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Study on soil erosion and its driving 
factors from the perspective 
of landscape in Xiushui watershed, 
China
Linsheng Wen 1,2, Yun Peng 6, Yunrui Zhou 1,2, Guo Cai 1,2, Yuying Lin 3,4,5* & Baoyin Li 1,2*

Soil erosion (SE) is one of the most serious disasters in the world, which directly damage the 
productivity of the land and affect human well-being. How to effectively mitigate soil erosion is a 
challenge faced by all countries in the world. In this study, soil erosion was quantitatively assessed 
base on the RULSE model in an ecologically fragile area [Xiushui watershed (XSW)], and the effects 
of three major categories of factors (land use/cover change, landscape fragmentation and climate) on 
soil erosion were investigated using correlation analysis and structural equation model. The results 
indicated that there was no continuous increase or decrease trend on the SE of XSW with impact of 
rainfall, the mean values of SE were 2205.27 t/ha, 3414.25 t/ha and 3319.44 t/ha from 2000 to 2020 
and the hot areas of SE were mainly distributed around the Xiushui river channel, respectively. The 
expansion of urbanization (the area of impervious increased from 113.12 to 252.57  km2) aggravated 
landscape fragmentation, and the landscape fragmented area had some overlap with the hot zone of 
SE. Additionally, the LUCC factor dominated by NDVI, landscape fragmentation factor and climate 
factor dominated by rainfall had a directly driving effect on SE, where the path coefficient of landscape 
fragmentation was 0.61 (P < 0.01), respectively. We also found that except increasing forest area, 
improving forest quality (NDVI, canopy closure, structure) deserved emphasized in SE management, 
and the effect of landscape fragmentation on SE also should not be ignored. Moreover, soil erosion 
assessment at large scales over long time periods tends to underestimate the driving force of rainfall 
on SE, and it is a great challenge to evaluate the effect of extreme rainfall on soil erosion at short time 
scales in a downscale manner. This research provides insights for ecological sustainable management 
and soil erosion protection policies.

Soil erosion is a common natural disaster and occurs all over the  world1–3. It is a process of soil degradation 
manifested cause by the loss of soil nutrients and the movement of fine particles, which mainly arise from the 
washing of rainfall and the particles exchanging in soil–water  interface4,5. According to statistics at the end of the 
last century, global agricultural land (more than 30%) was suffered different levels of soil erosion, in addition, 
the rate of soil loss continuing exceeds 10 million ha/a3,6. Moreover, SE also have always been a major threat to 
food security, ecosystem regulation and the well-being of mankind, because the speed required for soil develop-
ment and formation is many orders of magnitude higher than soil  erosion7. Meanwhile global governments and 
environmental protection agency are eager badly to address the issue of SE, and they generally start to tackle 
it by some ecologically fragile areas, degraded red soil areas and hilly areas with a lot of  rainfall7–10. However, 
the assessment and mapping of SE are crucial for identifying the poor areas of SE and solving this predicament, 
meanwhile, it is also the foundation for the implementation of ecological restoration strategies.

Currently, the research methods for soil erosion assessment mainly consist of classical field measurements 
and the utilization of empirical models combined with GIS to assess the amount of soil erosion in a  region7,8,11. 
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On-site measurements (classical field measurements), which were rather a narrower range measurements on 
selected points, were often constrained to agricultural irrigation experiments or sediment transport in small 
 catchment12,13. Model assessments to quantify soil erosion were widely used at large scales and were less 
labor-intensive and  costly3,4,7. Model assessments has become a fairly popular and scientific method of soil 
erosion assessment for current  research9,14, although classical field measurements are still fundamental and 
 indispensable13.

Previously, numerous quantification models have been open up to evaluate SE, including the USLE (the 
universal soil loss equation)15, the RUSLE (the revised universal soil loss equation)16, the ZQ ( the Zengg equa-
tion)17, Sediment delivery ratio module of In-VEST  model18, the USPED (the unit stream power-based erosion 
deposition)19, and the European soil erosion model (EUROSEM)11,20. Among these models, the most widely used 
were the USLE and RUSLE  models15,16, which had widely applied in areas of different scales and environmental 
conditions due to their simplicity, lower entry threshold and high  precision2,13,21.

A lot of research work has been done on SE  assessment22, which was divided into three categories: (a) scholars 
had focused on different research scales to assess the risk of soil erosion, including  global23,  national24,  urban25, 
and watershed  scales9,14,21; (b) studies that combined soil erosion with other ecosystem services (ESs), for instance, 
Gong et al.10 explored the trade-off/synergies between soil conservation and other ESs in the mountainous basin 
and Geng et al.14 explored the current and future trends of ESs in the Yellow River basin by combining SE and 
water production, etc.; (c) using model simulations to predict future soil erosion risk, such as Liu et al.9 obtained 
future soil erosion characteristics based on the Dinamica environment for geoprocessing objects (EGO) for land 
use simulation and used them as a basis for ecological policy. However, it is not enough to spatially map the 
sensitive areas of SE and implement soil erosion remediation. Correctly understanding the key drivers of soil 
erosion in an area is more relevant for the regulation of soil erosion  risk7,26.

Soil erosion is influenced by many factors, including land use/cover change (LUCC)9, geographical condi-
tions (topography, slope length and steepness)27, soil physical and chemical properties (soil particle composition, 
structured and infiltration properties)28 and  rainfall29, etc. Among these factors, the contribution of slope to soil 
erosion could over 60% (Redundancy analysis)30, but slope, soil texture and other subsets are accompanied by 
properties that cannot be easily changed. On the contrary, factors such as rainfall and LUCC are variable factors 
that are susceptible and accompanied by  uncertainty31, which is a more crucial part that should be paid more 
attention to when formulating ecological restoration  policies26,32. In previous researches, the intensity of rainfall 
could significantly increase soil erosion, and the area of forest was also a key factor in determining the level of 
soil erosion  risk2,29. However, little attention has been paid to that landscape fragmentation is also an important 
factor that has an impact on ecological  function26,33. Therefore, in this study, we classified forest cover, Normal-
ized Difference Vegetation Index (NDVI) as LUCC factors, rainfall, evaporation and temperature were selected 
as climate  factors34, and selected indicators that representing landscape fragmentation as landscape  factors26, 
then used statistical methods to investigate the driving force of the factors on soil erosion. It could fill part of the 
research gap on soil erosion driving mechanism.

Xiushui watershed (XSW) located in the south bank reach of the Yangtze River, with abundant water and heat 
resources that have created extensive forests and arable land, and is an important forestry and grain resource 
storage area in  China35. However, the expansion of urbanization and the increased frequency of extreme weather 
in recent decades had led to dramatic changes in land types and severe ecological  degradation36. In addition, 
intensive agricultural intensification and social pressure greatly increase the risk of  SE8. The implementation 
of ecologically sustainable management of the XSW is urgent to prevent the continued degradation of the eco-
system. A mapping assessment of SE in the XSW could provide an effective aid to the formulation of ecological 
management policies. Meanwhile, identifying which factor (land cover, landscape fragmentation, climate) drive 
soil erosion in this ecologically fragile area could help take more effective control measures and also provide a 
more scientific reference. In this study, we had three main objectives: (1) revealing the variations of LUCC and 
landscape fragmentation in the XSW from 2000 to 2020; (2) assessing the SE characteristic in XSW from 2000 
to 2020; (3) revealing the key drivers of SE in XSW based on statistical analysis.

Data sources and methodology
Study area. Xiushui watershed (XSW) in northern Jiangxi Province, China (28°22′44"–29°31′26" N, 
113°56′35"–115°50′45" E), is an ecologically fragile watershed located in the south bank reach of the Yangtze 
River, with an area 14.79 thousand  km2. The northwest and southwest of the XSW are the Makufu mountains 
and the Jiuling Mountains, which are its main forest distribution areas, and the east is close to the largest fresh-
water lake in China (Poyang Lake) (Fig. 1)37. XSW belongs to a subtropical monsoon climate region, which the 
average annual precipitation is 1681 mm and annual temperature (multiyear) of 17.5 ℃. The rainfall pattern 
in the region could be clearly distinguished between the rainy and dry seasons, and over two-thirds of rainfall 
occurs in April to  September36. Accelerated urbanization, intensive agricultural operations and sufficient rain-
fall had led to increased erosion risk and lots of ecological degradation in the XSW. Therefore, we conducted a 
dynamic evaluation of soil erosion and landscape indices in XSW, and combined statistical analysis methods to 
explore the driving factors of soil erosion (Fig. 2).

Data source and processing method. Land use/cover change (LUCC) maps, digital elevation model 
(DEM), soil properties, Normalized Difference Vegetation Index (NDVI) and meteorological dataset were 
applied to assess soil erosion based on  RULSE9. LUCC in 2000, 2010 and 2020 that according to “Chinese Clas-
sification Criteria of Current Land Use” (GB/T21010-2007), the annual NDVI spatial distribution dataset in 
2000, 2010 and 2020 with 30 m resolution was generated by using the maximum value synthesis method base 
on monthly data obtained from National Ecological Science Data Center (http:// www. nesdc. org. cn) and DEM 

http://www.nesdc.org.cn
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Figure 1.  The geographic position, elevation of the study region generated in the ArcGIS 10.5 software (https:// 
www. esri. com).

Figure 2.  Methodological approach and sequence. The area of forest (FA), the percentage of forest area (PFA), 
normalized difference vegetation index (NDVI), forest contribution to NDVI (FNDVI); precipitation (PRE), 
evaporation (E), radiation (RA), temperature(T), relative humidity(RH); the rainfall–runoff factor (R-factor), 
the soil erodibility factor(K-factor), the slope length and steepness factor (LS-factor), the vegetation coverage 
factor (C-factor), the water and soil conservation measure factor (P-factor); aggregation index (AI), landscape 
division index (LDI), landscape shape index(LSI), patch density (PD), Shannon’s diversity index (SHDI).

https://www.esri.com
https://www.esri.com
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(30 m resolution) were obtained from Chinese Academy of Sciences (http:// www. gsclo ud. cn). Soil properties 
data with 1 km spatial resolution (Harmonized World Soil Database version 1.1) and meteorological data that 
includes 22 monitoring stations in and around XWS with daily resolution were obtained from the National 
Cryosphere Desert Data Center (https:// www. ncdc. ac. cn) and China Meteorological Administration (http:// 
data. cma. cn), respectively.

Quantifying soil erosion. The quantitative assessment and mapping of SE was based on the RULSE model 
(Eqs. 1,2 and 3)16, which consisted R-factor (rainfall–runoff, unit: MJ mm/(ha h year)), K-factor (the soil erod-
ibility factor, unit: t ha h/(ha MJ mm)), L-factor (slope length factor), S-factor (steepness factor), C-factor (the 
vegetation coverage factor), P-factor (the water and soil conservation measure factor),  respectively13.

where SEp, SEa and SC are the assessed potential SE per year (t/(ha year)), the estimated actual SE per year (t/(ha 
year)) and the assessed soil conservation per year (t/(ha year)), respectively.

(1) R-factor: it reflects the washing effect of rainfall and runoff on SE. In the research, the calculation of R-factor 
using monthly rainfall data of observation period base on Eq. (4)15. The data from meteorological stations 
were used for interpolation based on ArcGIS tool before the calculation of R-factor.

where Pi , P are monthly rainfall (mm) and annual rainfall (mm), respectively.
(2) K-factor: it indicates the sensitivity of soil particles to hydraulic scour and particle  stripping38. And the 

EPIC model developed by  Williams39 was applied to evaluate the K-factor as follows:

where N, L, A and TOC represent the percentage contents of sand (0.05–2 mm), silt (0.002–0.05 mm), clay 
(< 0.002 mm) and soil organic carbon, respectively.

(3) L and S factor: it is the steep effect of slope length and the steepness to SE. In this study, L and S were com-
puted by using the method built up by Wischmeier and  Smith15 and step coupling methods developed by 
Liu et al.40 and McCool et al.41.

where α is the non-cumulative slope length (m), β is the slope-length exponent, and θ is the slope.
(4) C-factor: it represent the overlap effect of vegetation coverage on SE. C-factor was calculated with the 

equation developed by Gutman & Ignatov base on NDVI  dataset42:

(5) P-factor: it is defined the ratio between the influence of contouring and tillage  practices43, which is usually 
estimated base om land use/cover  type13. We determined the P-factor by previous research results, com-
bined with the similarity of the study area in this  study9,44. (Table 1).

Statistical analysis. The relationship among each factor and soil erosion and soil conservation were 
explored by the pioneer method (correlation analysis). First, 2000 variable pairs were created via sampling and 
zonal tools in ArcGIS from the SEa grid layer and every factor (including LUCC, landscape and climate fac-

(1)SEa = R × K × L× S × C × P

(2)SEp = R × K × L× S

(3)SC = SEp − SEa

(4)R =

12
∑

1

1.735× 10
(1.5log10(Pi/P)−0.0818)

(5)
K = 0.1317

[

0.2+ 0.3e
0.0256N(1−L/100)

]

×

(

L

A+ L

)0.3

×

(

1.0−
0.25× TOC

TOC + e3.72−2.95TOC

)

× [1.0−
0.7(1− L/100)

(1− L/100)+ e22.9(1−L/100)−5.51
]

(6)L = (α/22.1)β ,β =











0.2

0.3

θ ≤ 1◦

1 < θ ≤ 3◦

0.4 3◦ < θ ≤ 5◦

0.5 5◦ < θ

; S =







10.8sinθ + 0.036 θ ≤ 5◦

16.8sinθ − 0.5 5 < θ ≤ 10◦

21.9sinθ − 0.96 10◦ ≤ θ

(7)C = 1−
NDVI − NDVImin

NDVImax − NDVImin

Table 1.  P values of different land use types on the XSW.

Land use Agricultural Forest Shrub Grassland Water Barren Impervious

P value 0.60 0.20 0.25 0.35 0.00 0.3 0.00

http://www.gscloud.cn
https://www.ncdc.ac.cn
http://data.cma.cn
http://data.cma.cn
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tors) to get the values of SEa and its corresponding value of every  factors45,46. Before the statistical analysis, the 
normal distribution of the data was checked, for which did not satisfy, we used transformation algorithms (e.g., 
logarithmic transformation) to improve  normality33,47. Then, statistical analysis in R (version 4.2.1) was used to 
show between ES and factors. Structural equation modeling (SEM) was ultimately used to further reveal the path 
relationships between soil erosion and each factor.

LUCC, landscape fragmentation and climate factors. The factors influencing soil erosion include LUCC, forest 
cover and  rainfall9,22,27. In this study, based on the results of previous  scholars22,26,33,34, we divided the main fac-
tors affecting soil erosion into three major categories: LUCC, landscape fragmentation and climate. Landscape 
fragmentation and LUCC are interrelated, but the main reason for classifying "LUCC" and "landscape" factors in 
this study was that the landscape factor was mainly represent the landscape indexes of land fragmentation, while 
the LUCC factor was reflect characteristics such as the area of forest and NDVI within the grid.

(1)  LUCC factors: in this study, a total of four indicators the area of forest (FA, unit: ha), percentage of forest 
area (PFA unit: %), NDVI and forest contribution to NDVI (FNDVI) were selected to characterize the 
effect of land overlap on  SE13,40. The equations of FA and FNDVI evaluate as follows:

where i represents the number of grids.

(B) Landscape fragmentation factors: landscape indices have a crucial impact on ESs but it usually was 
 neglected26. Under the context of rapidly changing of land surface utilization, the impact of landscape 
fragmentation on ESs and SE cannot be ignored. Aggregation index (AI), landscape division index (LDI), 
landscape shape index (LSI), patch density (PD) and Shannon’s diversity index (SHDI) were selected which 
they reflect the level of landscape  fragmentation26,33. All these landscape index calculations were performed 
in Fragstats 4.2 that is a spatial analysis platform on quantifying the internal structure association of land-
scapes. At the landscape mosaic level, the “moving window” was conducted to calculate the landscape 
index based on the pixel scale and further details about the calculations could be found in the articles by 
Bai et al.33.

(C) Climate factors: rainfall was often considered to have the greatest impact on soil erosion among all climate 
 factors29. However, evaporation, temperature and other factors influence the stripping of soil  particles5,48. 
Therefore, as with precipitation (PRE), evaporation (E), radiation (RA), temperature (T) and relative 
humidity (RH) were also selected as climate factors. Details and descriptions of the above indicators can 
be found in Table 2.

(8)PFAi = FAi/Ai

(9)FNDVIi = PFAi × NDVIi

Table 2.  LUCC, climate and landscape fragmentation related indicators and interpretation.

Type Indicators Abbreviation Description Unit

LUCC 

The area of forest FA The total area of forest in grid ha

The percentage of forest area PFA The proportion of forest area in grid %

Normalized difference vegetation 
index NDVI It reflects the state of vegetation 

growth and vegetation coverage

Forest contribution to NDVI FNDVI The contribution of forest to NDVI 
in grid %

Climate

Precipitation PRE Annual average precipitation mm

Evaporation E Annual average evaporation mm

Radiation RA Annual average radiation MJ/m2

Temperature T Annual average temperature ℃

Relative humidity RH Annual average relative humidity %

Landscape fragmentation indices

Aggregation index AI
Connectivity and aggregation 
among patches of each landscape 
type

%

Landscape division index LDI It reflects the degree of separation 
of patches in the landscape

Landscape shape index LSI It measures the complexity of a 
shape

Patch density PD It can reflect the heterogeneity and 
fragmentation of the landscape #/100 ha

Shannon’s diversity index SHDI
It is used to measure the diversity 
and heterogeneity of landscape 
types
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Exploring influential paths of LUCC, landscape and climate factors on soil erosion. The logical relationships and 
complex influential paths between variables was verified by using the SEM which is a multivariate statistical 
 method49. SEM first requires a hypothetical model of the theory in conjunction with previous studies, which 
expresses the “cause and effect” relationship between the observed variables or the latent variables in the form 
of a structural  equation50. After the equations are formulated, the expected covariance matrix (based on the 
specified model) is generated and compared with the observed covariance matrix (based on real data)51. Model 
fit tests are then used to determine if the criteria are met between the  matrices47. The index of chi-square and 
degrees of freedom (Chi-square/df < 5), the goodness of fit index (GFI > 0.9), comparative fit index (CFI > 0.9), 
and root mean square error of approximation (RMSEA < 0.1) were applied to test the reliability of the  results52,53. 
The hypothetical model in this study is shown in Fig. 3, and more details about the modeling, validation and 
optimization of SEM could be found in the article of Lam and Maguire, Qiu et al.47,51.

All the calculation of RULSE model (including these factors) was performed on the software platform of 
ArcGIS 10.5 (https:// www. esri. com). It was worth noting that all of our raster data were defined with the UTM 
projection system, in addition to the uniform resolution set to 30 × 30 m before the calculation, respectively. 
All the statistical analysis in this paper were analyzed in R studio 3.5.0 (including corrplot, ggplot2, lavaan and 
semPlot packages), and our mapping was done in Origin 2017 and R.

Results
Variation of LUCC in Xiushui watershed. Combining with the “Chinese Classification Criteria of Cur-
rent Land Use” (GB/T21010-2017) and study objectives, the study area was divided into seven types: agricultural 
land, forest, shrub, grass, water, barren and impervious. The spatial distribution of land use/cover in XSW from 
2000 to 2020 was illustrated in Fig. 4a–c. During the observation period (2000–2020), forest (10.99 ± 0.16 thou-
sand  km2, mean ± SD) and agricultural (3.27 ± 0.09 thousand  km2) in XSW were two primary types of LUCC 
due to their together accounted for more than 90% of the total area, which indicated the abound of the forestry 
and agricultural resource of the region. In the map of spatial distribution, the forest was located in the southwest 
and north of XSW at high altitude (the Makufu Mountains and the Jiuling Mountains), and the trunk of Xiushui 
river was nurtured between the two ranges. In addition, the agricultural land was mainly distributed in the 
southeast of XSW, which was adjacent to Poyang Lake. (Figs. 1 and 4a–c).

On the temporal scale, Fig. 4a–c showed that the most pronounced change was the impervious, mainly 
distributed in the southeast of XSW and around the water, which was increasing during the observation period 
(the ratio of impervious to total area were 2000: 0.76%, 2010: 1.04% and 2020: 1.71%, respectively). From 2000 
to 2020, agricultural, water and impervious increased 103.85  km2, 19.77  km2 and 139.45  km2 or by 3.18%, 5.58% 
and 123.28%. Conversely, forest, shrub, grass, and barren showed a downward trend, with the highest decrease 
in the area was forest (261.53  km2) but with the highest decrease in ratio of the area was barren (78.51%), respec-
tively. Overall, the variation of forests and cropland area was the largest because they originally had a large area 
(Fig. 4e); but the largest proportional changes in area were barren and impervious.

Figure 3.  The hypothetical SEM in the research, rectangles represent the observed variables, ellipses stand for 
the latent variables and circles is the random errors, respectively.

https://www.esri.com
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Analysis of landscape configuration. All these landscape indexes (AI, DI, LSI, PD and SHDI) were 
evaluated in Fragstats (version 4.2) software by using the moving window method and shown in Fig. 5. These 
indicators can reveal the landscape heterogeneity changes for instance aggregation, separation, fragmentation 

Figure 4.  The spatial distribution and variation of LUCC (a–d) and the transformation mulberry map of each 
land use type (e) in XSW from 2000 to 2020.

Figure 5.  Spatial–temporal distribution of landscape configuration in XSW from 2000 to 2020, which 
generated in the ArcGIS 10.5 software (https:// www. esri. com).

https://www.esri.com
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and so  on26. Figure 5 clearly showed that the landscape index of forested areas (the north and southwest areas 
of XSW, Fig. 4) forms two distinct genealogies from the landscape index of agricultural land (around the trunk 
of Xiushui river and the southeast plain land of XSW, Fig. 1). The maximum and minimum values of AI were 
100% and 52.12%, which occurred in the forest area and the southeastern plain zone, respectively. There was no 
continuous decreasing or increasing trend in AI and LSI during the observation period, and all the mean values 
of them were above 90% and 1.04 (Fig. 5). However, the DI, PD, and SHDI represent landscape fragmentation 
had changed somewhat: the mean values of DI in 2000, 2010 and 2020 were 0.056, 0.058 and 0.062, respectively; 
PD and SHDI during the observation period were 146.36 ± 0.96 (mean ± SD) and 0.087 ± 0.005 with increasing 
by years, respectively. The results indicated a trend or risk of fragmentation in the landscape.

Spatial–temporal changes of soil erosion and soil conservation. The spatial distribution of soil 
erosion (SE) and soil conservation (SC) in XSW from 2000 to 2020 were simulated based on the RUSLE models 
(Fig. 6). The areas with severe soil erosion were mainly located in the northwest and southeast of the XSW, with 
the northwest SE occupying most of the watershed, respectively (Fig. 6a–c). The SE in XSW ranged between 0 
and 16,530 t/ha in 2000, between 0 and 21,556 t/ha in 2010, and between 0 and 23,333 t/ha in 2020, and the 
mean values of them were 2205.27 t/ha, 3414.25 t/ha and 3319.44 t/ha, respectively (Fig. 6a–c). Moreover, the 
area with the highest risk of soil erosion (darker colored points) occurs near the trunk and tributaries of Xiushui 
river and mountains (Figs. 6 and 1), which implies that SE around the river and mountains would be a hot spot 
for control measures.

The three periods of SC exhibited similar spatial distribution characteristics (Fig. 6d–f). The higher value of 
the SC was clumped within the northern and southwestern area (Fig. 6d–f), where there was high forest cover 
(Fig. 4). There was no continuous decreasing or increasing trend in SC during the observation period, and the 
mean values of them were 56,118.47 t/ha, 88,775.99 t/ha and 72,108.367 t/ha.

Spatial–temporal variation of SE and SC in XSW from 2000 to 2020 were illustrated in Fig. 6g, h. More than 
two-thirds of the SE in the XSW was increased in 2020 compared with 2000 (Fig. 6g), mainly distributed in the 
trunk and tributaries of Xiushui river and the cultivated land in the southeast of XSW. The remaining one-third 
was the area of increased SE in 2020 had a common feature that most of them were distribution area of forests 
(Fig. 4). The distribution of SE was consistent with the results of landscape fragmentation, which suggested that 
there was a risk of increased SE from landscape fragmentation (Figs. 5, 6g). The area with increased SC in 2020 
accounts for more than 90% of the XSW, which matched the results in Fig. 6g.

Figure 6.  Spatial distribution of soil erosion (SE) and soil conservation (SC) in XSW from 2000 to 2020 (a–f) 
and spatio-temporal variation of SE and SC in the study area from 2000 to 2020 (g–h), which generated in the 
ArcGIS 10.5 software (https:// www. esri. com) “green” (or “light yellow”) in (g) represents SE (or SC) increase 
(or decrease) in 2020 than 2000 and “red” in (g) or (h) represents SE or SC was unchanged from 2000 to 2020, 
respectively.

https://www.esri.com
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Identification of dominant factors for soil erosion. Evaluation of the relationship between LUCC 
metrics, landscape fragmentation index, climate metrics and SE using Pearson correlation analysis revealed that 
there was a significant correlation (P < 0.05) among them during the observation period, while the correlations 
were illustrated in Fig. 7. The LUCC factors dominated by forests (FA, PFA, NDVI and FNDVI) had a significant 
negative correlation with SE (P < 0.01), and correlation coefficients ranging from 0.02 to 0.18 while the strongest 
correlation was NDVI (Fig. 7). The landscape indices except for AI had a significant positive correlation with 
SE (P < 0.01) and the mean value of the correlation coefficient was 0.31 (Fig. 7). The results indicated that the 
aggravation of landscape fragmentation would increase the risk of SE. There was a significant positive correlation 
between rainfall and SE (P < 0.01), and the correlation coefficient was 0.27, respectively. Moreover, the remaining 
climate factors (E, RA, T and RH) had a weak negative effect on SE (Fig. 7).

The Chi-square/df, GFI, CFI and RMSEA were applied to test the reliability of the results. The SEM had 
basically acceptable fitness due to RMSEA in the interval [0.08,0.1]54, though CFI and GFI did not meet the 
requirement of greater than 0.946. Moreover, the model had a high R2 (0.85), which meant that the model could 
explain 85% of the variability in SE. Standardized path coefficients were used to measure the effect between vari-
ables in the paths, as they allow direct comparison of the degree of effects among variables measured on different 
 scales55. As shown in Fig. 8, three latent variables (LUCC, landscape and climate) had direct interactions on SE. 
Specifically, LUCC and the magnitude of landscape aggregation had a negative effect on SE with path coefficients 
of -0.61 and -0.44, respectively (P < 0.01); climate factors also had a directly driving effect on soil erosion with 
a path coefficient of 0.04 (P < 0.01). In addition, the path of LUCC to landscape aggregation was 0.51 (P < 0.01), 
which indicated the landscape aggregation was also influenced by the forest-dominated LUCC factors.

Discussion
Spatial and temporal variation of soil erosion. LUCC was identified as one of the most significant 
factors affecting SE and SC, because shifting land cover could result in lost arable land on-site and silting off-site 
 rivers56. The results of this research showed that LUCC could have a directly effect on soil erosion (Fig. 8), which 
was consistent with Liu et al.9 who obtained different SE results by simulating LUCC in different scenarios. In 
addition, we also found that the value of SE under forest cover was lower than agricultural land for three years 
of the observation period (Table 3). This result indicates that afforestation can effectively reduce the risk of SE, 
especially in poor areas of  SE10,57. However, the higher value of the SE was not always clumped within arable 
land, but also occur in forested areas (Fig. 6a–c). This indicates that soil erosion was influenced by other factors. 

Figure 7.  Correlation of soil erosion with LUCC factors, landscape fragmentation factors and climate factors 
generated in the R (version 4.2.1) (https:// www.r- proje ct. org/). LUCC factors included forest area (FA), 
percentage of forest area (PFA), NDVI and forest contribution to NDVI (FNDVI); landscape fragmentation 
factors including aggregation index (AI), landscape division index (LDI), landscape shape index (LSI), patch 
density (PD) and Shannon’s diversity index (SHDI); climate factors including precipitation (PRE), evaporation 
(E), radiation (RA), temperature (T) and relative humidity (RH), respectively. Red (blue) represents a significant 
positive (negative) correlation and white represents no significantly correlation between the two; the deeper the 
color, the stronger the effect, respectively.

https://www.r-project.org/
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In the research, most forest areas located in mountainous, where the high length and slope increased the risk of 
soil  erosion29. Under certain topography, the slope length factor can cause 60% effect on soil  erosion30. Overall, 
soil erosion heat zones were mainly distributed in the cultivated land around Xiushui river (Figs. 3 and 6a–c), 
which was similar to the preceding  research44,56.

In the dimension of time, the average values of SE were 2205.27 t/ha, 3414.25 t/ha and 3319.44 t/ha from 
2000 to 2020, respectively (Fig. 6a–c). The increase in SE could be caused by a dramatic increase in  rainfall13. 
The annual rainfall in 2000, 2010 and 2020 were 1492.69 mm, 2028.43 mm and 1749.07 mm, compared to the 
average rainfall for multiyear (1681 mm)36, 2010 exceeds 374 mm. It is not difficult to understand why the mean 
value of SE in 2010 was much higher than in 2000 and 2020, because different rainfall conditions bring runoff 
could lead to an exponential increase in sediment  transport28. Meanwhile, evidence of increased soil erosion 
due to dramatic increases in rainfall can be found in our potential soil erosion data: the potential soil erosion in 
2010 was higher 16–33 kt/ha than 2000 and 2020.

Another noteworthy phenomenon in this study was that the difference in rainfall between 2010 to 2020 
(∆rainfall2010–2020: 279.36 mm) and 2020 to 2000 (∆rainfall2020–2020: 256.38 mm) was similar, but the difference 
in SE between the same years was huge (∆SE2010–2020: 94.81 t/ha, ∆SE2020–2000: 1114.17 t/ha), which may suggest 
that there were other factors that offset the SE of increased rainfall. SE is positively correlated with precipitation 
and negatively correlated with forested  area22,58, and when the K-factor and LS-factors are relatively fixed in the 
study area, the only factors that could offset the effect of rainfall are the P-factor and the C-factor (Eq. 1)16. The 
P-factor affects SE via the area differences in land  types16, while the difference in forest area between 2010 to 
2020 was 281  km2; also, the vegetation growth status (NDVI) affects the SE by affecting the C-factor59, while the 
difference in NDVI between 2010 to 2020 was 0.078, and the difference in forest area and NDVI between 2020 
to 2000 were −261  km2 and −0.068, respectively. The combination of reasons leaded to a situation where the dif-
ference in rainfall was slight but the difference in SE was huge, while it suggested that except forest area, forest 
quality (e.g. NDVI reflecting vegetation growth status) has great potential to reduce SE.

Figure 8.  Results from structural equation modeling (SEM) on the soil erosion. Ellipses represent the latent 
variables (LUCC, landscape and climate), rectangles represent the observed variables (SE); FA, PFA, NDVI, 
and FNDVI were binned into the latent variable LUCC, whose most relevant observed variable was FNDVI 
(R2 = 0.97); AI, LDI, LSI, PD, and SHDI were binned into the latent variable Landscape, which was positively 
correlated with AI (R2 = 0.97); climate was a latent variable consisting observed variables (PRE, E, RA, T, and 
RH) which was positively correlated with PRE (R2 = 0.41), respectively. Red numbers or lines indicate the 
negative effects between the variables, blue numbers or lines indicate the positive effects between the variables; 
unidirectional arrows representing paths between variables and bidirectional arrows indicating correlations; 
the solid line indicates that the path is significant (P < 0.05), the dashed line indicates that it is not significant 
(P > 0.05) and the thickness of the line represents to the effect size, respectively.

Table 3.  The mean value of SE under different LUCC from 2000 to 2020 (unit: t/ha).

Time/LUCC Agriculture Forest Shrub Glass

2000 5067.00 1449.02 4958.42 4866.09

2010 7836.37 2297.05 10,025.27 5717.44

2020 9565.71 1553.86 10,070.69 6393.49

Mean 7489.69 1766.64 8351.46 5659.01
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The driving factors of soil erosion. The landscape factor had a negative effect on SE in the SEM of this 
research (−0.61, P < 0.01) (Fig. 8). First of all, it was clear that the landscape latent variable in this study was 
positively related to AI and had a negative effect with LDI, LSI, PD, and SHDI, respectively. This suggested that 
the more fragmented the landscape, the more severe the soil erosion. It was consistent with Mitchell et al.60 
who found that landscape fragmentation led to lower water yield and increased soil erosion. Meanwhile, Bai 
et  al.33 has also established a significant positive correlation between AI and soil conservation in the Taihu 
watershed. Fragmentation of the landscape cut off the original material and energy flows and increased the 
"edge effect" between sub-ecosystems61. These "edges" had different material and energy flows than the "center", 
which resulted in the increase of landscape  heterogeneity61. Besides, the increase in forest "edges" could lead to 
increased soil erosion by rainfall directly striking the topsoil and forming runoff that washed the soil  surface62; 
the change in cohesion between interfaces occurred at the "edge" of the arable land, which exacerbated the 
export of nutrients and soil  particles62–64. The mechanism between landscape fragmentation and increased soil 
erosion is still a blank area that is interesting and worthy of further study, but landscape fragmentation led to 
the increase of soil erosion and the decrease of ecosystem services which was consistent with Hu et al.26, Harper 
et al.61 and this research.

The landscape factor was the most dominant pathway affecting soil erosion in the SEM (−0.61, P < 0.01) 
(Fig. 8), and its standardized path coefficients was greater than those of LUCC and climate factors. This was 
similar to the results of Bai et al.33 who founded that landscape configuration (landscape fragmentation) played 
a stronger role than landscape composition (LUCC). However, the ecological services assessment in terms of 
hydrology founded that LUCC was more  important65. This phenomenon was attributed to the heterogeneity of 
the landscape and the differences in the scale of the study  area33,65. It was also one of the reasons for the lower 
climate factor path coefficients. We also found that rainfall had a significant positive effect on soil erosion (Fig. 7) 
which consistent with most previous  studies22,29. However, the causality of the SEM was not exactly equivalent 
to  correlation51, and the effect of rainfall on soil erosion might be underestimated due to the mixing of multiple 
climate elements. Additionally, our results were consistent with Hu et al.26 who found that the contribution of 
the landscape index was greater than that of rainfall and evaporation by principal component analysis (PCA) 
in Dongting Lake watershed.

Limitations and future research. In this research, the RULSE model was utilized to assess soil erosion 
in XSW. Although the model is a widely used tool in the estimation of regional and global annual  SE7,8,50, there 
was still potential room for improvement as some empirical parameters was included in the  model31. Addition-
ally, large-scale spatial applications typically used coarse data, which was not compatible with the local scale on 
which the model was  parameterized31. Although the estimation of soil erosion base on the RULSE model was 
shown to be appropriate, it is necessary to optimize the model parameters, and more accurate results requires 
high-resolution data  sources26.

Lam and Maguire suggested that comprehensive multifactorial assessments would be vital and feasible, and 
that the conclusions of these impact assessments (SEM) would be more convinced than single-factor  analyses51. 
In the research, we comprehensively analyzed the effects of LUCC, landscape fragmentation and climate on 
SE. The result of this study provides evidence on soil erosion and its driver metrics, which could also provide 
a reference for similar studies within and beyond China. However, the contribution of rainfall to soil erosion 
was often underestimated on an long term and large spatial scale, and soil erosion due to extreme rainfall would 
account for a large proportion of total soil erosion throughout the  year13,44. Therefore, it is a great challenge to 
downscale soil erosion due to extreme rainfall on short calendar periods. In addition, the intrinsic influence 
mechanism between landscape fragmentation and soil erosion at the micro level, which is an interesting blank 
area and should be the focus of future studies.

Conclusions
Soil erosion in the XSW was effectively assessed based on the RULSE model, and the paths of the main drivers 
of soil erosion were investigated by statistical analysis (correlation analysis and SEM). Our results showed that 
there was no continuous increase or decrease trend on the SE of XSW due to the impact of rainfall; soil erosion 
was directly driven by LUCC factors (dominated by NDVI), landscape fragmentation and climate factors, where 
the drivers of LUCC and landscape fragmentation were greater than the underestimated climate factors. This 
suggested that increasing the area of forests was an effective way to reduce soil erosion, but improving the quality 
of forests (NDVI, canopy closure, structure) should be received greater attention. Meanwhile, rational planning 
of land types and reduction of landscape fragmentation could reduce the risk of soil erosion. This study provides 
a useful reference for maintaining the sustainable development of fragile ecological zones.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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