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Application of neural networks 
and neuro‑fuzzy models 
in construction scheduling
Jude Iloabuchi Obianyo 1, Richard Chinenye Udeala 1 & George Uwadiegwu Alaneme 1,2*

Construction scheduling is a complex process that involves a large number of variables, making it 
difficult to develop accurate and efficient schedules. Traditional scheduling techniques rely on manual 
analysis and intuition, which are prone to errors and often fail to account for all the variables involved. 
This results in project delays, cost overruns, and poor project performance. Artificial intelligence 
models have shown promise in improving construction scheduling accuracy by incorporating historical 
data, site‑specific conditions, and other variables that traditional scheduling methods may not 
consider. In this research study, application of soft‑computing techniques to evaluate construction 
schedule and control of project activities in order to achieve optimal performance in execution of 
building projects were carried out. Artificial neural network and neuro‑fuzzy models were developed 
using data extracted from a residential two‑storey reinforced concrete framed‑structure construction 
schedule and project execution documents. The evaluation of project performance indicators in 
earned value analysis from 0 to 100% progress at 5% increment with a total of seventeen tasks were 
carried out using Microsoft Project software and data obtained from the computation were utilized 
for model development. Using input–output and curve‑fitting (nftool) function in MATLAB, a 6‑10‑1 
two‑layer feed‑forward network with tansig activation‑function (AF) for the hidden neurons and 
linear AF output neurons was generated with Levenberg–Marquardt (Trainlm) training algorithm. 
Similarly, with the aid of ANFIS toolbox in MATLAB software, the training, testing and validation of 
the ANFIS model were carried out using hybrid optimization learning algorithm at 100 epochs and 
the Gaussian‑membership‑function (gaussmf). Loss‑function parameters namely MAE, RMSE and 
R‑values were taken as the performance evaluation criteria of the developed models. The generated 
statistical results indicates no significant difference between model‑results and experimental values 
with MAE, RMSE,  R2 of 1.9815, 2.256 and 99.9% respectively for ANFIS‑model and MAE, RMSE,  R2 
of 2.146, 2.4095 and 99.998% respectively for the ANN‑model. The model performance indicated 
that the ANFIS‑model outclassed the ANN‑model with their results satisfactory to deal with complex 
relationships between the model variables to produce accurate target response. The findings from 
this research study will improve the accuracy of construction scheduling, resulting in improved project 
performance and reduced costs.

Abbreviations
AT  Actual time
SV  Schedule variance
EV  Earned value
ES  Earned schedule
AC  Actual cost
SPI  Schedule performance indicator
CV  Cost variance
CPI  Performance indicator
ANN  Artificial neural networks
ANFIS  Adaptive neuro-fuzzy inference system
EVM  Earned value management
CPM  Critical path method
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AI  Artificial intelligence
trimf  Triangular membership function
trapmf  Trapezoidal membership function
gbellmf  Generalized bell-shaped membership function
pimf  Pi-shaped membership function
guassmf  Gaussian membership function
gauss2mf  Gaussian combination membership function
psigmf  Product of two sigmoidal membership function
RMSE  Root mean squared error
MSE  Mean squared error
MAE  Mean-absolute-error
r2  Coefficient of determination

Civil engineering construction and infrastructure development possess inherent constraints in vast areas, espe-
cially in the analysis, design and management of activities and interdependencies involved. The baseline for 
performing major decision-making processes is not only affected by several uncertainties, which are solved 
by deploying mathematics, mechanics and physics calculations, but also greatly depends on practitioners’ 
 experience1,2. The knowledge gained in this process is ineffective and illogical in the absence of proactive preci-
sion, which cannot be properly executed when using a conventional computational approach to carry out multi-
comparative statistical  analysis3. Planning and scheduling of construction projects are inherently complex and 
involve accurate estimation of the number of project activities, their durations, sequence and amount of required 
resources, which is an area where artificial intelligence predictive modeling will be of significant support to gen-
eralize non-linear relationships between the project management  constraints4,5. Moreover, the use of artificial 
intelligence (AI) in civil engineering projects has demonstrated limitless potential for creating smart, efficient 
management templates to improve decision-making precision and maximize cost and  quality6.

Artificial intelligence is an area of computer science concerned with the study, design and use of intelligent 
computing, as well as processing complex data in a way that is inspired by the human brain. Artificial neural 
networks (ANNs) have the ability to learn and model non-linear relationships, which is really important because 
in real life, many of the relationships between inputs and outputs are non-linear as well  complex7. The advantages 
of this modeling approach are high efficiency, continuous learning, wide applications, multitasking function-
ing and the ability to implicitly detect complex non-linear relationships between dependent and independent 
variables. In an attempt to emulate human cognition, neural networks are used today for a variety of reasons, 
including contractual relationships, fraud evasion, data retrieval, detection and surveillance. Neural networks are 
now thought of as common data-mining techniques and are used for a number of data-mining tasks, including 
pattern recognition, time series analysis, prediction and  grouping8,9. However, an ANN can be a black box as 
it can approximate any function but cannot provide significant insights into the structure of the mathematical 
function being approximated. The combination of an ANN and fuzzy logic modeling approach can be referred to 
as neuro-fuzzy, also known as an adaptive neuro-fuzzy inference system (ANFIS). It helps to obtain suitable fuzzy 
inference classification through a learning hybridized optimization algorithm, to train the fuzzy system as well as 
derive appropriate membership function parameters of the fuzzy inference system such that the system models 
the complex input–output data. The neuro-fuzzy system also shares some advantages and characteristics with 
neural networks, such as its learning potential, assessment and optimization skills, and control systems. These 
facilitate the creation of a fuzzy-inference model from datasets using a unique learning approach motivated by 
learning metrics derived from neural  networks10. Thanks to its capabilities concerning knowledge representa-
tion, automated learning and analysis of linguistic factors, the neuro-fuzzy model is a potent method for solving 
engineering difficulties and management issues for a given sophisticated system, such as prediction of decision 
support to improve the effectiveness of the reallocation and rescheduling  processes11,12. The effectiveness of using 
a neural-learning technique implies that a fuzzy system with linguistic information in its rule base can be restruc-
tured or reformed using statistical data to produce a greater benefit than a neural network that is unable to use 
language  information13. Fuzzy systems and neural networks have lately gained popularity as a combined method 
for handling control, identification, probability, and array appreciation problems in engineering domains. Recent 
years have seen an increase in artificial intelligence research, application implementation and tool  creation14,15.

Similar to this, it is clear that AI is effective in the field of construction engineering and management, enabling 
users to achieve project objectives within budget and time  constraints16,17. Yet, due to the complicated nature of 
many variable restrictions and the lack of clear or precise detailed information processing, the relevant research 
has shown that standalone AI systems have limits for handling non-trivial real-work  situations18–20. Construc-
tion engineering and management constraints are classified according to their complexity, non-linearity, non-
specificity, dynamism and uncertainty. For instance, fuzzy systems are particularly effective in evaluating the 
representation of explicit knowledge and making  inferences15,21–23.  Elmousalami24 investigated the appropriate-
ness of computational intelligence techniques that included neuro-computing, fuzzy logic and evolutionary 
computation, which were modified for the evaluation of parametric cost-prediction models. Gregory et al.25 
adapted a neuro-fuzzy soft computing technique for the prediction of the engineering performance in construc-
tion projects. Shahtaheri et al.26 proposed a predictive model based on an adaptive neuro-fuzzy inference system 
(ANFIS), employing 272 data points from 14 projects in the construction industry to approximate reference 
line tolls. Rashidi et al.27 used genetic and neuro-fuzzy systems to address the issue of choosing a skilled project 
manager. Similar to this, Shahhosseini and  Sebt28 used an adaptive neuro-fuzzy inference system (ANFIS) to 
assign and select workers for construction projects depending on their qualifications.
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The use of AI in the construction industry benefits both shareholders and investors in all phases of the con-
struction process, including the proposal, costing and financing; material acquisition and correct execution; setup 
and resource management; and commercial prototype rehabilitation. In order to reduce the demand for experts 
in structure development and schedule designs, researchers and participants in construction-related projects 
develop technologies that resemble AI. To complete a project on time and under budget, a great project schedule 
is  essential29,30. According to  Schelle31, effective structure management entails the competent arrangement of 
several instances of contributing stakeholders, societies and fundamental building blocks. This might involve 
simulated elements such as tasks, errands and charges, as well as infinite associated units of diverging interactions. 
For building projects, when given step-by-step instructions and mandatory reinvigoration of responsibilities, this 
may allow complex undertakings to be managed successfully so that the intended results are achieved. Such rec-
ommendations and principles are given for large datasets that have existed over time and are perhaps active. They 
flow from one correctly specified form to the next properly outlined one.  AlTabtabai32, for instance, employed a 
networked BP to launch a managerial method employing specialists chosen from the activities timetable, who 
supervised and predicted the repurposing of an abandoned many-story building.

This study uses the building of a residential, two-story, reinforced concrete framed structure in Nigeria as a 
case study to explore the application of artificial intelligence to construction scheduling in order to improve the 
project duration prediction and achieve cost minimization. Plus, we create an earned-value-management (EVM) 
model for better forecasting of the progress and performance and to enhance the efficiency of rescheduling 
and reallocation processes with the use of a decision support system by applying artificial neural networks and 
adaptive Neuro-fuzzy inference. A contractor’s bid and a construction timetable are equivalent. The timetable 
represents the estimated time necessary to complete the project, much like the bid represents the estimation of 
the cost that is assumed to be required to complete the  project33. By using the building of a residential, two-story, 
reinforced concrete framed structure as a case study, this study aims to illustrate how artificial intelligence can be 
applied to construction scheduling in order to improve the project duration prediction and for cost minimization 
in Nigeria’s construction industry.

Additionally, earned-value-management (EVM) model is developed for better forecasting of the progress 
and performance and to enhance the efficiency of rescheduling and reallocation processes with the decision 
support system. A bid from contractors and a construction timetable are equivalent. Similar to how the bid is 
the estimate of the costs necessary to accomplish the project, the schedule denotes the anticipated amount of 
time needed to complete the  project34. By using this, other stakeholders and general contractors can keep track 
of a project’s overall progress.

This study is aimed at applying artificial intelligence to construction scheduling to achieve better prediction 
of the project duration and minimize the costs in the building construction industry. The details derived from 
this research study will provide a new dynamic monitoring and optimization tool to track the progress of a 
project. The purpose of the research is to investigate the potential of neural networks and Neuro-fuzzy models 
in improving construction scheduling accuracy and efficiency and to provide insights into the application of 
these models in the broader field of construction engineering and management. A good construction project 
schedule is accurate, thorough and updated frequently, with communication regarding the project given first 
importance. Team cooperation is another important element since it helps tasks to be completed successfully. 
Scheduling allows project managers to match the labor, supplies, equipment and all other resources connected 
with activities and construction tasks over time, which is essential for the completion and success of a construc-
tion project. A well-planned construction schedule ensures the completion of projects by outlining the exact 
pace at which each job is to be completed, the sequences and methods for delivering resources, and the execution 
of all generated  tasks35,36.

Significance of the study. The application of neural networks and neuro-fuzzy models in construction 
scheduling is significant for several reasons. First, construction projects are complex and involve multiple tasks 
that need to be completed in a specific sequence. Any delay in one task can have a cascading effect on the rest of 
the project. Therefore, accurate scheduling is critical for the success of a construction project. Secondly, tradi-
tional scheduling methods rely on the experience and intuition of project managers, which can be subjective and 
lead to errors. The use of artificial intelligence (AI) models, such as neural networks and neuro-fuzzy models, 
can provide objective and data-driven scheduling solutions. Thirdly, the construction industry has been slow to 
adopt new technologies, and the application of AI in construction scheduling represents a step forward in the 
adoption of digital technologies. The use of AI models can help improve productivity, reduce project delays, and 
ultimately save costs. Overall, the significance of this study lies in its contribution to the development of more 
accurate and efficient scheduling methods for the construction industry, which can lead to improved project 
outcomes and better resource utilization.

Project scheduling process. The timetable for a construction project provides a clear view of all the pro-
ject milestones, due dates and timelines. It should be regularly updated to measure the progress and show the 
various steps that must be taken before completion. The contractor’s ideas on how to complete the project are 
fully explained and demonstrated in a construction project schedule, which also clarifies the scope of the job. 
The necessary duration and the work activities are represented sequentially in the work scope. A project sched-
ule is the only management document that can predict when a project will be completed, which is an important 
fact to be aware of. Scheduling involves the description of specific tasks and activities, as well as accomplish-
ments that show a start date and an expected end  date37. It is impossible to overstate how important scheduling is 
to a project’s success in construction. An effective timetable may be able to guarantee that the project is finished 
on time and within budget. It involves how and when a task is completed as well as how quickly the work is done. 
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Furthermore, scheduling specifies the process and technique for material delivery. Finally, it allows for seasonal 
readjustments so that changes and uncertainties can be taken into  account28. The task setup and timetabling 
rudiments can be divided into eight practicable stages, which enables timely execution within the designed 
budget as illustrated in Fig. 1.

Methodology
The research study was carried out to examine feedback from the building/construction industry on the applica-
tions, utilization and feasibility of artificial intelligence in construction project scheduling using the established 
tender document. A deductive methodology was employed because it was best suited to the problem character-
istics, and a qualitative approach was taken due to the investigative nature of the study. The study commenced 
with us conducting an in-depth literature review of relevant and recent scheduling methodologies used in the 
construction industry, with an emphasis on identifying their benefits and  limitations38. The broad categories 
considered were design, procurement and execution. The information derived from the tender document serves 
as the foundation for periodic work valuation, variation valuation, variance reconciliation and all cost-related 
activities during building  construction39. A project can be divided into several stages, with each representing 
a group of activities that culminate in the completion of one or more of the achievements, after usually having 
been completed in the order listed. This structuring divides the project into reasonable subdivisions for stress-
free managing, designing and control. Depending on the nature of the project, each has different stages. The 
number of stages or the need for them is determined by several factors, including the project’s size, complexity 
and potential  impact40,41.

Importantly, a tool for project management planning and analysis of the schedule is required given the rela-
tionships and interdependencies between the project’s activities. The critical path method, which is used in this 
research methodology, can be used to plan a large-scale activity network for project progress and  management42. 
The start and end times of activities in the original schedule plan may be impacted, and the critical path may 
barely be reflected. Overcoming such issues, the critical path method is a project scheduling and analysis method 
that represents the tasks that must be completed in a specific project, including the trade-off between activity 
duration and cost. The basic rule is that any increase in critical activity duration leads to an increase in critical 
activity cost. The research methodology flowchart is shown in Fig. 243,44.

Steps to the critical path calculation. The critical path method (CPM) determines the task’s shortest 
achievable completion time using the project actions’ potential start and end times. In fact, more managers now 
view the critical path scheduling strategy as the most useful and practical scheduling technique. The duration 
denotes the shortest amount of time required to complete a certain project. If there is a barrier on the vital path, 
more time will be required before the project is completed. In order to use the critical path scheduling method 
in practice, construction task planners must act as a resource constraint via a precedence  relationship44,45. The 
steps for calculating the CPM are stated below:

Forward‑scrolling algorithm. This presents calculations for the critical path starting from the beginning of the 
node to the end of the grid, using Eq. (1)

where Dij is the activity duration, E(i) is the earliest start time for a given activity and E(j) is the latest start  time46.

(1)E(j) = max{E(i)+ Dij}

Figure 1.  HYPERLINK "sps:id::fig1||locator::gr1||MediaObject::0" Project scheduling process.
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Backward‑scrolling algorithm. This is the opposite of the front-scrolling algorithm. It calculates from the last 
node of the activity network and returns to the foremost node using mathematical relationships, as presented 
in Eq. (2)47.

where L(j) is the latest end time for a given activity and L(i) is the earliest end time for a given activity. The dif-
ference (time) between the early start and the late start is known as elasticity, which represents the time in which 
the activity can be delayed without affecting the required project  duration40,48.

Using a two-story residential building project as a case study, the precedence, relations and durations for 17 
activities required for the project are presented in Figs. 3 and 4.

Calculating earned value. Earned value management (EVM) depicts in straightforward words the level 
of coverage and what tasks remain in a project. This accurate report is critical in recognizing faults, changing 
plans, amending mistakes and ensuring not only timely but also excellent delivery. The EVM puts cost and time 
on a unified scale, allowing one to graphically evaluate the actual work done vs. what was expected. The follow-
ing direct indicators are adopted to appropriately scrutinize the timetable and costs accrued for a given mission 
using  EVM49.

• Planned value (PV): is otherwise called the budgeted cost of work scheduled (BCWS). It is the cost sum 
through the current reporting period. It is the projected rate of a task arranged to conclude within an agreed 
 interval50;

• Actual cost (AC): is also called the actual cost of work performance (ACWP). The actual cost implies the 
authentic payments made to complete a task by the set date. It is the recorded cost of completed works when 
using the preset interval alone;

• Earned value (EV): is otherwise referred to as the budgeted cost of work performance (BCWP). This is the 
aggregate task financial plan, increased by the percentage of task achievement. It denotes the accepted finan-
cial plan of tasks completed by the  deadline51;

• Schedule Performance Index (SPI) and Schedule Variance (SV): the SPI is the ratio of EV to PV. It is a com-
parative quota of the project’s interval adeptness, which compares the actual headway to the premeditated 
headway. An SPI rate of < 1.0 designates that less work has been completed than anticipated, while a value 
of > 1.0 designates that more tasks were completed than were  scheduled35. The SV is the variance flanked by 

(2)L(j) = min{L(i)− Dij}

Figure 2.  Research methodology flowchart.
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the authentic tasks delivered contrary to the guesswork. It tells us whether the project is within plans or not. 
Zero variance depicts a project running according to the timetable/schedule, while a negative or positive 
difference depicts arrears or getting ahead of schedule,  respectively35. The mathematical relationships are 
presented in Eqs. (3) and (4):

(3)Schedule Performance Index (SPI) =
EV

PV

(4)Schedule variance (SV) = EV − PV

Figure 3.  Precedence, relations and durations for a seventeen-activity project.

Figure 4.  Gantt chart.
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• Cost Performance Index (CPI) and Cost Variance (CV): the CPI is the ratio of EV to AC. It is a compara-
tive quota of the cost of the project in terms of proficiency, which is capable of guesstimating the price of 
tasks left  uncompleted52. The CV, therefore, stands for the variance between EV and AC. Whether a project 
is carried out as budgeted is showcased by the EV and AC. Zero indicates that the project is falling within 
the appropriated cost margins, whereas the project is considered as over or under the appropriate cost if the 
difference is negative or positive. The mathematical relationships are presented in Eqs. (5) and (6)53,54:

Model performance evaluation. The performance of the intelligent model developed was evaluated in 
order to confirm that it has a proven ability to predict or estimate the target parameters with an acceptable 
degree of accuracy. Several performance criteria (statistical measures) used in the related literature, such as the 
loss function parameters, mean absolute error (MAE) and root mean square error (RMSE), are given with the 
formulas shown in Eqs. (7) and (8)55–57.

where n is the size of the data points under investigation, Ei is the actual or experimental results and Mi is the 
estimated model values.

Results, discussion and analysis
The schedule computation was carried out using Microsoft Project and Microsoft Excel software in line with the 
research carried out by  Dayal58 for effective management of varying sizes of construction projects. The construc-
tion project under study was executed by a medium-sized firm with a planned duration of 95 days at an estimated 
direct cost of 25.8 million naira. The description of the project consisted of a residential, two-story, reinforced 
concrete framed structure with five bedrooms and a penthouse. The general information on the project was 
reviewed and the reasons for delaying the completion of the work. The critical and flexible activities involved in 
the project are presented in Table 1 from the computed results. The flow of the construction work’s 17 activities 
and dependencies indicated little or insignificant difference between the earliest and latest finish points of the 
project activities in the initial stages. However, as the project proceeded to the advanced stages, the relationships 
between the events and activities signaled appreciable slack periods, which provided necessary time for the safe 
completion of clashing preceding activities in the  project58,59.

The performance indicators’ computation results were extracted and are presented in Table 2, showing the 
actual time (AT), schedule variance (SV), earned value (EV), actual cost (AC), schedule performance indicator 

(5)Cost performance index (CPI) =
EV

AC

(6)Cost variance (CV) = EV − AC

(7)RMSE =

√

∑n
i=1 (Ei −Mi)

2

n

(8)MAE =
1

n

∑n

i=1
|Ei −Mi|

Table 1.  Start and end times of the activities.

Task Activity duration (days) Earliest start Earliest finish Latest start Latest finish Slack

1 5 0 5 0 5 0

2 3 5 8 5 8 0

3 6 5 11 9 15 4

4 2 10 12 10 12 0

5 5 15 20 15 20 0

6 12 23 35 20 40 5

7 4 25 27 25 27 0

8 12 25 37 28 45 8

9 3 29 32 30 45 13

10 6 35 41 35 41 0

11 7 38 45 38 42 0

12 10 40 50 45 55 5

13 4 44 48 54 58 10

14 13 45 58 45 58 0

15 8 45 53 48 53 0

16 15 48 63 59 74 11

17 12 50 62 50 62 0
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(SPI), cost variance (CV), cost planned progress and performance indicator (CPI) factors of the project. The 
interpretation of value for indicators of the project performance is shown in Fig. 5. The obtained results show a 
positive CPI and a CV observed to be > 1. These cost variables were further matched with the schedule compu-
tation outcome; the SPI was observed to be positive (> 1), and there was a negative SV (< 1)35,60. These derived 
results indicate that the project under study is behind schedule, and at the same time, under budget, as we can 
infer from the project performance interpretation chart. This occurred for several reasons, namely a lack of 
engagement of professionals to manage the project efficiently, along with environmental and safety factors. The 
obtained results are in agreement with the research study carried out by  AnkurVerma35, who presented the 
significance, execution and distinctive elements of earned value management for promoting project success. 
Plus, the study carried out by  Vanhoucke50 indicated the importance of calculating the indicators of the project 
performance in order to detect possible problems and identify solutions or mitigate constraints. The outcome of 
the project performance calculation further clarifies the need for the deployment of artificial intelligence tech-
niques for the modeling of complex variables and constraints, to enable the smooth running of project activities 
through to their completion in the target time and within the estimated  budget61,62.

Datasets for model development. Through expert judgment and consultations, the model variables 
were sorted to evaluate the performance indicators of the construction project. Distribution histograms were 
plotted for the model input and explanatory variables, as shown in Fig. 6, which present how often each value 
occurred in a dataset, showing slight or no skewness for the two parameters  used63.

Table 2.  Performance indicators’ computation results.

Planned progress AT (weeks) ES SV SPI EV AC CV CPI

5% 2 2.22 0.22 1.11 646,800 638,560 8240 1.01

10% 3.5 3.75 0.25 1.07 687,200 671,790 15,410 1.02

15% 5 5.14 0.14 1.03 695,710 677,920 17,790 1.03

20% 6 6.28 0.28 1.05 728,350 710,500 17,850 1.03

25% 7.5 7.66 0.16 1.02 744,210 726,100 18,110 1.02

30% 8 8.35 0.35 1.04 789,820 771,580 18,240 1.02

35% 9.5 8.87 − 0.63 0.93 884,520 865,760 18,760 1.02

40% 10 9.31 − 0.69 0.93 988,470 971,280 17,190 1.02

45% 11.5 10.74 − 0.76 0.93 1,094,200 1,076,540 17,660 1.02

50% 13 12.58 − 0.42 0.97 1,197,245 1,178,150 19,095 1.02

55% 14 13.62 − 0.38 0.97 1,200,250 1,180,140 20,110 1.02

60% 15.5 14.89 − 0.61 0.96 1,504,560 1,478,190 26,370 1.02

65% 16 15.76 − 0.24 0.99 1,709,410 1,643,630 65,780 1.04

70% 17.5 17.33 − 0.17 0.99 2,510,560 2,442,240 68,320 1.03

75% 18 17.77 − 0.23 0.99 2,711,775 2,607,850 103,925 1.04

80% 19.5 18.61 − 0.89 0.95 3,612,350 3,378,590 233,760 1.07

85% 20 19.48 − 0.52 0.97 3,913,450 3,654,780 258,670 1.07

90% 21.5 20.85 − 0.65 0.97 5,014,025 4,687,870 326,155 1.07

95% 22 21.32 − 0.68 0.97 8,215,280 7,625,830 589,450 1.08

100% 23.5 22.54 − 0.96 0.96 10,718,470 10,058,920 659,550 1.07

Figure 5.  Interpretation of value for indicators of project performance (Kim et al.53).
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Figure 6.  Distribution histogram chart for input and output variables.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8199  | https://doi.org/10.1038/s41598-023-35445-5

www.nature.com/scientificreports/

Pearson’s correlation. According to previous studies, Pearson’s correlation coefficients, as presented in Table 3, 
were deployed to evaluate the linear relationship between the predictors and explanatory variables. The results 
indicated strong positive relationships between the target response factor, earned value (EV), and the following 
performance indicators: planned progress, actual time (AT), earned schedule (ES), actual cost (AC) and cost 
variance (CV). Meanwhile, negative linear relationships were observed to exist for the schedule performance 
indicator and schedule variance  factors64,65.

Artificial neural network (ANN) model development. The modeling process was carried out with 
the datasets fed to the neural network using MATLAB software. The model framework was designed as six 
input variables namely, ES, planned progress, SV, SPI, CPI and AT; with one output parameter as the EV. The 
processing parameter settings for the neural network model are presented in Table 4 and Fig. 7, which show a 
6-10-1 two-layer feed-forward network with a tansig activation function (AF) for the hidden neurons and linear 
AF output neurons. This can perform multidimensional mapping to solve complex system solutions. In order 
to determine the best-performing n-neurons, mean squared error (MSE) and R-values, evaluation criteria were 
used, which revealed that 10 neurons produced optimal  results66,67.

Training state of the ANN. The ANN training state plot (plottrainstate) of the neural network indicated a gra-
dient of 26.6334, with the optimal value computed at 15 epochs. The validation checks failed at six because the 
errors were repeated six times before the process finally stopped. This represented the best performance of the 
neural network; at that stage, its performance ceased to improve further. The error function was repeated at zero 
points from epochs 0–9, then rose linearly from one to six over epochs 10–15. However, starting from epoch 10, 
we observed overfitting of the data. Therefore, epoch 9 was taken as the baseline, and its weight functions were 
selected as the final weights, as shown in Fig. 868.

Validation performance of the ANN. The mean square error (MSE) was the criteria tool used to evaluate the 
model’s performance while randomly selecting different hidden neuron numbers, activation function param-
eters and training algorithms for validation of the ANN network, as shown in Fig. 9. The graphical results indi-
cated the best validation performance of 4.3639 at epoch 9 for the optimized network (8-10-1). The results indi-

Table 3.  Pearson’s correlations for model parameters.

Planned progress AT (weeks) ES SV SPI EV AC CV CPI

Planned progress 1

AT (weeks) 0.998535 1

ES 0.997574 0.998976 1

SV − 0.74508 − 0.74708 − 0.71623 1

SPI − 0.63685 − 0.65127 − 0.62339 0.886424 1

EV 0.801648 0.784082 0.783426 − 0.58361 − 0.33168 1

AC 0.803279 0.785979 0.785319 − 0.58506 − 0.33414 0.999934 1

CV 0.770749 0.749924 0.749324 − 0.55778 − 0.29563 0.988809 0.987036 1

CPI 0.796671 0.779325 0.78482 − 0.48976 − 0.28396 0.819414 0.815283 0.863366 1

Table 4.  Artificial neural network processing parameter settings.

Parameters Setting

General

 Type Input–output and curve fitting (nftool)

 Number of hidden neurons 10

 Training function Levenberg–Marquardt (Trainlm)

 Data division Random

 Activation functions Tansig, Purelin

 Adaptation learning function Gradient descent with momentum weight and bias learning function (Learngdm)

 Performance Mean squared error (MSE)

 Calculation MATLAB

 Network type Feed-forward backpropagation

System dataset sampling

 Training 70%

 Testing 15%

 Validation 15%
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cated a satisfactory performance of the ANN model. It was capable of predicting the target response parameters 
accurately by generalizing the sets of complex input variables with minimum  error69,70.

Error histogram of the ANN. An error histogram for the simulated smart model performance is presented in 
Fig. 10, which illustrates the level of correlation between the experimental and predicted variables with a 20 
bins error histogram for training, testing and validation of the network. The zero-error point indicates the best 
performance during the simulation. Almost 95% of the data yield an error of less than 1%. The zero error is 
indicated with a yellow line in the middle at 0.04565 for the error function, with 50, 55 and 65 instances in the 
training, validation and testing sets,  respectively21,71.

Regression plot of the ANN. A regression plot presents the model relationships for the actual data and the ANN 
model results using the coefficient of determination and mean squared error (MSE) for the training, validation 
and testing sets, as shown in Fig. 11. The smart model output results were plotted on the y-axis of the regression 
plot while the actual values were on the x-axis. The derived statistical results show a satisfactory performance in 
terms of the prediction accuracy of the ANN model with 0.9996, 0.9945 and 0.92232 results obtained for train-
ing, testing and validation,  respectively72.

Selection of the optimized ANN model. A comparison table showing various ANN architectures and their 
respective performance levels is shown in Table 5. The criteria used for performance evaluation of the network 
were the mean squared error (MSE), root mean squared error (RMSE) and coefficient of determination  (r2). The 

Figure 7.  ANN architecture.

Figure 8.  ANN training state.
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optimized ANN model after network training and testing was the 6-10-1 architecture, with MSE, RMSE and  r2 
values of 4.639, 2.154 and 0.9994, respectively, for the training performance results. Similarly, the testing perfor-
mance results for the optimized model were 2.354, 1.534 and 0.9945 for the MSE, RMSE and  r2, respectively. The 
MATLAB script for the ANN model’s development and simulation, showing the connotation weight matrix, is 
presented in the attached supplementary file73.

Neuro‑fuzzy model development. Detailed computation results showing the performance indicators of 
the cost and schedule for the project were utilized to build the ANFIS model input–output constraints appro-
priately. The earned schedule (ES), planned progress (percent), schedule variance (SV), schedule performance 
index (SPI), cost performance index (CPI) and actual time (AT) in weeks were the six input variables, and the 
earned value was the output variable (EV). The model variables’ relationships, showing the input–output asso-
ciations, are given in Fig. 1274. The ANFIS model was trained, tested and validated using the ANFIS toolbox 
in MATLAB software. The MATLAB software workspace and membership function were generated using the 
sub-clustering fuzzy-inference-system formulation method after system datasets were loaded into it. Moreover, 
a hybrid method of optimization was deployed as the learning algorithm, which was adopted to train the fuzzy 
inference at 100  epochs75. Table 6 shows the learning and membership function constraints for data treatment, 
with an error tolerance value of 0, range of impact value of 0.5 and squash factor, reject and accept ratios of 1.25, 
0.15 and 0.5, respectively. The Gaussian membership function (gaussmf) was utilized to evaluate the degrees of 
belongingness of the factors, as presented in Eq. (10). The model variables can be represented as follows:

Figure 9.  Validation performance of the ANN.

Figure 10.  ANN error histogram.
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where σ and c represent the standard deviation and mean for the Gaussian function, respectively.

Testing and training ANFIS. To achieve the training, validation and testing of the neuro-fuzzy network using 
the prescribed hybrid optimization training methods and FIS constraints, the datasets used for the neuro-fuzzy 

in1 = ES in2 = planned progress in3 = SV in4 = SPI in5 = CPI in6 = AT out1 = EV

(10)f (x; σ , c) = e
−(x−c)2

2σ2

Figure 11.  ANN training, testing and validation regression plots.

Table 5.  ANN architectures’ comparison to derive an optimized model during training and testing.

Model type Architecture

Training Testing

RMSE MSE r2 RMSE MSE r2

ANN-1 6-1-1 2.869495 8.234 0.99925 2.772724 7.688 0.9894

ANN-2 6-2-1 2.8265 7.9891 0.99918 2.930358 8.587 0.9824

ANN-3 6-3-1 2.706326 7.3242 0.99932 2.673387 7.147 0.9836

ANN-4 6-4-1 2.659887 7.075 0.99902 2.56203 6.564 0.9748

ANN-5 6-5-1 2.643047 6.9857 0.99898 2.612853 6.827 0.9779

ANN-6 6-6-1 2.596555 6.7421 0.99879 2.476288 6.132 0.9891

ANN-7 6-7-1 2.558613 6.5465 0.99888 2.290851 5.248 0.9902

ANN-8 6-8-1 2.47083 6.105 0.99917 2.377814 5.654 0.9921

ANN-9 6-9-1 2.378529 5.6574 0.99923 2.070266 4.286 0.9937

ANN-10 6-10-1 2.153834 4.639 0.99964 1.534275 2.354 0.9945

ANN-11 6-11-1 2.232062 4.9821 0.99877 1.791926 3.211 0.9928

ANN-12 6-12-1 2.290633 5.247 0.99892 1.89156 3.578 0.9913

ANN-13 6-13-1 2.25842 5.135 0.99899 1.86446 3.416 0.9924

ANN-14 6-14-1 2.38455 5.316 0.99888 1.89156 3.624 0.9833

ANN-15 6-15-1 2.44752 5.423 0.99878 1.89156 3.888 0.9805
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Figure 12.  ANFIS model variables and architecture.

Table 6.  ANFIS network parameters.

ANFIS network parameters Settings

FIS type Sub. clustering

Range of influence 0.5

Squash factor 1.25

Accept ratio 0.5

Reject ratio 0.15

Optimization method Hybrid

Error tolerance 0

Epochs 100

Membership functions 7

Number of fuzzy rules 7

Membership functions type gaussmf

Implication method Minimum

Or method Probor

And method Prod

Aggregation Maximum

Defuzzification Wtaver
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modeling procedure were separated and arranged in two parts. The datasets were loaded from the workspace 
for ANFIS network training with one output and four input variables, as well as the graphical plot of 20 indices 
for network training. Training and testing error results of 8.0523 and 6.4218, respectively, were calculated in the 
process, as presented in Figs. 13 and 1476.

Graphical plots of the membership function. Graphical plots that show the membership function for the model 
variables in the ANFIS network were generated by means of the MATLAB recreation toolbox, which was used 
to robotically advance the suitable connection function standards to increase the records’ generality. Figure 15 
shows the membership function designs, with the variety of records for model constraints on the x-axis and the 
discourse value from 0 to 1 on the y-axis77.

Selection of the optimized ANFIS model. A comparison table illustrating varying ANFIS network architectures 
and their respective performance using RMSE, MSE, and  r2 is shown in Table 7. The optimized ANFIS model 
after network training and testing was the architecture type with a Gaussian membership function. The training 
performance results for the optimized model were 8.0523, 2.84 and 0.99999 for the MSE, RMSE and  r2, respec-
tively. Plus, for the testing performance, the optimized model produced values of 6.4218, 2.534 and 0.99999 for 
the MSE, RMSE and  r2, respectively.

ANFIS model variables’ graphical expression. A soft computing smart model was installed for the evaluation of 
the schedule performance indicators. This studies the generality of statistic sets it has been served with assistance 
from a hybrid optimization set of rules. Such a model has the power to precisely pair a given collection of inputs 
with the matching yield value. With a three-area apparent design, the prototypical variables’ interactions are 
weighed to spot their substantial one-to-one significance or possession, as revealed in Fig. 16. The influence of 
the independent variables on the earned value is assessed in this  process78.

Model validation. The developed smart intelligent model’s prediction performance was evaluated using a 
statistical method and loss function parameters, namely the mean absolute error (MAE) and root mean square 

Figure 13.  ANFIS model training and error plot.

Figure 14.  Plot of testing datasets.
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Figure 15.  ANFIS membership function plots.
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error (RMSE). The evaluation was carried out for the ANN and ANFIS models. The model results and the actual 
values are presented in Table 8. The loss function statistical computation, which offered a good evaluation crite-
rion for the performance of the developed smart intelligent model, is shown in Table 9. The generated statistical 
results indicate no significant difference between the model results and experimental values, with a MAE, RMSE 
and  R2 of 1.9815, 2.256 and 99.9%, respectively, for the ANFIS model, and a MAE, RMSE and  R2 of 2.146, 2.4095 
and 99.998%, respectively, for the ANN model. Line-of-fit regression plots are shown in Figs. 17 and 18. The 
obtained statistical index results are in agreement with the findings of Alaneme et al.56 and Iro et al.79 for ANFIS 
and ANN model performance evaluation.

Sensitivity analysis. Sensitivity analysis assesses the contribution of the individual independent variables 
to the output response (EV). For this purpose, the methods reported by Razavi et al.80 were adapted to determine 
which inputs had the greatest impact on the output variable. We used the relevancy factor (r), where r is in the 
range of [− 1, 1]. The r values were calculated using Eq. (11).

where Xk,i and Yi are the ith input and output, respectively; Y  and Xk  are the average values of the output and 
kth input, respectively; and n denotes the total number of data points. The computation results are presented 
in Figs. 19 and 20. From the plotted results, it can be observed that the major influencing parameters were the 
planned progress, actual time (AT) and earned schedule (ES) factors, with relevance scores of 0.895, 0.763 and 
0.445, respectively. In contrast, the schedule variance (SV), schedule performance index (SPI) and cost perfor-
mance index (CPI) factors had the minimum relevancy among the factors of 0.236, 0.142 and 0.191, respectively, 
for the ANFIS model sensitivity results. Similarly, for the ANN model, the actual time (AT) and planned progress 
were the maximum relevance factors, scoring 0.901 and 0.852, respectively, while the minimum relevance score 
of 0.167 was derived for the schedule performance index (SPI) factor. The computed sensitivity analysis results 
obtained are in agreement with the analytical findings of Zarei et al.81.

Conclusions
The research assessment of the application of artificial intelligence in construction scheduling for efficient project 
management was achieved in this study with a two-story residential structure construction taken as a case study 
to design and evaluate the schedule and cost performance indicators. The following conclusions can be drawn:

• The construction project under study was executed by medium-sized firm with a planned duration of 95 days 
at an estimated direct cost of 25.8 million naira. The project performance indicators were evaluated through 
earned value analysis from 0–100% progress, at 5% increments, with a total of 17 tasks. This was carried out 
using Microsoft Project software, and data obtained from the computation were utilized for model develop-
ment;

• Pearson’s correlation results obtained for the model variables indicated strong positive relationships between 
the response factor, earned value (EV), and the following performance indicators: planned progress, actual 
time (AT), earned schedule (ES), actual cost (AC) and cost variance (CV). Meanwhile, negative linear rela-
tionships were observed to exist for the schedule performance indicator and schedule variance factors;

• Data generated in this process were expertly selected for the input–output model variables’ formulation to 
improve project performance, reduce costs, and enhance overall project management. ANN and ANFIS were 
deployed for the smart modeling process using MATLAB software for the model simulation, training, testing 
and validation;

• The model’s prediction accuracy was evaluated using loss function parameters, namely the root mean squared 
error (RMSE) and mean absolute error (MAE). The results calculated indicated a better performance for the 
ANFIS model, with a MAE and RMSE of 1.9815 and 2.146, respectively, while ANN performed satisfacto-
rily, with a MAE and RMSE of 2.257 and 2.4095, respectively. The model performance results showed it was 

(11)r =

∑n
i=1

(

Xk,i − Xk

)(

Yi − Y
)

√

∑n
i=1

(

Xk,i − Xk

)2
×

∑n
i=1

(

Yi − Y
)2

Table 7.  ANFIS architecture comparison to derive the optimized model during training and testing.

Architecture MF type

Training Testing

RMSE MSE r2 RMSE MSE r2

ANFIS-01 trimf 3.201562 10.25 0.99895 3.158813 9.9781 0.99929

ANFIS-02 trapmf 3.512834 12.34 0.99771 3.356337 11.265 0.99918

ANFIS-03 gaussmf 2.837657 8.0523 0.99999 2.534127 6.4218 0.99999

ANFIS-04 gbellmf 3.445287 11.87 0.99689 3.226608 10.411 0.99935

ANFIS-05 psigmf 4.149699 17.22 0.99478 3.784574 14.323 0.99899

ANFIS-06 gauss2mf 3.053031 9.321 0.99924 2.952457 8.717 0.99911

ANFIS-07 pimf 2.983119 8.899 0.99966 2.761159 7.624 0.99957
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adaptive and robust, dealing with complex relationships between the model variables to produce an accurate 
target response;

• The results suggest that these models can be effectively integrated into existing scheduling processes and 
have the potential to significantly improve project performance. The developed models also offer a viable 
and accurate means of providing project performance indicators that enable project/construction managers 
to proficiently monitor, control and execute projects with the designed quality, time and resources. Further-
more, details derived through this research study will contribute toward developing an essential template for 
efficient planning and accountability of construction projects, to prevent challenges such as cost overruns.

Figure 16.  D-surface plots of ANFIS model variables.
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Table 8.  Actual and model-predicted results.

Actual ANFIS model ANN model

646,800 646,802.2 646.801.7

687,200 687,201.5 687.202.4

695,710 695,713.21 695.714.56

728,350 728,351.11 728,348.7

744,210 744,210.2 744,211.5

789,820 789,820.5 789,818.6

884,520 884,521.13 884,524.13

988,470 988,472.4 988,468.4

1,094,200 1,094,203.2 1,094,202.3

1,197,245 1,197,244.82 1,197,248.95

1,200,250 1,200,249.2 1,200,253.42

1,504,560 1,504,559.36 1,504,558.36

1,709,410 1,709,410.14 1,709,411.02

2,510,560 2,510,560.33 2,510,559.02

2,711,775 2,711,774.88 2,711,776.64

3,612,350 3,612,349.22 3,612,348.47

3,913,450 3,913,452.14 3,913,448.15

5,014,025 5,014,024.44 5,014,026.19

8,215,280 8,215,281.06 8,215,279.46

10,718,470 10,718,470.43 10,718,469.73

Table 9.  Performance evaluation of the developed model.

Target output Statistical parameter Requirements Calculated results Remarks

ANFIS model

MAE Close to 0 1.9815 Excellent

RMSE Close to 0 2.257 Very good

R2 Greater than 0.8 0.99999 Excellent

ANN model

MAE Close to 0 2.146 Excellent

RMSE Close to 0 2.4095 Very good

R2 Greater than 0.8 0.99998 Excellent
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Figure 17.  Goodness-of-fit plot for ANFIS model.
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Figure 18.  Goodness-of-fit plot for ANN model.
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Figure 19.  ANN model sensitivity analysis results.
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Figure 20.  ANFIS model sensitivity analysis results.
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Study’s limitations and recommendations. Investigative research on construction schedule evalua-
tion using artificial intelligence tools is very important given that it can be applied to deal with non-linear com-
plex problems better than conventional statistical approaches. The gains derived from this work will contribute 
essential information to the decision-making process in construction planning, monitoring and controlling, to 
achieve the optimum solution. The system datasets utilized for the smart intelligent modeling in this research 
study were, however, limited to two-story residential structure construction in the area of the study. Therefore, 
further investigation is recommended using different classes of buildings based on the intended use of the struc-
ture, along with the deployment of multiple hybrid AI algorithms such as the neural networks–genetic-fuzzy-
logic hybrid algorithm.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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