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Inferring origin‑destination 
distribution of agent transfer 
in a complex network using deep 
gated recurrent units
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Predicting the origin‑destination (OD) probability distribution of agent transfer is an important 
problem for managing complex systems. However, prediction accuracy of associated statistical 
estimators suffer from underdetermination. While specific techniques have been proposed to 
overcome this deficiency, there still lacks a general approach. Here, we propose a deep neural network 
framework with gated recurrent units (DNNGRU) to address this gap. Our DNNGRU is network-
free, as it is trained by supervised learning with time‑series data on the volume of agents passing 
through edges. We use it to investigate how network topologies affect OD prediction accuracy, where 
performance enhancement is observed to depend on the degree of overlap between paths taken 
by different ODs. By comparing against methods that give exact results, we demonstrate the near‑
optimal performance of our DNNGRU, which we found to consistently outperform existing methods 
and alternative neural network architectures, under diverse data generation scenarios.

Deciphering the origin-destination (OD) pair has been at the heart of various protocols that aim to evaluate 
the traffic demand and flow within complex systems. Interest in OD pairs results from the basic information 
it encodes on the distribution of people, materials, or diseases which has direct bearing on the socioeconomic 
phenomena of human mobility, resource allocation, and epidemic spreading. An intrinsic utility in gaining 
knowledge of the OD distribution is that paths with higher transfer rates can be enhanced to improve system’s 
efficiency, or blocked to impede the transfer of malicious/undesirable entities. By far the most intensively studied 
OD problem for a complex system is the estimation of OD traffic of an Internet network from measurable traffic 
at router  interfaces1. Collection of link traffic statistics at routers within a network is often a much simpler task 
than direct measurements of OD traffic. The collected statistics provide key inputs to any routing algorithm, via 
link weights of the open shortest path first (OSPF) routing protocol. Shortly after, similar techniques have been 
adapted for the problem of identifying transportation OD by measuring the number of vehicles on  roads2–5. 
Such inference of vehicular OD has been used by Dey et al.5 to give better estimates of commuters’ travel time, 
or by Saberi et al.6 to understand the underlying dynamical processes in travel demand which evolve according 
to interactions and activities occurring within cities.

Several techniques have been developed in an effort to estimate OD information from link/edge counts. 
These include expectation-maximisation7, entropy maximisation (or information minimisation)8–10, Bayesian 
 inference3,11–13, quasi-dynamic  estimations14,15, and the gravity  model16–18. As the number of OD degrees of 
freedom (quadratically proportional to number of nodes) generally outnumbers the number of link counts 
(linearly proportional to number of nodes), the major issue concerning OD estimation is that the problem is 
severely underdetermined.  Vardi7 attempted to resolve this issue by treating the measurements of OD intensi-
ties as Poisson random variables, and used expectation-maximisation with moments to figure out the most 
likely OD intensities giving rise to the observed measurements of link counts. The non-unique solutions due 
to underdetermination had also been addressed through the principle of entropy maximisation, as well as by 
Bayesian inference through the assumption of prior OD matrices. Alternatively, ambiguities in OD inferences 
were treated by quasi-dynamic method using prior knowledge about historical trip data, or through parameters 
calibration of the gravity model based on zonal data. Invariably, these methods lead to large uncertainties and 
unreliable OD inferences.
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In this work, we introduce a new OD inference approach using deep neural network (DNN) and a method 
based on linear regression (LR). We regress for the probabilities ζij of an agent going from origin i to destina-
tion j, instead of predicting the actual number of agents in the OD matrix. These quantities ζij (also known as 
“fan-outs”19) are assumed to be stationary throughout the period of interest, and are thus always the same. For 
example, in a bus system, commuters in the morning have some preferred ζij , so the fan-outs are constant. But 
the number of people arriving the bus stops or boarding the buses need not be the same each time. This happens 
when a next bus arrives relatively quickly after the previous bus has left, with fewer people boarding it. Conse-
quently, simple linear regression can be implemented to obtain ζij from repeated measurements over the period. 
The actual OD numbers are just the total numbers from the origins (which are easily measurable) multiplied 
by ζij . This approach overcomes the weakness of underdetermined system in previous works, where repeated 
measurements would correspond to different OD intensities, which cannot be combined. As a result, improve-
ment in prediction accuracy is attained over earlier approaches such as expectation-maximisation and Bayesian 
inference, which we will demonstrate on a common network in section “Comparison amongst DNNGRU, LR, 
EM and other traditional methods”.

The assumption of fan-outs being always the same corresponds to real-world conditions. In fact, many papers 
in the OD literature based their studies on constant fan-outs1–6. It is also of practical importance to consider 
the fan-outs as constant over the period of interest, since fluctuations would mask the overall trend for gleaning 
meaningful insights. For instance, during a morning commute, we expect commuters travelling from residential 
areas to commercial areas. This is generally the situation and can be represented by an average fan-out for that 
period. During off-peak period, this OD distribution tapers off. Hence, various periods would be characterised 
by its own averaged fan-outs. Additionally, as many existing papers had  reasoned1,4, non-stationary fan-outs 
would result in a significantly more complex problem to tackle. Note that this assumption of constant fan-outs 
have led us to consider general complex networks with separate origin and destination nodes as our models, to 
signify the idea of morning commute or evening commute.

Next, we go beyond linear regression by training a DNN with supervised learning to predict the OD prob-
abilities ζij . In this DNN formulation, we take the total number of agents on each edge at every time step as our 
input. Our approach is thus applicable to any arbitrary network that connects between a set of origin nodes and 
a set of destination nodes. In other words, our framework is network-free, i.e. directly applicable to any network 
without requiring explicit modelling and analysis. To illustrate this network-free property, consider the three 
networks in Fig. 4b–d with different network topologies which all have the same number of nodes and edges. The 
same deep neural network architecture can be applied, since all it needs are the number of agents on the edges, 
i.e., the number of input layer nodes of the deep neural network (see Fig. 2) is the same for these three networks. 
It does not need to know how the edges are connected to which pairs of nodes.

Furthermore, the DNN is composed of gated recurrent units (GRU)20 which capture and process the temporal 
information in our data. The use of GRU is also necessary because our input data is in the form of a time-series, 
and the same GRU architecture can process time-series input data of arbitrary length. (In contrast, densely con-
nected feedforward DNN would have the number of input nodes dependent on the length of the time-series 
data.) In comparison, analytical statistical frameworks like the Vardi’s  algorithm7 and the Bayesian  methods3 
necessitate explicit encoding of the network (referred to as the “routing matrix”, related to the adjacency matrix 
of a graph) before implementation. Temporal information is not exploited as each datum is treated as being 
independent from the others.

We harness this DNN framework to study general complex networks with different topologies like lattice, 
random, and small-world, as well as real-world networks, to glean how network topology affects the accuracy in 
predicting the OD probabilities. Recently, there is great interest in using deep learning methods to solve problems 
in applications modelled by complex network, such as predicting the dismantling of complex  systems21, and on 
contagion  dynamics22. While these papers trained deep learning approaches to identify topological patterns on 
dynamical processes in networks, they have not explored how topology of different complex networks affect the 
OD prediction accuracies. Incidentally, Ref.22 made use of OD information of human mobility to study the spread 
of COVID-19 in Spain through a complex network model. They compared their DNN approach with a maximum 
likelihood estimation (MLE) technique and found that the former outperforms the latter. This outcome is analo-
gous to our case because Vardi’s expectation-maximisation algorithm with moments is in fact an MLE method. 
Moreover, unlike Refs.21,22 which implemented graph neural network and graph attention network that made 
use of convolution of neighbouring nodes to significantly improve performance, we design a GRU architecture 
(henceforth referred to as DNNGRU) which leverages on temporal information to predict OD probabilities.

Incidentally, whilst indeed there have been research work dealing with linear regression, the main purpose for 
us to do so here is to provide an analytical analysis with exact analytical results for the expected OD probability 
distribution so that we can compare with our DNNGRU results. These exact analytical results for the expected 
values serve as the benchmark result for any machine learning or deep learning models to achieve, hence they 
are of direct relevance for the purpose of result verification. Our approach here overcomes the underdetermined 
problem due to the vast training data available for our deep neural network to extrapolate via supervised learn-
ing to predict the appropriate OD probabilities. Similar to linear regression, multiple data points by repeated 
measurements allow for a best fit solution that minimises the mean squared error to be deduced.

DNNGRU is the appropriate neural network architecture for origin-destination inference (as opposed to a 
non-recurrent neural network (RNN) architecture) because it allows for a time-series of any length to be fed 
into the same design, since it is an RNN. This allows for transfer learning to be applicable, when building and 
training DNNGRU models to input time-series of various lengths. Recently, there have been several papers 
implementing LSTM in the OD prediction  problem23,24. We have in fact, initially tested it with LSTM but found 
no significant difference between using GRU versus LSTM. We implemented GRU instead of LSTM, because 
GRU is less computationally expensive and requires less training time than LSTM. Incidentally, Refs.23,24 study 
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the estimation and prediction of OD matrix based on a given city transportation network like for a railway 
system in Hong Kong and in Poland, respectively. On the other hand, our paper deals with the study on general 
complex networks to investigate the effects of network topology on the inference of OD probability distribution.

Before concluding our paper, we investigate a simple bus loop system in section “Application: bus loop service”. 
Here, buses go in a loop to serve commuters in a University campus. We build a simulation programme based 
on real-world parameters, to generate labelled data where the input are the number of passengers on each bus 
after the bus leaves a bus stop, with the labels being the OD pairs. We can then generate training data to train 
our DNNGRU, another dataset for validation during training, as well as a third dataset for testing. In reality, 
some transportation systems do track the number of passengers onboard the buses or trains at all times, via an 
automated passenger counter (APC)25. This is useful especially for trains to inform new passengers on the load 
distribution of the train carriages, so that they can move to sections with relatively less people on board. Some 
transportation operators would even track the OD pairs by the tap in and tap out of each commuter. Each com-
muter has a unique card with a unique ID, hence these would form the labels for the dataset. However, sometimes 
such datasets are only released in a partial or coarse-grained manner. For example, Singapore Land Transport 
Authority releases such data information for hourly aggregated OD pairs which are averaged over the calendar 
 month26. Hence, this is a dataset with known labels at a coarse level, but not fully informative towards finer details.

Results
Data measurements. Before presenting the linear regression (LR) and deep neural network (DNN) 
approaches to infer the origin-destination distribution, we elaborate on the data types that are easily measurable 
within generic real-world complex networks. In our setup, we primarily consider the dataset to be a time-series 
of T time steps where the number of agents are tracked at every single time step. Then, at a single time step, the 
measurable quantities are: xi which is the number of agents leaving origin i, yj which is the number of agents 
arriving at destination j, as well as Fab which is the number of agents on the directed edge from node a to node 
b of the complex network.

We employ xi and yj for LR due to its formulation. For general complex network, LR can only serve as an 
approximate estimator, unless the network is relatively simple enough to allow for an exact representation. In 
contrast, conventional algorithms for origin-destination  estimation3,7 use the number of agents on the edges, Fab . 
Hence, in developing our DNN framework, we will be using only Fab but not including xi and yj . This mode of 
data measurement is used in sections “General complex networks” and “Application: bus loop service”.

Nevertheless, in order for us to provide a fair evaluation of our DNN framework as compared to Vardi’s7 and 
Tebaldi-West’s3 approaches, we will consider a separate type of measurement in our comparison against these 
traditional approaches. In this case, we count the number of agents in xi and Fab over some fixed time interval, i.e. 
these numbers are aggregated instead of the actual numbers at every time step. Then, T such measurements are 
collected (where this T is now the number of independent aggregated measurements, instead of the length of the 
time series). This means of aggregated measurement is in fact implemented by Vardi and Tebaldi-West, although 
Vardi’s formulation uses two variables: one counts the number of agents from origin to destination, and the other 
counts the agents on the edges, which he denotes by Xi and �Y  respectively. To avoid confusion with our notation, 
we have renamed our xi as Vi while retaining the use of the Vardi’s vector of aggregated number of agents on all 
edges �Y  in our formulation. We will use these aggregated variables in our DNNGRU studies as well as that of our 
LR formulated using these variables described in the Supplemental Material (SM). Note that this mode of data 
measurement is employed in section “Comparison amongst DNNGRU, LR, EM and other traditional methods”.

A linear regression approach. Let us consider a complex network of nodes where agents from an origin 
node can end up at any destination node in the network. In our context, an edge in the network corresponds to 
a carrier route that facilitates transfer of agents between the two nodes connected by it. For example, data server 
hubs are linked through a series of fibre-optic cables (carriers). As not all data server hubs are directly connected 
due to geography, data (agents) transfer between a pair of data servers may traverse other data servers along the 
way, as depicted in Fig. 1a–c. In another example, the bus service in Fig. 1d comprises a loop of 12 bus stops 
served by buses going around. In other words, buses (carriers) must sequentially traverse one bus stop after 
another to deliver commuters (agents) in some fixed order along the prescribed loop.

In a network with MO origins and MD destinations, there are MO(MD − 1) free parameters which quantify 
the probability distribution of agent-transfer from one node to another. This is because at each of the MO origins, 
there are MD destinations and these probabilities sum to 1. Whilst we do not know where each agent goes, we 
can write down this general multivariate linear system:

subject to the constraints 
∑MD

j=1
ζij = 1 , for i = 1, . . . ,MO . Here, xi are the number of agents the carrier picks 

up from origins i = 1, . . . ,MO whilst yj are the number of agents that carrier delivers at destinations 
j = 1, . . . ,MD . The sought after quantities are ζij , denoting the OD probabilities of agents from i to j. As Eq. (1) 
does not account for agent-transfer through the edges with different travelling paths between the same origin 
and destination, it serves basically as an approximation model.

Assuming that ζij are stationary and hence independent of time, repeated measurements will yield different 
xi and yj leading to an overdetermined set of equations given through Eq. (1). The OD coefficients ζij can then be 
deduced by linear regression (LR), given dataset (xi , yj) to be  fitted31. In other words, we analytically solve for ζij 

(1)yj =

MO∑

i=1

ζijxi , for j = 1, . . . ,MD ,
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through the minimisation of the mean squared error. As LR gives coefficients ζij ∈ R , there are occasions when 
ζij < 0 . We handle this by minimally shifting the entire ζij to make all ζij ≥ 0 , and then normalise them so that 
the MO constraints below Eq. (1) are satisfied. This formulation constitutes a linear framework of OD estima-
tion modelled by a complex network that relates to a particular system of interest. Depending on the system 
under examination, the variables xi and yj are determined from the relevant measured empirical data. We have 
compared our LR approach with quadratic programming where the optimisation is performed by imposing the 
additional constraint that ζij is non-negative. While quadratic programming is observed to perform consistently 
better than LR at small data size, LR takes a significantly shorter time to reach the solution relative to quadratic 
programming. Both approaches nonetheless converge to the same solution when sample size increases.

In the case of the bus system, publicly accessible information such as the number of people on buses and the 
duration buses spend at bus  stops26 can be used to provide xi = number of people boarding and yj = number 
of people alighting the associated bus. In the context of data servers, xi and yj are deducible from the traffic load 
passing through the fibre-optic cables carrying packet bits since increased/decreased load is due to xi/yj from/
to a data server.

DNN with supervised learning. The main idea of our approach is to determine the OD probabilities 
ζij from easily accessible or directly measurable information, specifically the number of agents on the edges of 
the complex network. This ability to infer ζij is particularly important when it is impossible to measure ζij . For 
example, it is extremely challenging for investigators to figure out the tracks of nefarious hackers/fugitives who 
would doubtlessly obfuscate their direct transfer of data packets across various data servers. Such problems like 
commuters in transportation systems as well as fugitive hunting motivate the inference of the most likely desti-
nation of agent transfer, from an origin, so that we can better improve service and connectivity or to better locate 
a target’s whereabouts. We will thus measure the prediction accuracy of our algorithms developed in this paper 
in predicting the most popular destination with respect to an origin.

In order to deal with these more general situations, we develop a DNN architecture composed of GRU (i.e. 
DNNGRU) to output ζij by supervised learning, where training may be performed on real-world datasets which 
are amply available. In addition, labelled data can also be generated through simulation from systems with 
known characteristics for DNN to generalise from them to new unseen inputs. Figure 2 gives an overview on 
the approach of this work, where information of the number of agents on the edges (e.g. number of people on 
buses after leaving bus stops) are passed into DNNGRU to infer OD probabilities of the network.

Figure 1.  (a) Hypothetical example of three origin data servers (red x) connected to three destination data 
servers (green ∗ ) in Asia-Pacific. (b) Pictorial visualisation of data server connections of (a). (c) Network 
representation of (a, b). (d) Blue Route of the NTU campus shuttle bus  service27,28. (e) Network representation of 
(d), where the nodes are linked via a semi-express  configuration29,30. Each of the six coloured arrows represents 
one semi-express bus picking up commuters from distinct subsets of origins. Subsequently, all buses allow 
alighting at all destinations D1, . . . ,D6.
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Our DNN can take as input a more generic form of the dataset with (xi , yj) implicitly contained, as compared 
to LR described in the previous subsection. It thus encompasses a more general data and model structure of the 
system-under-study such that the actual mechanism of the carriers may be complex and nonlinear. Supervised 
learning then allows our DNN to learn directly and more generally from labelled ζij . Furthermore, we adopt a 
DNN with sigmoid activation to naturally output the correct range of ζij ∈ [0, 1] . An important characteristic 
of our designed DNN architecture is the incorporation of GRU to enable inference from time series. The GRU 
is a recurrent unit with hidden memory cell that allows for information from earlier data to be combined with 
subsequent data in the time-series. This is crucial as the dataset (xi , yj) may carry temporal information. For 
instance, buses recently picking up commuters would leave less people for subsequent buses, hence cascading 
effects (like bus bunching, overtaking, load-sharing27,32) induce deviations from Eq. (1) which ignores temporal 
correlation as it treats each datum independently.

Comparison amongst DNNGRU, LR, EM and other traditional methods. We directly compare 
our DNNGRU and LR approaches with the traditional Vardi’s expectation-maximisation (EM) algorithm, Wil-
lumsen’s entropy maximisation, as well as Bayesian method on Vardi’s network as a  testbed7. For this purpose, 
we adapt the generation of data according to the approach of Vardi: The number of agents on the edges are meas-
ured over an extended time  period3,7. This would be a setup where a counter tracks the overall number of agents 
that passes through an edge throughout the entire day, for instance. In this case, samples from various days are 
independent, with the number of people Xk generated for each origin-destination pair being a Poisson random 
variable with a fixed mean �k . Vardi’s network has four nodes, and consequently 12 OD components in �X (see 
Methods for a review of Vardi’s EM algorithm and notations).

We generate datasets in the following manner: For each dataset, each �k is an integer chosen from [1, 20]. 
Then, an �X is drawn, with �Y  computed via Eq. (4). Here, �Y  is the vector of number of agents on the edges of the 
network. The ζij are computed from appropriately normalising �� with respect to each origin node. In other words, 
the ground truth of ζij are: ζ11 = �1/(�1 + �2 + �3) , etc. Therefore, for each dataset, we have ζij and �Y  . The goal 
is to infer ζij from �Y  . We collect T samples of �Y  in each dataset for that specific ζij , and this provides the input for 
DNNGRU, as well as Vardi’s algorithm. More datasets can be generated by resetting �� . For LR to be applicable 
as an exact model, we need to input an additional piece of information, viz. the total number of people originat-
ing from each origin node, �V  . The exact solution of ζij by LR is given in SM. This additional information is also 
provided to train an alternative DNNGRU, which we call “DNNGRU-V” to distinguish it from the version that 
does not include �V  as its input.

Separate DNNGRUs (as well  as DNNGRU-Vs) are trained to output ζij  for each i , 
so a network with MO origin nodes has MO DNNGRUs. Furthermore for each i,  we let 
T = 1, 3, 5, 10, 20, 30, 50, 70, 100, 140, 200, 300, 500, 750, 1000 , and apply transfer learning (see Methods) to 
separately train different DNNGRUs for different T. Training comprises 250 k datasets (where ζij has been 
randomised), with another 10 k as validation during training. Additionally, 50 k datasets (with randomised ζij ) 
are for testing. Note that we can train a single DNNGRU for all origin nodes, and we have done that. It turns 
out that having separate DNNGRUs exclusively for each origin node would improve the accuracy as compared 
to a single DNNGRU for all origins. Hence we only consider separate DNNGRUs. Later on when dealing with 
general complex networks in section “General complex networks”, such separate DNNGRUs allow us to study 
the effect of topology on accuracy with respect to each origin.

After obtaining these probabilities ζij , we determine the most popular destination j with respect to origin i by 
selecting the corresponding j with the highest probability ζij . We also determine how accurate is the prediction 

Figure 2.  Number of agents Nst from each edge s of a complex network are measured at a time instant t. After 
preprocessing them into time-series of length T for every edge, the inputs Nst (where s = 1, 2, . . . , L , and 
t = 1, 2, . . . ,T ) are fed into a DNNGRU and trained by supervised learning to predict ζij . Separate DNNGRUs 
are trained for each origin Oi and each time-series length T. From the outputs ζij , we construct the likelihood of 
agents going from Oi to Dj , as well as identify the most likely destination from each origin node.
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of ζij with respect to the true value, by two different measures, viz. the difference ε = |ζij,predicted − ζij,true| , as well 
as the coefficient of determination r2 (see Method) for the straight line fit of ζij,predicted = ζij,true . Figure 3a shows 
the percentage error E in predicting the most popular destination, versus the number of samples T. Figure 3b 
shows the percentage of the predictions where ε > 0.05 , versus T. Figure 3c shows 1− r2 for the straight line fit 
of ζij,predicted = ζij,true , versus T.

Evidently, DNNGRU outperforms EM with the usual data of number of agents on all the edges. We also 
observe LR to perform better than DNNGRU and EM, which results from the exploitation of the additional data 
of �V  . Note that �V  is easily obtainable for example by placing a counter that tracks every agent that leaves that 
node, without actually knowing where the agents are going. The use of �V  has also resulted in improvement in 

Figure 3.  (a–c) Comparison amongst DNNGRU and Vardi’s EM algorithm for Vardi’s  network7 as well as 
LR and DNNGRU-V with additional data on the total number of agents from the origin nodes. Shown in 
parentheses of the legend in (c) are the exponents of a power law fit. (d–f) Corresponding comparison amongst 
DNNGRU, LR, and Vardi’s EM  algorithm7 for the loop in Fig. 4a. (g–i) Corresponding comparison amongst 
DNNGRU, LR and an analytical averaging for a lattice with MO = MD = 3 in Fig. 4g. Here, LR in Eq. (1) is only 
an approximation as it does not track the exact number of yj . In (h), note that for T > 500 , DNNGRU and the 
analytic treatment have 0% error in predicting ζij to be within 0.05 from the true value. Therefore, this would be 
−∞ on the log-scale, which is not shown.
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the outcome of DNNGRU-V, where it is observed to have superior performance relative to LR. DNNGRU (and 
DNNGRU-V) is advantageous here by benefiting from the many weights and biases to be tuned from supervised 
learning with a deep neural network. Basically, the enhanced performances of DNNGRU and DNNGRU-V 
over Vardi’s algorithm and LR, respectively, arise from the gains accrued by learning from data. Nonetheless, 
the performance of DNNGRU-V would converge to that of LR in the asymptotic limit of large T since LR gives 
exact solution (see Fig. 1a SM). On the other hand, LR shows better performance compared to EM due to its 
lower modelling uncertainties from fewer underlying assumptions. As for entropy maximisation and Bayesian 
inference, the results are below par and hence not displayed. The latter two methods have not addressed the 
underdetermination problem and consequently are still burdened by the high uncertainty of their results. See 
SM for more details.

Incidentally, results corresponding to Fig. 3c where the predictions are the actual OD intensities instead of 
ζij are shown in Fig. 1b of SM. To predict the actual OD intensities, we just multiply the predicted probabilities 
ζij with the corresponding average total number of people at the origins. This is fully in accordance to how Vardi 
intended to apply his expectation-maximisation algorithm. In terms of the actual OD intensities, again LR, 
DNNGRU, DNNGRU-V all outperform EM.

A performance analysis and comparison between DNNGRU (without �V  ), LR, and EM have also been per-
formed for a loop network (Fig. 4a) with the same outcome observed. Details are given in Methods, with cor-
responding results displayed in Fig. 3d–f. The data generation here is not based on measuring the agents over 
a specified time interval, as prescribed by Vardi’s  network7. Instead, it is based on the realistic flow of agents 
from one edge to the next edge, which we elaborate further in the next subsection on general complex networks. 
The point here is, DNNGRU and LR are superior to Vardi’s EM algorithm. All three methods receive the same 
information of the number of agents on the edges at every time step, over T time steps.

General complex networks. Consider a network with MO origin nodes and MD destination nodes. At 
each time step, origin i can generate any number from 1 to P agents each assigned to go to destination j with 
probability ζij . Then, the agents propagate to subsequent edges in their paths as the time step progresses. Agents 
take the shortest path via edges of the network. If there are many shortest paths, one is randomly chosen (out 
of a maximum of n pre-defined shortest paths). We consider two versions, viz. when an agent traverses an edge, 
it spends one time step before leaving that edge to another edge or arriving at its destination (without lag); or 
it spends l time steps on the edge before proceeding (with lag). The number of agents on each edge is recorded 
every time step. The system is allowed to evolve, and the last T time steps are taken to train a DNNGRU.

We consider various such complex networks in our study (Fig. 4). As presented in the previous subsection 
where we compared with Vardi’s EM algorithm, Fig. 4a is a directed loop with MO = MD = 6 . Then, we study 
three networks: Fig. 4b lattice, Fig. 4c random, Fig. 4d small-world, with the same number of origins and desti-
nations ( MO = MD = 6 ) as well as edges (24 edges or 48 directed edges). These three networks provide a basis 
for comparison across different network topologies. Subsequently, we adopt two real-world internet  networks33: 

Figure 4.  (a) Directed loop, with 11 ADE. (b) Lattice, with 38 ADE. (c) Random, with 32 ADE, (d) Small-
world, with 24 ADE, (e) VinaREN, with 24 ADE, (f) MYREN, with 40 ADE, (g) smaller lattice, with 18 ADE. In 
each network, Oi (red) are origins, Dj (green) are destinations. (a–d) have 6 origins and 6 destinations, whilst (e) 
has 10 origins and 9 destinations with 6 intermediate nodes (grey), (f) has 16 origins and 15 destinations with 
6 intermediate nodes (grey). The smaller lattice in (g) has 3 origins and 3 destinations. (b–d) all have 24 edges 
(48 directed edges, since each edge represents both directions), so they differ on their topologies being a lattice, 
random, or small-world network.
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Fig. 4e VinaREN, and Fig. 4f MYREN, to investigate the effects of real network topologies. The internet VinaREN 
and MYREN in Fig. 4e, f have MO = 10,MD = 9 and MO = 16,MD = 15 , respectively. Note that the directed 
loop in Fig. 4a is also a real-world network of interest, and is studied in greater detail in section “Application: bus 
loop service”. In our study, we have set P = 10 , n = 4 , and l ∈ {1, 10} . Also, the number of agents originating from 
each origin is changed every 20 time steps to introduce stochasticity and variation, though ζij is kept constant 
throughout each dataset. The adjacency matrices for the networks in Fig. 4b–d and their set of shortest paths used 
from Oi to Dj are summarised in SM. Those for the other networks are deducible in a straightforward manner 
from Fig. 4. On top of these complex networks, we find it instructive to study a small lattice with MO = MD = 3 
(Fig. 4g), where we carry out an analytic treatment and compare against DNNGRU and LR.

We refer to the number of active directed edges (ADE) as those links that are actually being used, i.e. forming 
part of the shortest paths from origins to destinations. The number of ADE for the networks in Fig. 4a–g are, 
respectively: 11, 38, 32, 24, 24, 40, 18. More ADE implies more information being tracked. Let the number of 
agents on every ADE at every time step form the feature dataset to be fed into the input layer of a DNNGRU, 
lasting T time steps (c.f. Fig. 2). Unlike the previous subsection where we tested on Vardi’s network, information 
of �V  is not supplied to DNNGRU, i.e. we no longer consider DNNGRU-V in the rest of this paper.

A small lattice. In order to gain a deeper understanding on the performance of LR and DNNGRU, we employ 
a small lattice (Fig. 4g) that is amenable to analytical treatment. The analytical treatment essentially tracks the 
paths of agents through the various edges, to arrive at a set of equations which exactly solves for all the unknown 
variables (elaborated in SM). Specifically, as the agents propagate from an origin node of the small lattice, those 
who are destined for the same end node may traverse different paths, and the travelling pattern of the agents can 
be modelled analytically. Nonetheless, there is still stochasticity in the analytical treatment due to the stochastic 
nature of agents spawning at the origins. And with the evaluation of ζij based on the ratio of two integer number 
(of agents), there can still be uncertainties in the prediction of ζij . Note that the analytical treatment is achiev-
able here due to the small lattice having few nodes with a relatively high number of edges. On the other hand, 
LR as given by Eq. (1) is only an approximation as it does not track the correct number of yj . Thus, we observe 
the better performance of the analytical treatment over LR in Fig. 3g–i. DNNGRU matches with the analytical 
results, but appears to be slightly inferior in the asymptotic limit with large T, perhaps due to the optimisation of 
DNNGRU not finding the absolute best minimum of the loss.

Topological effects of the complex networks. Let us concern ourselves with the three networks: lattice; random; 
and small-world (Fig. 4b–d), which have the same number of origin and destination nodes, and also the same 
number of edges. Due to the different topologies of these networks, they have distinct ADE and thus diverse 
shortest paths that the agents could travel from the origin node to destination node. As DNNGRU learns a 
model that takes these different shortest paths of the agents into account while LR does not, DNNGRU outper-
forms LR in prediction accuracy as shown in Fig. 5. (Note that LR is an exact model for the loop in Fig. 4a, and 
we see convergence between LR and DNNGRU for large T in the top row of Fig. 5).

Figure 6 shows results of DNNGRU applied to the networks in Fig. 4a–f, so we can compare the performances 
across various networks on the same plots. We examine how topology influences the performance of the three 
networks with equal number of nodes and edges using DNNGRU, i.e. those in Fig. 4b–d. It turns out that the 
small-world topology performs the worst, given the same number of nodes and edges, because many shortest 
paths prefer taking the common “highway edges”, the very property that makes it small-world. The ramification 
of this is its lesser ADE (at 24) which carries less information than the lattice or random networks with greater 
ADE. This observation is, however, inconsistent with the fact that the random network which has a lesser ADE 
of 32 outperforms the lattice network with a higher ADE of 38. The deeper reason is revealed by looking into 
the performance variation across different origin nodes within the network.

Recall that each origin node i is trained with its own DNNGRU to exclusively predict ζij for that i. Figure 7 
reports the results for 1− r2 versus T with respect to each particular origin node. Corresponding results for 
the percentage errors of predicting the most popular destination as well as those for ε > 0.05 are given in SM.

Since the lattice, random and small-world networks have origin nodes with different topological properties, 
the agents could have alternative pre-defined shortest paths to take. Consequently, different network topologies 
do indeed lead to different origin nodes performing better than others. We can determine the relatively worst 
performing origin nodes in these networks, by examining the graphs in Fig. 7. For the lattice, origin nodes O3 
and O4 (which are equivalent, due to the symmetry of the lattice) have a relatively higher error compared to 
the other origin nodes. For the random network, the worst performing origin nodes are O2 and O3 with O6 also 
relatively poor, whilst those for the small-world network are O1 , O2 and O3.

Accuracy in inferring ζij relies on the ability to disentangle the individual i, j components from the combined 
information when they add up on the shared edges. The lattice in Fig. 8a shows how O3 (and O4 , by symmetry) 
tends to be inferior compared to the rest, because it is the furthest away from all destination nodes. This means 
that it has to traverse relatively more edges, and consequently overlap with more edges used by other origin nodes.

Another way an origin node can become inferior is due to a parasitic origin node that taps on it to get to the 
destinations. This is obvious in the random and small-world networks, as depicted in Fig. 8b, c. For the random 
network, O3 has essentially all its paths relying on all those used by O2 . This makes both of them suffer slightly 
worse performance, since it is more difficult to ascertain the ζij to be attributed to which of them. Other origin 
nodes have more diverse paths, allowing for more information available to infer their own ζij . Similarly for the 
small-world network, O2 and O3 are parasitic origin nodes with majority of their paths going via those of O1 , 
resulting in all three of them being slightly inferior than other origin nodes.
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Figure 5.  DNNGRU outperforms LR in the lattice, small-world and random networks with the same number 
of nodes and edges, as LR serves as an approximation. For the loop, LR is an exact model and asymptotically 
matches the performance of DNNGRU.

Figure 6.  (a) The percentage error in predicting the most popular destination with respect to an origin, for 
various networks. Each plot point is the result of supplying as input data the last T time steps of the number of 
agents on every ADE of the network. (b) The corresponding plot showing the percentage of predictions where 
ε > 0.05 . (c) The corresponding plot showing 1− r2 , with r2 being the coefficient of determination of fitting 
ζij,predicted = ζij,true . Shown in brackets in the legends of (c) are the exponents for the respective best fitted power 
laws. See Fig. 2 in SM for corresponding plots with lag of l = 10 to traverse an edge.
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Let Eij be the total number of edges that origin nodes Oi and Oj would overlap, when getting to all destinations. 
We summarise the values of Eij for these three networks in Table 1. Generally, origin nodes that have greater 
overlap, i.e. larger Eij , would tend to be less accurate. These can be made more precise by encapsulating them into 
an index χi for each origin node Oi which quantifies the relative degree of overlap amongst them:

In Eq. (2), Ei is the number of edges that are involved in getting from Oi to all destinations. The division by MO − 1 
serves to make χi as an averaged quantity over all the overlapping origin nodes (minus one to exclude itself). The 
division by Ei is to normalise as nodes with more edges would tend to proportionally overlap more with other 
origins’ edges. The rationale for taking the sum of squares of Eij (as opposed to just the sum of Eij ) is because 
an edge overlap involves two such origin nodes Oi and Oj , hence Eij should arguably appear as two factors. The 
squaring would also more greatly penalise higher overlapping numbers as compared to fewer overlaps. This is 

(2)χi =
1

Ei(MO − 1)

∑

i �=j

E2ij .

Figure 7.  In contrast to Fig. 6 where each plot point is the average result over all origins, here are the 
corresponding results with respect to each origin, for 1− r2 . For VinaREN and MYREN, many origin nodes 
are equivalent. Hence, there are only 4 distinct types of origins for VinaREN and 3 distinct types of origins for 
MYREN. See Figs. 3–5 in SM for the plots of E and ε , as well as with lag l = 10.

Figure 8.  The lattice, random and small-world networks from Fig. 4b–d. Here, we highlight the origin nodes 
that are relatively worst in predicting the most popular destination, compared to other origin nodes. (a) (lattice) 
O3 and O4 are the least accurate. Shown here is with respect to O3 , which is the furthest from all destination 
nodes. So, O3 has many edges which overlap with the edges used by others. (b) (random) Shown here are the 
edges used by O2 to get to all destination nodes, with O3 being a parasitic origin node. This is because whilst O3 
uses O3 → D2 and O3 → D2 → O4 → D1 , it otherwise overwhelmingly goes to O2 and traverses all the edges 
used by O2 to get to the destination nodes. (c) (small-world) Shown here are the edges used by O1 to get to all 
destination nodes, with O2 and O3 both being parasitic nodes as they overwhelmingly go to O1 and traverse all 
the edges used by O1 to get to the destination nodes.
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especially critical for an origin node with its parasitic companion which together share a larger amount of edges 
Eij , and which would raise both their indices values χi and χj by ∼ E2ij.

As revealed in Table 1, larger values of χi would correspond to that origin node Oi being less accurate (or larger 
error) relative to other origin nodes within that network, as deduced from Fig. 7. Incidentally, this index χi also 
appears to correspond to the random network performing better than the lattice, with the small-world network 
as the worst. The average values χ̄ of χi for these networks (random, lattice, small-world) are 1.46, 2.75, 3.94, 
respectively. This was, in fact, already deduced from Fig. 6 earlier. Intriguingly, the average index χ̄ explains 
why the random network with 32 ADE manages to outperform the lattice with 38 ADE: The former’s average 
χ̄ is smaller which indicates less overlapping of edges used between the origin nodes. Thus, by accounting for 
the overlapping of edges as a measure of how hard it is to disentangle which agents are from which origins to 
which destinations, we obtain an indicator of which origin nodes are easier to predict the OD probabilities. On 
the other hand, we are able to verify this empirically using the model-free DNNGRU on each origin node (as 
displayed in Fig. 7).

No overlap, partial overlap, superhighway networks. In this subsection, we provide a direct illustration of the 
effects of topology and sharing of edges on the accuracy of predicting OD information through a study of ideal-
ised networks as shown in Fig. 9. Here, three network with six origins and six destinations are considered. The 

Table 1.  Crosstables for the lattice, random and small-world networks from Fig. 4b–d. The numbers in 
parentheses in the left most column of each crosstable indicate the total number of edges Ei involved for that 
node to get to all destinations. These crosstables show the number of edges Eij that origin node Oi overlaps with 
those of origin node Oj , when getting to any destination. Rows in bold show the poorer or poorest performing 
nodes for that network, as deduced from Fig. 7. As revealed by the crosstables, these correspond to large values 
of χi , signifying greater overlaps.

Node O1 O2 O3 O4 O5 O6 χi

Lattice

 O1(11) – 6 7 3 3 0 1.87

 O2(16) 6 – 8 10 4 3 2.81

 O3(16) 7 8 – 8 10 3 3.58

 O4(16) 3 10 8 – 8 7 3.58

 O5(16) 3 4 10 8 – 6 2.81

 O6(11) 0 3 3 7 6 – 1.87

Random

 O1(12) – 4 2 5 2 5 1.23

 O2(8) 4 – 6 3 0 5 2.15

 O3(10) 2 6 – 3 1 5 1.50

 O4(14) 5 3 3 – 6 3 1.26

 O5(9) 2 0 1 6 – 0 0.91

 O6(10) 5 5 5 3 0 – 1.68

Small-world

 O1(9) – 9 9 5 5 5 5.27

 O2(12) 9 – 10 6 6 5 4.63

 O3(14) 9 10 – 6 8 5 4.37

 O4(9) 5 6 6 − 8 3 3.78

 O5(15) 5 6 8 8 – 5 2.85

 O6(8) 5 5 5 3 5 – 2.73

Figure 9.  Three networks with 6 origins and 6 destinations, with differing levels of overlap. (a) No overlap. (b) 
Partial overlap. (c) Superhighway.
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first has no overlap, so inferring ζij from the edge counts does not contain the uncertainties of the origin or desti-
nation on which the agent traverses, though there is still stochasticity involved since agents choose their destina-
tions probabilistically. The second network has partial overlap, since two origin nodes share a common edge. The 
inference of ζij can be achieved by simple linear regression involving the pair of nodes, based on Eq. (1). Finally, 
the third network has all six origin nodes sharing a common superhighway edge. Similar to the second network, 
here linear regression is directly applicable with all six origin nodes.

The results are shown in Fig. 10 . It is evident that no overlap is the easiest to infer ζij , with the superhighway 
network being the hardest. Because LR provides an exact formulation of the three networks, it consistently 
performs the best given sufficient data. In all the three networks, we observe that accuracy improves in a power 
law manner with more data, with DNNGRU matching the results of LR. We can calculate χ̄ for each of these 
networks. The index value for the no overlap network is zero, since Eij = 0 for all pairs of origins. For the partial 
overlap network, the sum of E2ij in Eq. (2) is only 72 as each origin only overlaps with one other origin. Finally, the 
sum of E2ij for the superhighway network is 5× 72 since each origin overlaps with five other origins. Consequently, 
χ̄ = 0, 1.225, 6.125 , respectively for the no overlap, partial overlap and superhighway networks. This again shows 
χ̄ as a measure of the degree of shared edges, with higher values signifying lower accuracy. Nevertheless, note 
from Fig. 10 that increasing the data size would improve the prediction accuracy in a power law manner in all 
cases, even for a superhighway network where all information pass through a common edge.

Real-world complex networks. Let us now consider the topology of three real-world complex networks: the 
directed loop, VinaREN, and MYREN. The directed loop corresponds to a bus transport network that provides 
loop service with MO = MD = 6 origin and destination bus stops. In comparison to the topology of the net-
works of the last section which have the same number of origin and destination nodes, the directed loop with 
only 11 ADE performs worst. This results from a larger average overlapped index χ̄ = 6.51 due to a greater num-
ber of overlapped edges and parasitic origin nodes which implies poorer accuracy as it is harder to disentangle 
the various ODs. Nonetheless, the directed loop is the only network amongst those in Fig. 4a–d where all origin 
nodes display essentially equivalent performance. The indices χi for these origins are 6.00, 6.60, 6.91, 6.93, 6.63, 
6.00, respectively, which are highly similar and consistent with them having comparable accuracies. The directed 
loop offers no alternative shortest path, so every agent from origin i to destination j takes the same path. The 
application of the directed loop for a bus loop service will be detailed in the next section.

For the internet networks VinaREN and MYREN, they have more destinations MD to deal with, and generally 
report larger errors in predicting the most popular destination. Their ADE are comparable to the smaller net-
works in Fig. 4b–d, such that they do not quite possess proportionately sufficient ADE to deal with more nodes. 
This is a consequence of the features that many real-world internet networks are scale-free and small-world34,35. 
Whilst these two networks are relatively small to be considered anywhere near being scale-free, this is nonethe-
less plausibly the situation with scale-free networks which are ultra  small36,37: Scale-free networks probably have 
comparably poorer performance due to the ultra few ADE. In the case of VinaREN and MYREN, this small-world 
feature leads to the presence of common highway edges which cause considerable overlapping of edges. This 
explains the worst performance of VinaREN and MYREN compared to the rest of the network topologies. In 
addition, because of the presence of alternative shortest paths in the MYREN network relative to the VinaREN 
network, which introduces additional uncertainties, the MYREN network performs worse compared to VinaREN.

Application: bus loop service. We consider a loop of MO origin bus stops with MD destination bus stops 
served by N buses in the form of Fig. 4a. Without loss of generality, origins are placed before destinations, all 
staggered. Regular buses go around the loop serving all bus stops sequentially. To describe other complex net-
work topologies in a bus system, we additionally implement a semi-express configuration where buses only board 
commuters from a subset of origins whilst always allow  alighting29. This configuration turns out to be chaotic, 
but outperforms regular or fully express buses in minimising commuters waiting time with optimal performance 

Figure 10.  Performance comparison between DNNGRU and LR for the three networks in Fig. 9.
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achieved at the edge of  chaos30. Let N = MO = MD = 6 . This system represents a morning commute scenario 
where students living in the NTU campus residences commute to faculty buildings (Fig. 1d). (The map shows 7 
residences and 5 faculty buildings. We approximate this with MO = MD = 6 ). The complex network for semi-
express buses (carriers, i.e. edges) are depicted in Fig. 1e. Each semi-express bus boards people from three ori-
gins, then allows alighting at every destination. Different semi-express buses do not board from the same origin 
subset.

Unlike edges in general complex networks, each bus in a bus network maintains its identity as a carrier 
between nodes. In other words, passengers from different buses do not mix even if the buses share the same 
road. On the other hand for general complex networks, an edge connecting a pair of nodes would combine all 
agents that traverse it. This makes bus systems relatively easier to be analytically treated, and so we can compare 
performances by DNNGRU and LR.

We can simulate each of these two bus systems given some ζij to generate: α ) the number of commuters on the 
buses after leaving a bus stop; and β ) the duration that the buses spend at bus stops. Our parameters are based 
on real data measured from NTU campus shuttle  buses26,27,38. We record 10 laps of service for each bus. This is 
reasonable as a bus takes ∼ 20 minutes a loop corresponding to 3.5 h of service for the morning commute from 8 
am to 11:30 am. All buses’ time series are concatenated into one single feature, for each α and β . Empirically, this 
longer time series turns out to significantly improve performance, compared to each bus representing separate 
features. As before, DNN training comprises 250 k datasets, with another 10 k as validation during training. 
Additionally, 50 k datasets are for testing. The latter are also used by LR to predict ζij . The various DNN archi-
tectural details are given in Methods.

With respect to i = 1 (other origins i  = 1 to be trained separately), DNNGRU predicts ζ1j using ( α,β ), α , or 
β . LR predicts ζij for all i, using α where (xi , yj) are directly deducible, and from which we take ζ1j for comparison. 
Figure 11a shows the performance of DNNGRU clearly outperforming LR in predicting ζ1j . The green, blue, 
orange, red bars respectively represent ε ≤ 0.05 , 0.05 < ε ≤ 0.10 , 0.10 < ε ≤ 0.15 , 0.15 < ε , where ε is the dif-
ference between the predicted ζ1j and the true ζ1j . Generally, using α , β or both for DNNGRU are equally good. 
A semi-express network topology has higher prediction accuracy than that of regular buses since it allows for 
more diverse data to learn from. The former topology is also a more efficient bus  system29, and conceivably in 
general complex networks as it provides greater variety of pathways than one single loop (as discussed in section 
“General complex networks”).

From ζ1j obtained by DNNGRU and LR using α , we order the destination ranking for origin i = 1 according 
to their probabilities and display their prediction accuracies in Fig. 11b. These are compared with directly clas-
sifying destination ranking by GRU or dense layers using α . Direct classification requires training individual 
DNNs for each rank, i.e. one DNN learns to predict the most likely destination, another learns to predict the 
second most likely one, etc. Despite having dedicated DNNGRUs to classify each rank, they turn out to always 
be inferior to one DNNGRU predicting ζ1j to then obtain the ranking. Intriguingly, they are only marginally 
superior (but not always) to LR. Consequently, if there are insufficient training data for DNNGRU, LR serves as 
a quick estimate with respectable accuracy compared to DNNGRU. Dense DNNs are consistently poorest due 
to its simplicity in not inferring temporal information in the time series, and also nowhere comparable to LR. 
DNNGRU regressing ζ1j is always the best. Architectural details on using DNNGRU for direct classification and 
dense DNN for classification are given in Methods.

Classifying destination ranking produces a U-shape, with predicting the least likely destination being most 
accurate. This is generally true for all the networks studied in Fig. 4 as well, when trying to predict the other 
rankings other than the most popular destination. Errors in predicting ζ1j may mess up the ordering, and those 
in between (2nd most likely, · · · , 2nd least likely) can be affected both above and below. The most and least likely 
ones are only affected from below or above, respectively, with the latter being bounded by zero—giving it slightly 
better accuracy. Incidentally, DNN direct classification generally tends to overfit from excessive training, with 
test accuracy systematically less than train accuracy. Conversely, DNN regressing for ζ1j does not seem to suffer 
from overfitting with test accuracy remaining comparable to train accuracy.

These results are useful for practical applications, as it informs us which bus stops should be prioritised and 
which may be skipped if needed. Train loops are another common loop services. For instance, major cities in 
the world have light rail system connected to rapid transit system. Unlike buses, trains have dedicated tracks free 
from traffic. Therefore, they are cleanly scheduled to stop over prescribed durations and do not experience bunch-
ing. This implies β is not applicable, as the duration a train spends at a station is not proportional to demand. 

Figure 11.  (a) Regression: predicting ζ1j by DNNGRU using ( α,β ), α , β ; and by LR using α . (b) Classification: 
predicting the most, second most, · · · , least likely destinations from origin i = 1 by three different DNN 
architectures, and LR using α.
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Nevertheless, α is measurable for inferring the OD distribution ζij of this train loop. Moreover, we can use DNN 
with supervised learning which is network-free on routes with multiple loops and linear/branching topologies.

Discussion
The main purpose of our paper is to introduce a machine learning approach to infer origin-destination (OD) 
distribution in a complex network. More specifically, we implement a recurrent deep neural network architec-
ture, which is trained by supervised learning using labelled data. These labelled data comprise the number of 
agents at every time step on each link/edge of the network, with the labels being the OD probability distribution.

The motivation for employing a recurrent neural network (as opposed to other non-neural network machine 
learning approach) is that it allows for processing temporal information present within the time-series input 
data on the number of agents on each link/edge of the network. Furthermore, when using a recurrent neural 
network, the same architecture can be used regardless of the time-series length. We tried both LSTM and GRU 
architectures and found the accuracy results to be essentially identical, with the latter requiring significantly less 
computational resources. This is why we focused on DNNGRU and demonstrated its application throughout 
this paper.

Whilst there have been extensive methods in the literature of OD inference, we believe that the performance 
of our DNNGRU is fairly evaluated by comparison with analytical solutions of the expected values, especially 
in some small networks where such analytical solutions of the expected values can be computed. Therefore, we 
calculated such expected values using linear regression in the case of the loop network and the small lattice net-
work for comparison with the results from DNNGRU. Additionally, we compared our results with some other 
methods like expectation-maximisation, Bayesian inference and entropy minimisation. We find that providing 
analytical solution for the expected value and comparison with this should provide sufficient demonstration of 
our DNNGRU results, as opposed to directly evaluating the vast other methods found in the literature.

Our DNNGRU does not require knowledge of the underlying topology of the network. We only need to 
track the number of agents on each link/edge of the network. Hence, we do not need to provide the adjacency 
matrix which are required in most other approaches like Vardi’s expectation-maximisation, Bayesian inference, 
and even graph neural networks (GNN). This is a key advantage of our supervised learning approach using 
DNNGRU instead of GNN.

Scalability. Scalability is always an issue with any algorithm/method. For small networks that we inves-
tigated here, we used “most popular destination” as one of our metrics. With many more nodes in a larger 
network, our DNNGRU can just increase the number of nodes in the input and output layers accordingly. This 
is demonstrated by our implementation on VinaREN and MYREN which are larger than 6 origins and 6 destina-
tions. For a recurrent neural network (like our DNNGRU), the computational time is dictated primarily by the 
length of the time-series input, not the number of nodes within the input and output layers. This is because the 
latter can be computed in parallel but the former must be computed sequentially.

In terms of memory usage, larger network with more nodes would contain more edges. Since our input data 
comprises number of agents on edges, then the memory would scale proportionally with the number of edges. As 
most real-world networks tend to be scale-free and/or small-world, the number of edges grow much slower than 
the number of nodes in the network. This is illustrated in our two real-world network examples of VinaREN and 
MYREN (see Fig. 4): They have 25 and 37 nodes respectively as compared to 12 nodes in our smaller networks 
(loop, lattice, random, small world). However, the VinaREN and MYREN networks only have ADE (active 
directed edges) of 24 and 40, respectively, which are comparable to the ADEs of our smaller networks (11, 38, 32, 
24, respectively). In other words, these examples show that whilst the number of nodes are 2× or 3× more, the 
number of ADE remains of the same order. Hence, the memory requirement for larger networks remains modest.

However, the accuracy of trying to predict the single most popular destination when scaling up the number 
of nodes would inevitably suffer. This is true for any algorithm or model trying to make such a singular predic-
tion. Perhaps with more nodes like 1000 destinations, or 1,000,000, instead of asking for the single most popular 
destination (which would certainly be difficult), we can ask for the “top 10% popular destination”. This provides 
a way of scaling with the number of nodes to obtain meaningful results.

Concluding remarks. Knowledge of ζij is akin to possessing knowledge of the dynamical law of the system. 
With respect to this dynamical law, we can figure out optimal configurations of buses for delivery of commuters 
from their origins to desired destinations. As a concrete implementation, the latter is achieved via multi-agent 
reinforcement learning (MARL) recently carried  out29. However, arbitrary ζij were tested there like uniform 
distribution (fixed proportion of commuters alighting at every destination) or antipodal (commuters alight at 
the destination opposite where they boarded on the loop). More complicated ζij can certainly be prescribed for 
the MARL framework in Refs.29,39, but the most useful one would be the actual ζij corresponding to the bus loop 
service being studied, like our NTU campus loop shuttle bus  service27,28,38. Thus, the algorithm presented here is 
complementary to the MARL framework in Ref.29. We intend to further implement our algorithm to city-wide 
bus networks from publicly accessible  data26 with MARL optimisation, to be reported elsewhere. Other complex 
systems (c.f. Fig. 1) can be similarly modelled towards improving the efficiency of agent-transfer or impeding 
undesirable transactions.

In studying general complex networks, we revealed how different network topologies can lead to (dis)advan-
tageous performances, quantifying in terms of χi and the presence of alternative shortest paths. We also studied 
how different origin nodes’ properties may make them perform slightly better than other origin nodes, in the 
examples of the lattice, random, small-world networks, as well as real-world networks like the loop, VinaREN 
and MYREN. Notably, we demonstrated empirically that the use of recurrent neural network architecture like 
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GRU allows for longer time-series data to generally yield more accurate predictions, with the time-series data 
length and prediction error appearing to scale as a power law.

Whilst we have illustrated a concrete application in a university bus loop service, the framework pre-
sented here can be used in various other areas like Internet  tomography1,3,7,10,40, city-wide bus/traf-
fic  networks3–5,12,14,15,17,35,41–53, as well as in mapping global epidemic/pandemic propagation and contact 
 tracing16,18,22,54–62. As we have shown how DNNGRU and our formulation of linear regression consistently out-
perform existing methods using expectation-maximisation with  moments7, Bayesian  inference3 and entropy 
 maximisation10, we expect further impactful advancements in OD inference based on this work. With DNNGRU 
being network-free where it only requires training it with data by supervised learning with no requirement of 
analytical modelling, this approach is scalable. We envision significant improvements in OD mapping in these 
other fields, bringing with them major enhancements whilst respecting privacy.

Methods
DNNGRU hyperparameters. We employ a deep neural network (DNN) with two hidden layers consist-
ing of gated recurrent units (GRU). The input layer comprises the measurement of the number of agents on each 
active directed edge (ADE) of a complex network at some moment in time. If there are L ADE, then there are L 
units in the input layer. As the next two (hidden) layers are GRUs stacked on one another, the input data to the 
input layer can contain T time steps. In other words, each of the L units in the input layer comprises a time series 
of length T. Finally, the output layer comprises MD units (recall that MD is the number of destination nodes), 
each giving the probability of agents from some specific origin node i to end up at destination j. Different DNNs 
are trained individually for different origin nodes i. (See Fig. 2).

For a given setup, the input layer and output layer have fixed number of units. So, the number of GRU hid-
den layers and the number of units in each GRU hidden layer are user-defined. We fix each GRU hidden layer 
to have 128 units. We observe that increasing the width of the hidden layers generally improve performance. 
However, the number of trainable weights and biases in the DNNGRU would rapidly blow up with increasing 
width size. The choice of 128 units for each hidden GRU layer balances this, with ∼ 150 k trainable weights and 
biases, which can be well-trained by 250k training datasets. On the other hand, whilst two hidden layers definitely 
outperform one hidden layer, three or more hidden layers do not show improved performance over two hidden 
layers. Thus, two hidden layers seem optimal.

DNNGRU training is carried out on TensorFlow 2.3 using  Keras63. Default activation function is used for 
GRU, whilst the output layer uses sigmoid. Although the sum of all output values is 1 (c.f. the summation equa-
tion below Eq. (1)), softmax does not seem desirable as it sometimes leads to stagnant training. The loss function 
used is binary cross entropy, optimised with the standard ADAM. An L2 recurrent regularisation is applied on 
the GRU hidden layers. This prevents blowing up of the weights which occasionally occurs during training if no 
regularisation is used. Batch size of 128 is used, which is generally better than 64 or 32. However, larger batch 
sizes would tax the GPU VRAM, leading to sporadic GPU breakdowns. Training is carried out over 200 epochs. 
Generally, optimal performance is achieved well before 200 epochs and continues to incrementally improve. No 
significant overfitting is observed, so no early stopping is implemented. In fact, for many of the DNNs, training 
accuracy is essentially similar to validation accuracy. Sometimes, the latter is slightly less than the former, but 
typically continues to improve over training epochs. Incidentally, input quantities which are small ( ≪ 100 ) are 
left as they are, whilst larger input values ( � 100 ) are better to be rescaled by appropriate division, so that the 
DNN performs optimally.

Transfer learning. With GRU layers, the input layer can take any time series length T and as long as the 
number of ADE L remains the same, then the DNNGRU architecture remains the same. A longer T would 
require longer training time since the time series data are processed sequentially by the DNNGRU and cannot 
be parallelised. This unmodified DNNGRU architecture regardless of T allows the implementation of transfer 
learning when supplying inputs of different temporal lengths T to obtain each plot point in Figs.  3, 5, 6, 7. So 
with respect to each origin node i, a DNNGRU is trained completely from scratch with T = 1000 . After this 
has completed, the trained weights are used as initial weights for the next shorter time series with T = 750 , and 
trained for only 20 epochs instead of the full 200 epochs. This generally leads to optimised performance similar 
to that from complete training with random initial weights (we carried out some tests and this is generally true), 
but only takes 10% of training time. Then, the trained weights for T = 750 are used as initial weights to train a 
DNNGRU for T = 500 , and so on until T = 1.

The coefficient of determination r2. The coefficient of determination, r2 is given by

where ζij,predicted  is the mean of all ζij,predicted . This imposes an exact fit of ζij,predicted = ζij,true with zero intercept, 
as opposed to the correlation coefficient of a linear regression fit that allows for an unspecified intercept to be 
determined from the fitting. Note that the coefficient of determination r2 can take negative values, which would 
imply that the predictions are worse than the baseline model that always predicts the mean ζij,predicted  (i.e. 
ζij,true = ζij,predicted  , giving r2 = 0 ). Hence, r2 < 0 are not shown in the plots in Figs. 3, 5, 6, 7, as they imply that 
the predictions are just so poor, they are essentially nonsensical. In contrast, r2 = 1 implies perfect predictions 
(since every ζij,predicted = ζij,true).

(3)r2 = 1−

∑(
ζij,predicted − ζij,true

)2
∑(

ζij,predicted − ζij,predicted
)2 ,
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Vardi’s expectation‑maximisation algorithm. We present an analytical comparison between linear 
regression (LR) and Vardi’s expectation-maximisation (EM), to elucidate how a switch in paradigm from trying 
to infer actual whole numbers of the OD matrix to instead inferring the probabilities would lead to significant 
improvements in the predictions. It is instructive to consider a directed loop for this purpose as shown in Fig. 4a, 
which is also what happens when a bus picks up people from MO origin bus stops and then delivers them at MD 
destination bus stops (c.f. Fig. 1d). This bus system is the subject of section “Application: bus loop service”, which 
is based on the NTU shuttle bus  service27.

The bus would pick up xi commuters from each of the origin bus stops ( i = 1, . . . ,MO ), and then let yj com-
muters alight at each of the destination bus stops ( j = 1, . . . ,MD ) according to ζij , which leads to Eq. (1). In 
other words, everybody who alights at destination bus stop j for each j = 1, . . . ,MD comprises everybody who 
boarded from each of the origin bus stops who wants to go to bus stop j. Since we can repeatedly measure all 
the xi and yj as the bus loops around over time, Eq. (1) is naturally in a form where LR is directly applicable. 
The OD probabilities ζij are coefficients of a multivariate system of linear equations, and the best set of values of 
ζij is the one that would minimise the mean squared error of the predicted yj given the xi according to Eq. (1), 
versus the measured yj.

On the other hand,  Vardi7 approaches the problem differently. Instead of evaluating the OD number of com-
muters from the OD probabilities ζij , Vardi determines the actual OD whole numbers of commuters by modelling 
them directly as Poisson random variables with mean �k , where k = 1, . . . ,MOMD . With the correct Poisson 
parameters �k representing the mean (and variance) of each OD from some Oi to some Dj , the actual number of 
people who want to go from Oi to Dj is the random variable Xk ∼ Poisson(�k).

Without loss of generality, let us fix MO = MD = 6 as in Fig. 4a. This gives the following matrix equation:

The column vector �X is the collection of all 36 possible OD for this network. More specifically, we define

with XOiDj denoting the actual number of people who go from Oi to Dj . The column vector �Y  comprises the num-
ber of commuters on each of the ADE, i.e. the 11 edges that are being used in this loop: O1O2,O2O3, . . . ,D5D6 . 
Explicitly,

where YO1O2 is the number of people on the directed edge O1O2 , etc. Then, A is an 11× 36 matrix that relates the 
vector �X of number of people for each OD to the vector �Y  of number of people on each ADE. This matrix A is 
referred to as the “routing matrix”. For this loop network, we can determine A to be:

For example, the first component in Eq. (4) says that everybody picked up from O1 must go via O1O2 , regardless 
of whether they are going to D1, . . . ,D6 . So Y1 = "total number of people on the directed edge O1O

′′
2 is the sum 

of all the people originating from O1 . The second component says that everybody picked up from O1 and O2 must 
go via O2O3 , etc., until the sixth component, which is the sum of every commuter since they must all pass via 
O6D1 . Now the 7th component refers to the number of commuters on the directed edge D1D2 . Since everybody 
who wants to go to D1 has alighted, they do not traverse this edge regardless of which origin they came from. 
So Y7 excludes XO1D1 ,XO2D1 ,XO3D1 ,XO4D1 ,XO5D1 ,XO6D1 , and so on for the rest of the components of �Y  . This is 
how the routing matrix A is constructed.

It is obvious in Eq. (4) that there are 36 unknown components of �� = (�1, . . . , �36)
T , with �X ∼ Poisson(��) . 

However, there are only 11 independent equations, corresponding to each of the rows in Eq. (4). This is typical 
of OD inference problems where the number of ADE that provide measurements is less than the number of OD. 
Vardi’s approach is to figure out the maximum likelihood of �� from observing �Y  . The key idea of overcoming 
the problem of underdetermination is to make use of moments (as well as the normal approximation given a 
large sample of measured �Y ’s) to generate more and sufficient equations (details in Ref.7), leading to an iterative 
algorithm that would converge to the optimal �� . Let �̄Y  be the mean of all �Y  ’s which are sampled by measuring 
the number of commuters at each ADE, and �S be the corresponding covariance matrix arranged as a column 
vector. On top of that, let B be a matrix obtained from A where each row of B is the element-wise product of a 
pair of rows of A (details in Ref.7). Note that �S and B are the result of the normal approximation and the use of 
first and second order moments to generate more equations. Vardi then constructs the following augmented 
matrix equation

(4)�Y = A�X.

(5)�X =
(
XO1D1 ,XO1D2 ,XO1D3 ,XO1D4 ,XO1D5 ,XO1D6 ,XO2D1 ,XO2D2 , . . . ,XO6D6

)T
,

(6)�Y =
(
YO1O2 ,YO2O3 , . . . ,YD5D6

)T
,

(7)A =





1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1





.
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This results in an iterative algorithm for computing ��:

Here, �k , Ȳi , Si , aik , bik are the components of ��, �̄Y , �S,A,B , respectively. Once �� has been found, then we can 
normalise with respect to each origin to obtain the probabilities ζij.

DNN architecture for bus loop service. For the bus loop service, there are N buses serving the loop 
of bus stops. Unlike the situation for the general complex networks, here the input data comprises number of 
people on the bus after the bus leaves a bus stop, α ; and/or the duration the bus spends stopping at a bus stop, β . 
In principle, we can let each input unit be the number of people on each bus, and/or the duration the bus spends 
stopping at a bus stop as a second feature for the input. Nevertheless, we find that concatenating these time series 
from all buses into one single long time series as the input turns out to empirically boost performance. This 
perhaps arises due to complex interactions amongst the buses, viz. the number of people picked up by a leading 
bus affects the remaining number of people picked up by trailing buses.

Hence for DNNGRU, the input layer comprises α and/or β , where these features are the concatenation of 
the time-series of all N buses. If only α or β is used, then the input layer comprises that one single unit with a 
concatenated time-series. The rest is the same as the DNNGRU architecture used for general complex networks, 
viz. two hidden GRU layers with default activation each with width of 128 units, followed by an output layer with 
MD units with a sigmoid activation. So the output is ζij for each destination j.

For directly classifying the rank of destination bus stop, the loss function used is sparse categorical cross 
entropy, which is the standard loss function used in a classification problem with many labels. Then, an argmax 
is applied to the output layer, such that the unit with the largest value is deemed as the prediction of the destina-
tion bus stop of the stipulated rank. This loss function compares the correctness of the predicted destination 
bus stop with respect to the actual destination bus stop. Direct classification differs from directly regressing for 
the values of ζij where the loss function used is binary cross entropy that measures the closeness of the values of 
the predicted ζij from the true value. Finally in the case where dense layers are used in the direct classification, 
the GRU units are simply replaced by regular densely connected feedforward layers. The input layer is not one 
single feature, but comprises all values of α which is then fed into two densely connected layers each of width 
128 units followed by an output layer with MD units.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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