastric  cancer16, 
and adrenocortical  cancer17. It has also been shown that pyroptosis, apoptosis, and necroptosis are all closely 
related to  CM18,19. However, current studies of PANoptosis in CM tend to focus on only one or two of them, and 
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the joint roles of all three of them have not been reported. Therefore, the discovery of relevant biomarkers of 
PANoptosis in CM is crucial. In conclusion, the better understanding of the role of PANoptosis could provide 
new insights into the diagnosis and targeted therapy of CM.

In this study, PANoptosis-related genes (PARGs) associated with OS in CM patients were identified by ana-
lyzing datasets downloaded from the Cancer Genome Atlas database (TCGA). The risk model was constructed 
based on prognosis-related PARGs and the predictive power of the model was evaluated. Enrichment analysis 
of differentially expressed genes (DEGs) was used to further understand the differences in biological function 
between CM patients with different risks. The immune landscape of CM patients was assessed using a combi-
nation of immune algorithms. In addition, we analyzed the differences in immunotherapy response and drug 
sensitivity between patients with different risks. Overall, this study may provide new insights into the diagnosis 
and targeted therapy of CM.

Materials and methods
Data collection and preliminary processing. The transcriptome matrix and relevant clinical informa-
tion of CM patients involved in this study were downloaded from the Cancer Genome Atlas database (TCGA) 
(https:// portal. gdc. cancer. gov/). Transcriptomes without survival time information will not be considered and 
a total of 454 CM samples were finally available for subsequent analysis (Table 1 and Supplementary Table 1). 
The transcriptome of each CM sample was merged for annotation by perl  script20. Age, sex, grade, stage, and 
TMN stage were obtained from the relevant clinical information downloaded from TCGA. The data involved 
in this study were downloaded from public databases and did not require ethics committee approval or written 
informed consent from patients.

Identification of prognosis‑associated PARGs and construction of risk models. A total of 14 
PARGs were extracted based on previous studies, and these genes are mainly components of the  PANoptosome9. 
Univariate Cox regression analysis was used to assess the association of PARGs with CM. The least absolute 
shrinkage and selection operator (LASSO) algorithm was used to further screen PARGs associated with OS 
of CM. PARGs with independent prediction of CM prognosis were identified by multivariate Cox regres-
sion analysis, and risk models were constructed based on prognosis-related PARGs with the formula: Risk 
score = ∑i =  Coefi * (expression of  PANRGi). The CM sample was divided into low-risk and high-risk groups 
according to the median risk score. Kaplan–Meier survival curves were used to assess the differences between 
OS of CM patients with different risks.

Table 1.  Clinical information on the samples involved in this study.

Clinical Group Cohorts Training cohorts Test cohorts

Age
≤ 65 296 206 90

> 65 158 112 46

Gender
Female 172 122 50

Male 282 196 86

Fustat
Alive 236 157 79

Dead 218 161 57

Stage

0 6 4 2

1 76 51 25

2 136 99 37

3 169 118 51

4 22 15 7

Unknown 45 31 14

T

0 23 15 8

1 41 24 17

2 76 52 24

3 89 68 21

4 147 107 40

Unknown 78 52 26

M

0 405 281 124

1 23 16 7

Unknown 26 21 5

N

0 225 159 66

1 73 56 17

2 49 32 17

3 54 33 21

Unknown 53 38 15

https://portal.gdc.cancer.gov/
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Internal validation of the risk model. To validate the predictive ability of the risk model, 454 CM sam-
ples were divided into a training cohort and a test cohort according to a 7:3 ratio and risk scores were calculated. 
There were 318 samples in the training cohort and 136 samples in the test cohort. Afterwards, the samples in 
each cohort were divided into low risk and high risk groups based on the median risk scores of each cohort. In 
each cohort, Kaplan–Meier survival curves were used to analyze the difference in OS between patients in the 
low- and high-risk groups.

Independent prognostic analysis of risk models and clinical characteristics. Prognostic inde-
pendence of risk model and clinical characteristics was assessed by univariate and multivariate Cox regression 
analysis (performed by the R package “survival”). Kaplan–Meier survival curves were used to demonstrate dif-
ferences in OS of CM patients with different clinical characteristics. The nomogram based on risk models and 
clinical characteristics were constructed by the R package "rms", and predictive accuracy was assessed by calibra-
tion plots and decision curves. The predicted survival probabilities of all variables were analyzed and visualized 
by the R package “pROC” and the R package “ggplot2”.

Screening and biological function enrichment for DEGs. The “limma” R package was used to evalu-
ate and screen DEGs between different risk patient groups with a |Fold Change|≥ 2 and a p value < 0.05. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) analysis were performed 
with the “clusterProfiler” R package to assess the enrichment of pathways and biological functions involved in 
 DEGs21. Visualization of KEGG enrichment results by the “ggplot2” R package.

Immune landscape and drug sensitivity analysis. Multiple immune algorithms were used to assess 
the immune landscape of the samples in our study. The ESTIMATE algorithm can estimate stromal and immune 
cells and provide an ESTIMATE score. The CIBERSORT algorithm can assess the proportion of 22 immune cells 
in each sample. The single sample gene set enrichment analysis (ssGSEA) allows the assessment of 23 immune 
cells as well as immune  function22. Tumor immune dysfunction and rejection (TIDE) scores for CM patients 
were calculated through the TIDE database (http:// tide. dfci. harva rd. edu/ login/). Anti-tumor drug response pre-
diction was performed in CM patients based on the Genomics of Drug Sensitivity in Cancer (GDSC) database, 
as reflected by half maximal inhibitory concentration (IC50)23. Differences in IC50 between different groups of 
CM patients were analyzed and visualized by the “ggplot2” R package.

Consensus clustering analysis. To further clarify the relationship between PARGs and prognosis, CM 
patients were distinguished into several subgroups based on prognosis-related PARGs. And a multifaceted com-
parative analysis of different subgroups will be performed, including Kaplan–Meier survival analysis, immune 
infiltration landscape, and immunotherapy response.

Statistical analysis. Statistical analyses involved in this study were performed using R software (ver-
sion 4.1.2), and Wilcoxon rank sum test was used to analyze the differences between the two groups, with *p 
value < 0.05 as the threshold value to determine whether there was a statistical difference.

Results
Construction of a risk model for CM based on PARGs prognostic signature. To illustrate the 
relationship between PARGs and CM, a new risk model based on PARGs was constructed to predict the prog-
nosis of CM. As shown in Fig. 1A, 8 PARGs were determined to be associated with OS of CM by univariate Cox 
regression analysis. Further analysis by the LASSO showed that 4 PARGs were able to predict the OS of CM 
(Fig. 1B,C). By multivariate Cox regression analysis, 3 PARGs with independent predictive power were finally 
identified for modeling. Patients with CM were ranked according to median risk score and divided into low- and 
high-risk groups. The scatter plot results showed that patients in the low-risk group tended to have higher OS 
(Fig. 1D,E). Kaplan–Meier survival curve analysis showed that patients in different risk groups had different OS 
(Fig. 1F). Notably, patients in the low-risk group had a higher OS than those in the high-risk group. The expres-
sion heat map of the 3 prognosis-related PARGs in the low-risk and high-risk group is shown in Fig. 1G. The 
results indicated that these 3 prognosis-related PARGs (ZBP1, MAP3K7, and RBCK1) were highly expressed in 
the low-risk group and less expressed in the high-risk group.

Validation of PARGs prognostic signature in training and test cohorts. Internal validation was 
performed to assess the accuracy and independence of the PARGs prognostic signature in predicting the prog-
nosis of CM patients.CM patients were randomly divided into a training cohort and a test cohort in a ratio of 
7:3. Same as before, patients were divided into low- and high-risk groups according to the PARGs prognostic 
signature in both cohorts. As shown in Fig. 2A,B,D,E, scatter plots indicate that risk score was negatively cor-
related with survival time for patients in both the training and test cohorts. The Kaplan–Meier survival curve 
results indicate that in both cohorts, patients with low risk score had higher OS than patients with high risk score 
(Fig. 2C,F). The heat map showed that the expression of ZBP1, MAP3K7 and RBCK1 was significantly higher 
in the low-risk group (Fig. 2G,H). These results suggest that risk model construction based on the prognostic 
characteristics of PARGs can accurately assess the prognosis of CM patients.

Risk model based on the PARGs prognostic signature was an independent prognosis indica‑
tor. Univariate and multivariate Cox regression analyses were used to assess the independence of risk scores 

http://tide.dfci.harvard.edu/login/
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predicting prognosis based on the PARGs prognostic signature. Univariate Cox regression analysis showed that 
age (hazard ratio (HR) = 1.019, p = 0.004), stage (HR = 1.393, p = 0.003), T (HR = 1. 471, p < 0.001), N (HR = 1.365, 
p < 0.001) and risk score (HR = 1.589, p < 0.001) were associated with the OS rate of CM were strongly cor-
related (Fig. 3A). The results of multivariate Cox regression analysis showed that T (HR = 1.380, p = 0.001), N 
(HR = 1.671, p < 0.001) and risk score (HR = 1.503, p < 0.001) were independent prognostic indicators of CM 
(Fig. 3B). The ROC curve showed that the AUC of risk score was 0.670, indicating that the PARGs prognostic 
signature were satisfactory stability (Fig. 3C).

To further assess the prognostic value of the PARGs prognostic signature under different clinical conditions, 
we grouped CM patients according to their clinical characteristics. Based on the PARGs prognostic signature, 
CM patients in the same clinical conditions were divided into low-risk and high-risk groups before Kaplan–Meier 
survival analysis. As shown in Fig. 3D–K, in some clinical conditions such as female, male, age ≤ 65 years, M0, 
T0-2, T3-4, N0-1 and Stage1-2 in the low-risk score of patients had significantly higher OS rates than those in the 
high-risk group. In contrast, OS rates were similar in some CM patients with clinical conditions of age > 65 years, 
M1, N2-3, and Stage3-4 (data not shown).

A novel nomogram model was subsequently developed to accurately predict the 1-, 3-, and 5-year OS rates 
of CM patients based on the PARGs prognostic signature and clinicopathological features. As shown in Fig. 4A, 
there are corresponding scoring criteria for each feature, by scoring each feature, the total score of the sample 
can be obtained, and the OS can be obtained according to the total score. The calibration curves showed that the 
1-, 3-, and 5-year survival times predicted by nomogram showed satisfactory agreement with the actual OS rates 
of CM patients (Fig. 4B). In addition, the nomogram had a higher concordance index (C-index) and decision 
curve (Fig. 4C–E) compared to other clinical factors. The time-dependent ROC showed AUCs of 0.672, 0.655, 
and 0.685 for 1, 3, and 5 years, respectively (Fig. 4F). In conclusion, these results suggest that risk scores based 
on PARGs can accurately assess the prognosis of CM patients relative to clinicopathological characteristics.

Figure 1.  Construction of risk model based on prognosis-related PARGs and analysis of OS in CM patients. 
(A) Results of univariate cox regression analysis of PARGs. HR = 1: No impact; HR < 1: reduced risk, positively 
correlated with survival time; HR > 1: Increased risk, negatively correlated with survival time. Minimum λ (B) 
and optimal coefficients (C) of prognostic PARGs based on Lasso regression analysis. (D) Scatter plot of risk 
scores for CM patients. (E) Ranking of risk scores of CM patients. (F) Results of Kaplan–Meier survival curve 
analysis based on risk model. (G) Heat map of the expression of prognosis-related PARGs in CM patients. 
*p < 0.05; **p < 0.01; ***p < 0.001.
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Enrichment analysis of DEGs. KEGG enrichment and GO enrichment were used to investigate the 
potential molecular mechanisms of DEGs in low and high risk groups. Volcano plot results of DEGs showed that 
most DEGs were downregulated in the high risk group (Fig. 5A). KEGG analysis as shown in Fig. 5B,D,E and 
the result showed that Cytokine-cytokine receptor interaction, Antigen processing and presentation, etc. were 
significantly enriched in DEGs (Fig. 5D). GO enrichment analysis demonstrated a high correlation between 
DEGs and immunity (Fig. 5C,F). Lymphocyte mediated immunity, positive regulation of leukocyte activation, 
positive regulation of lymphocyte activation, activation of immune response were enriched in the BP fraction. 
Immunoglobulin complex, T cell receptor complex, circulating immunoglobulin complex, and immunoglobulin 
receptor complex were enriched in the CC fraction. Immunoglobulin complex, circulating, immunoglobulin 
receptor binding, immune receptor activity, cytokine receptor activity were enriched in the MF fraction. These 
findings suggest that immune-related signaling pathways may mediate the role of PARGs in CM tumorigenesis.

Assessment and correlation analysis of the immune landscape based on PARGs prognostic 
signature. Multiple immune algorithms were used to assess the differences in immune infiltration land-
scape between patients in the low- and high-risk groups. Estimate results showed that patients in the low-risk 
group had lower tumor purity and higher stromal, immune, and estimate scores, while the opposite was true for 
patients in the high-risk group (Fig. 6A–D). CIBERSORT results showed that B cells naive, Plasma cells, T cells 
CD8, T cells CD4 memory activated , T cells follicular helper, T cells regulatory (Tregs), and Macrophages M1 
were higher in the low-risk patient (Fig. 6E). In contrast, Macrophages M0, Macrophages M2, and Mast cells rest-
ing were higher in the high-risk patient population (Fig. 6E). The ssGSEA algorithm results showed that among 
all 23 immune cell species, except CD56 bright natural killer cellna did not differ in proportion in all patients, 
the other 21 immune cell were higher in the low-risk patient group than in the high-risk patient group (Fig. 6F). 
Correlation analysis was further performed to explore the association between prognostic related PARGs and 
immune infiltration landscape. The results showed a significant association between prognostic related PARGs 
and immune cells (Fig. 6G,H). As shown in Fig. 6G, T cells CD8, Plasma cells, T cells CD4 memory activated and 
T cells regulatory (Tregs) were positively correlated with ZBP1, while Macrophages M0, Macrophages M2 and 
NK cells activated were negatively correlated with ZBP1. Notably, for all 23 immune cells based on the ssGSEA 
algorithm, ZBP1 was positively correlated with most immune cells (Fig. 6H). The above results suggested sig-
nificant differences in immune infiltration in CM patients, and we further evaluated patients’ immune function 
scores, the expression of key tumor genes, and the response to immunotherapy. The results showed that the low-
risk patients exhibited higher immune function scores (Fig. 7A). The expression of key tumor genes was higher 
in all low-risk patients than in high-risk patients (Fig. 7B). Similarly, low-risk patients showed a better response 
regardless of the presence of CTAL4 or PD1 (Fig. 7C–F). And the TIDE results showed that patients in the low-

Figure 2.  Validation results of PARG prognostic signature in the training and test cohorts. (A) Scatter plot of 
risk scores for CM patients in training cohorts. (B) Ranking of risk scores of CM patients in training cohorts. 
(C) Results of Kaplan–Meier survival curve analysis based on risk model in training cohorts. (D) Scatter plot of 
risk scores for CM patients in test cohorts. (E) Ranking of risk scores of CM patients in test cohorts. (F) Results 
of Kaplan–Meier survival curve analysis based on risk model in test cohorts. Heat map of the expression of 
prognosis-related PARGs in CM patients in training (G) and test cohorts (H). *p < 0.05; **p < 0.01; ***p < 0.001.
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risk group had higher TIDE scores, indicating a more pronounced response to immunotherapy in the low-risk 
group (Fig. 7G). In conclusion, these results suggest that a risk model based on the PARGs prognostic signature 
correlates with the immune infiltration status and immunotherapy response in CM patients.

Drug susceptibility analysis. Antineoplastic drugs remain one of the main clinical treatments for CM. 
Due to the heterogeneity of CM, the sensitivity of the same drug varies for different patients, so understanding 
the differences in the sensitivity of antineoplastic drugs in CM patients with different risks can provide new 
suggestions for personalized treatment of clinical. As shown in Fig. 8, the IC50 of most antineoplastic drugs in 
low-risk CM patients is lower than that in high-risk CM patients, such as Paclitaxel, Dasatinib, Imatinib and 
Lapatinib. Notably, the IC50 of Sorafenib was higher in low-risk CM patients than in high-risk CM patients, 
suggesting that Sorafenib may be more effective when used in high-risk CM patients. The above results suggest 
that CM patients with different risks have different sensitivity to antineoplastic drugs, and the prediction of drug 
sensitivity in CM patients with different risks can provide new thinking for personalized treatment of patients.

Consensus clustering analysis and immune evaluation. Consensus cluster analysis was used to clas-
sify CM patients into different subgroups according to the 3 prognostic related PARGs. The heat map showed 
that the best classification of CM patients was K = 2 with 125 samples in Cluster A and 329 samples in Cluster 
B (Fig.  9A). Kaplan–Meier survival analysis showed that Cluster B had a higher OS compared to Cluster A 
(Fig. 9B). ESTIMATE results showed that Cluster A had higher ESTIMATE, immune score, but lower tumor 
purity (Fig.  9C-F). Meanwhile, the CIBERSORT algorithm and ssGSEA were applied to each subgroup. As 
shown in Fig. 9G, T cells CD8, T cells CD4 memory activated, NK cells activated and Macrophages M1 were 
higher in Cluster A, while T cells CD4 memory resting, Macrophages M0 and Macrophages M2 were higher 
in Cluster B. The results of ssGSEA showed that the proportion of most immune cells was significantly higher 
in patients in Cluster A (Fig. 9H). In addition, the low-risk patients exhibited higher immune function scores 
(Fig. 10A). The TIDE results showed that patients in Cluster B had lower TIDE scores, which suggests that CM 
in Cluster B patients had a better potential immune therapy response (Fig. 10B). Similarly, low-risk patients 

Figure 3.  Results of independent prognostic analysis and clinical correlation analysis of risk models based on 
prognostic characteristics of PARGs. Results of (A) univariate Cox regression analysis and (B) multivariate Cox 
regression analysis based on risk score, clinical characteristics with OS. HR = 1: No impact; HR < 1: reduced 
risk, positively correlated with survival time; HR > 1: Increased risk, negatively correlated with survival time. 
(C) ROC results for predictive accuracy of risk score and clinical characteristics. Correlation analysis based on 
PARGs prognostic characteristics with different clinical characteristics: (D) Age ≤ 65; (E) Male; (F) Female; (G) 
M 0; (H) T I-II; (I) T III-IV; (J) N 0–1; (K) Stage I-II. *p < 0.05; **p < 0.01; ***p < 0.001.
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showed a better response regardless of the presence of CTAL4 or PD1 (Fig. 10C–F). In conclusion, these results 
further suggest that PARGs are associated with prognosis and may indicate the immune response and immune 
infiltration status of CM.

Discussion
As one of the most aggressive and metastatic malignancies, the OS of CM patients remains  suboptimal24. PANo-
ptosis is a recently defined inflammatory programmed cell death process involving multiple apoptotic pathways 
such as pyroptosis, apoptosis, and  necroptosis10–14,25,26. A growing number of studies suggest that PANoptosis is 
associated with tumor development and  metastasis8,27. However, the link between PANoptosis and CM is poorly 
studied, especially the exact mechanism of PARGs in CM is unclear. Therefore, we aimed to link PANoptosis to 
the prognosis of CM patients to reveal the role of PANoptosis and PARGs in CM. The study aims to investigate 
the link between PANoptosis and the prognosis of CM patients. This research could provide insights into the 
underlying mechanisms of CM progression and potentially lead to the development of new therapeutic strate-
gies for CM.

In our study, ZBP1, MAP3K7 and RBCK1 were finally identified to be associated with OS in CM and could 
be used as reliable prognostic biomarkers for CM. A risk model was constructed based on these three prognosis-
related PARGs, and the prediction accuracy of the model was better compared to other clinical characteristics. 
Notably, low-risk CM patients had better OS compared to high-risk CM patients. We subsequently constructed 
nomogram based on clinical characteristics as well as the risk model, which can be used for prediction of OS 
in CM patients.

The immune environment is an important factor in the interaction between tumor cells and immunity, and 
immune escape of tumor cells is often directly related to the effect of immunotherapy. In this study by enrichment 
analysis of DEGs in CM patients with different risk, we found that most immune-related pathways and biological 

Figure 4.  Nomogram construction and prediction accuracy assessment. (A) Nomogram construction based on 
the PARGs prognostic signature and clinical characteristics. (B) Calibration curves comparing the accuracy of 
nomogram predicted OS with the actual OS. Concordance index of the PARGs prognostic signature and clinical 
characteristics (C) and decision curve plots (D). (E) ROC results for predictive accuracy of nomogram, risk 
score and clinical characteristics. (F) ROC curves based on nomogram predicted at 1, 3 and 5 years. *p < 0.05; 
**p < 0.01; ***p < 0.001.
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functions were enriched, indicating that CM is very relevant to immunity. We found that the low-risk group had 
higher immune scores and a higher degree of immune cell infiltration by assessing the immune landscape of 
CM patients with different risk. The activation of the interferon signaling pathway has been shown to induce the 
expression of chemokines that attract T cells and NK cells, as well as the upregulation of major histocompatibility 
complex (MHC) molecules that present tumor antigens to T  cells28. Therefore, the upregulation of interferon 
signaling pathway genes in the low-risk group may contribute to the higher infiltration of T cells CD8 and NK 
cells observed in these patients. In addition, the activation of the Wnt/β-catenin pathway has been associated 
with an immunosuppressive microenvironment characterized by the recruitment of myeloid-derived suppressor 
cells (MDSCs) and the inhibition of T cell  activation29. Therefore, the upregulation of Wnt/β-catenin pathway 
genes in the high-risk group may contribute to the higher infiltration of Macrophages M0 and M2 observed in 
these patients. Notably, the prognosis-related PARGs we identified were significantly associated with immune 
infiltration. High expression of ZBP1, MAP3K7 and RBCK1 was accompanied by a higher degree of immune 
infiltration, suggesting that PANoptosis plays a key role in the immune landscape of CM.

Z-DNA binding protein 1 (ZBP1) was identified for its role in inducing tumor-associated  proteins30. How-
ever, recent studies have shown that ZBP1 can function as a central regulator of multiple programmed death 
 pathways31,32. Rajendra Karki showed that ZBP1 can mediate NLRP3 inflammatory vesicle activation and 
 PANoptosis33. Yuanqin Yang found that ZBP1 can control anti-tumor immune responses through mixed-spec-
trum kinase structural domain-like pseudokinase (MLKL)34. Caspases regulate cell death, immune responses, 
and homeostasis, and Min Zheng found that caspase-6 can act by promoting ZBP1-mediated inflammatory 
vesicle activation and cell  death10. In conjunction with our study, it is clear that ZBP1 has a very important 
association with immunity.

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7) encodes transforming growth factor β-activated 
kinase 1 (TAK1) and can regulate the immune response, cell death and  carcinogenesis35. Inokuchi S found that 
TAK1 deficiency can lead to cellular injury, inflammation, fibrosis and  carcinogenesis36. More notably, TAK1 
has a key role in differentiation and function of  macrophage37. In conjunction with our study, the absence of 
MAP3K7 in the high-risk group may count for the worse immune environment.

Gamma interferon (IFN-γ) is a key driver of immune activation and  immunosuppression38. RBCK1, a gene 
related to IFN-γ signaling, is associated with tumor immune infiltration as well as  immunotherapy39,40. Martin 
Krenn found that N-terminal mutations in RBCK1 may lead to immune  dysfunction41. RBCK1 is also able to 
promote NFKB signaling in the immune response through the linear ubiquitin assembly complex (LUBAC) to 
facilitate NFKB signaling in the immune  response42. In our study, RBCK1 was highly associated with infiltra-
tion of many immune cells.The effect of RBCK1 on immune function may be responsible for the differences in 
sensitivity to immunotherapy and drug treatment in CM patients with different risks.

Figure 5.  Results of the enrichment analysis of DEGs. (A) Volcano plot of DEGs. Bar-plot of the results 
of KEGG enrichment analysis (B) and GO enrichment analysis (C). (D) Circle-plot of the results of KEGG 
enrichment analysis. Bubble-plot of the results of KEGG enrichment analysis (E) and GO enrichment analysis 
(F). *p < 0.05; **p < 0.01; ***p < 0.001.
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Overall, our study shows that PANoptosis plays a crucial role in CM. The risk models based on prognosis-
related PARGs not only can effectively predict the CM patients prognosis but also indicate the immune landscape 
of CM patients. Understanding the role of PANoptosis and PARGs in CM could provide new avenues for targeted 
therapy and personalized treatment options for CM patients. This research could have a significant impact on 
improving the prognosis and survival rates of CM patients.

Figure 6.  The assessment and correlation analysis result of the immune landscape based on PARGs prognostic 
signature. (A–D) Tumor purity results as well as immune, stromal and ESTIMATE scores by ESTIMATE 
algorithm. (E) Proportion of immune cells of type 22 in CM patients of different risk groups by CIBERSORT. 
(F) Proportion of immune cells of type 23 in CM patients of different risk groups by ssGSEA. (G, H) Correlation 
results of prognosis-related PARGs with immune cells. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 7.  The result of immune function and immunotherapy in CM patients with different risks. (A) 
Differential results of immune function in CM patients with different risks. (B) Results of immune checkpoint 
analysis in CM patients with different risks. (C–F) Results of immunotherapy response differences in CM 
patients with different risks. (G) TIDE score of different risk patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 8.  Differential analysis of drug sensitivity in CM patients with different risk groups. (A) Paclitaxel, (B) 
Bleomycin, (C) 5-Fluorouracil, (D) Sorafenib, (E) Sunitinib, (F) Lapatinib, (G) Ruxolitinib, (H) Saracatinib, (I) 
Pazopanib, (J) Imatinib, (K) Dasatinib and (L) Crizotinib. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 9.  Consensus clustering of CM patients and immune landscape analysis. (A) Consensus clustering 
heat map showing the best classification of CM patients with K = 2. (B) The result of Kaplan–Meier survival 
curve in different subgroups. (C–F) Tumor purity results as well as immune, stromal and ESTIMATE scores 
by ESTIMATE algorithm. (G) Proportion of immune cells of type 22 in CM patients of different subgroups 
by CIBERSORT. (H) Proportion of immune cells of type 23 in CM patients of different subgroups by ssGSEA. 
*p < 0.05; **p < 0.01; ***p < 0.001.
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Data availability
The datasets involved in this study were obtained from public databases (TCGA, https:// portal. gdc. cancer. gov/). 
And the raw data presented in the study are included in the article or supplementary material, further inquiries 
can be addressed to the respective authors.
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