
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports

Inferring origin‑destination
distribution of agent transfer
in a complex network using deep
gated recurrent units
Vee‑Liem Saw 1, Luca Vismara 1, Suryadi 1, Bo Yang 1, Mikael Johansson 2 & Lock Yue Chew 1*

Predicting the origin-destination (OD) probability distribution of agent transfer is an important
problem for managing complex systems. However, prediction accuracy of associated statistical
estimators suffer from underdetermination. While specific techniques have been proposed to
overcome this deficiency, there still lacks a general approach. Here, we propose a deep neural network
framework with gated recurrent units (DNNGRU) to address this gap. Our DNNGRU is network-
free, as it is trained by supervised learning with time-series data on the volume of agents passing
through edges. We use it to investigate how network topologies affect OD prediction accuracy, where
performance enhancement is observed to depend on the degree of overlap between paths taken
by different ODs. By comparing against methods that give exact results, we demonstrate the near-
optimal performance of our DNNGRU, which we found to consistently outperform existing methods
and alternative neural network architectures, under diverse data generation scenarios.

Deciphering the origin-destination (OD) pair has been at the heart of various protocols that aim to evaluate
the traffic demand and flow within complex systems. Interest in OD pairs results from the basic information
it encodes on the distribution of people, materials, or diseases which has direct bearing on the socioeconomic
phenomena of human mobility, resource allocation, and epidemic spreading. An intrinsic utility in gaining
knowledge of the OD distribution is that paths with higher transfer rates can be enhanced to improve system’s
efficiency, or blocked to impede the transfer of malicious/undesirable entities. By far the most intensively studied
OD problem for a complex system is the estimation of OD traffic of an Internet network from measurable traffic
at router interfaces1. Collection of link traffic statistics at routers within a network is often a much simpler task
than direct measurements of OD traffic. The collected statistics provide key inputs to any routing algorithm, via
link weights of the open shortest path first (OSPF) routing protocol. Shortly after, similar techniques have been
adapted for the problem of identifying transportation OD by measuring the number of vehicles on roads2–5.
Such inference of vehicular OD has been used by Dey et al.5 to give better estimates of commuters’ travel time,
or by Saberi et al.6 to understand the underlying dynamical processes in travel demand which evolve according
to interactions and activities occurring within cities.

Several techniques have been developed in an effort to estimate OD information from link/edge counts.
These include expectation-maximisation7, entropy maximisation (or information minimisation)8–10, Bayesian
inference3,11–13, quasi-dynamic estimations14,15, and the gravity model16–18. As the number of OD degrees of
freedom (quadratically proportional to number of nodes) generally outnumbers the number of link counts
(linearly proportional to number of nodes), the major issue concerning OD estimation is that the problem is
severely underdetermined. Vardi7 attempted to resolve this issue by treating the measurements of OD intensi-
ties as Poisson random variables, and used expectation-maximisation with moments to figure out the most
likely OD intensities giving rise to the observed measurements of link counts. The non-unique solutions due
to underdetermination had also been addressed through the principle of entropy maximisation, as well as by
Bayesian inference through the assumption of prior OD matrices. Alternatively, ambiguities in OD inferences
were treated by quasi-dynamic method using prior knowledge about historical trip data, or through parameters
calibration of the gravity model based on zonal data. Invariably, these methods lead to large uncertainties and
unreliable OD inferences.

OPEN

1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore, Singapore. 2School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm,
Sweden. *email: lockyue@ntu.edu.sg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35417-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

In this work, we introduce a new OD inference approach using deep neural network (DNN) and a method
based on linear regression (LR). We regress for the probabilities ζij of an agent going from origin i to destina-
tion j, instead of predicting the actual number of agents in the OD matrix. These quantities ζij (also known as
“fan-outs”19) are assumed to be stationary throughout the period of interest, and are thus always the same. For
example, in a bus system, commuters in the morning have some preferred ζij , so the fan-outs are constant. But
the number of people arriving the bus stops or boarding the buses need not be the same each time. This happens
when a next bus arrives relatively quickly after the previous bus has left, with fewer people boarding it. Conse-
quently, simple linear regression can be implemented to obtain ζij from repeated measurements over the period.
The actual OD numbers are just the total numbers from the origins (which are easily measurable) multiplied
by ζij . This approach overcomes the weakness of underdetermined system in previous works, where repeated
measurements would correspond to different OD intensities, which cannot be combined. As a result, improve-
ment in prediction accuracy is attained over earlier approaches such as expectation-maximisation and Bayesian
inference, which we will demonstrate on a common network in section “Comparison amongst DNNGRU, LR,
EM and other traditional methods”.

The assumption of fan-outs being always the same corresponds to real-world conditions. In fact, many papers
in the OD literature based their studies on constant fan-outs1–6. It is also of practical importance to consider
the fan-outs as constant over the period of interest, since fluctuations would mask the overall trend for gleaning
meaningful insights. For instance, during a morning commute, we expect commuters travelling from residential
areas to commercial areas. This is generally the situation and can be represented by an average fan-out for that
period. During off-peak period, this OD distribution tapers off. Hence, various periods would be characterised
by its own averaged fan-outs. Additionally, as many existing papers had reasoned1,4, non-stationary fan-outs
would result in a significantly more complex problem to tackle. Note that this assumption of constant fan-outs
have led us to consider general complex networks with separate origin and destination nodes as our models, to
signify the idea of morning commute or evening commute.

Next, we go beyond linear regression by training a DNN with supervised learning to predict the OD prob-
abilities ζij . In this DNN formulation, we take the total number of agents on each edge at every time step as our
input. Our approach is thus applicable to any arbitrary network that connects between a set of origin nodes and
a set of destination nodes. In other words, our framework is network-free, i.e. directly applicable to any network
without requiring explicit modelling and analysis. To illustrate this network-free property, consider the three
networks in Fig. 4b–d with different network topologies which all have the same number of nodes and edges. The
same deep neural network architecture can be applied, since all it needs are the number of agents on the edges,
i.e., the number of input layer nodes of the deep neural network (see Fig. 2) is the same for these three networks.
It does not need to know how the edges are connected to which pairs of nodes.

Furthermore, the DNN is composed of gated recurrent units (GRU)20 which capture and process the temporal
information in our data. The use of GRU is also necessary because our input data is in the form of a time-series,
and the same GRU architecture can process time-series input data of arbitrary length. (In contrast, densely con-
nected feedforward DNN would have the number of input nodes dependent on the length of the time-series
data.) In comparison, analytical statistical frameworks like the Vardi’s algorithm7 and the Bayesian methods3
necessitate explicit encoding of the network (referred to as the “routing matrix”, related to the adjacency matrix
of a graph) before implementation. Temporal information is not exploited as each datum is treated as being
independent from the others.

We harness this DNN framework to study general complex networks with different topologies like lattice,
random, and small-world, as well as real-world networks, to glean how network topology affects the accuracy in
predicting the OD probabilities. Recently, there is great interest in using deep learning methods to solve problems
in applications modelled by complex network, such as predicting the dismantling of complex systems21, and on
contagion dynamics22. While these papers trained deep learning approaches to identify topological patterns on
dynamical processes in networks, they have not explored how topology of different complex networks affect the
OD prediction accuracies. Incidentally, Ref.22 made use of OD information of human mobility to study the spread
of COVID-19 in Spain through a complex network model. They compared their DNN approach with a maximum
likelihood estimation (MLE) technique and found that the former outperforms the latter. This outcome is analo-
gous to our case because Vardi’s expectation-maximisation algorithm with moments is in fact an MLE method.
Moreover, unlike Refs.21,22 which implemented graph neural network and graph attention network that made
use of convolution of neighbouring nodes to significantly improve performance, we design a GRU architecture
(henceforth referred to as DNNGRU) which leverages on temporal information to predict OD probabilities.

Incidentally, whilst indeed there have been research work dealing with linear regression, the main purpose for
us to do so here is to provide an analytical analysis with exact analytical results for the expected OD probability
distribution so that we can compare with our DNNGRU results. These exact analytical results for the expected
values serve as the benchmark result for any machine learning or deep learning models to achieve, hence they
are of direct relevance for the purpose of result verification. Our approach here overcomes the underdetermined
problem due to the vast training data available for our deep neural network to extrapolate via supervised learn-
ing to predict the appropriate OD probabilities. Similar to linear regression, multiple data points by repeated
measurements allow for a best fit solution that minimises the mean squared error to be deduced.

DNNGRU is the appropriate neural network architecture for origin-destination inference (as opposed to a
non-recurrent neural network (RNN) architecture) because it allows for a time-series of any length to be fed
into the same design, since it is an RNN. This allows for transfer learning to be applicable, when building and
training DNNGRU models to input time-series of various lengths. Recently, there have been several papers
implementing LSTM in the OD prediction problem23,24. We have in fact, initially tested it with LSTM but found
no significant difference between using GRU versus LSTM. We implemented GRU instead of LSTM, because
GRU is less computationally expensive and requires less training time than LSTM. Incidentally, Refs.23,24 study

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

the estimation and prediction of OD matrix based on a given city transportation network like for a railway
system in Hong Kong and in Poland, respectively. On the other hand, our paper deals with the study on general
complex networks to investigate the effects of network topology on the inference of OD probability distribution.

Before concluding our paper, we investigate a simple bus loop system in section “Application: bus loop service”.
Here, buses go in a loop to serve commuters in a University campus. We build a simulation programme based
on real-world parameters, to generate labelled data where the input are the number of passengers on each bus
after the bus leaves a bus stop, with the labels being the OD pairs. We can then generate training data to train
our DNNGRU, another dataset for validation during training, as well as a third dataset for testing. In reality,
some transportation systems do track the number of passengers onboard the buses or trains at all times, via an
automated passenger counter (APC)25. This is useful especially for trains to inform new passengers on the load
distribution of the train carriages, so that they can move to sections with relatively less people on board. Some
transportation operators would even track the OD pairs by the tap in and tap out of each commuter. Each com-
muter has a unique card with a unique ID, hence these would form the labels for the dataset. However, sometimes
such datasets are only released in a partial or coarse-grained manner. For example, Singapore Land Transport
Authority releases such data information for hourly aggregated OD pairs which are averaged over the calendar
month26. Hence, this is a dataset with known labels at a coarse level, but not fully informative towards finer details.

Results
Data measurements.  Before presenting the linear regression (LR) and deep neural network (DNN)
approaches to infer the origin-destination distribution, we elaborate on the data types that are easily measurable
within generic real-world complex networks. In our setup, we primarily consider the dataset to be a time-series
of T time steps where the number of agents are tracked at every single time step. Then, at a single time step, the
measurable quantities are: xi which is the number of agents leaving origin i, yj which is the number of agents
arriving at destination j, as well as Fab which is the number of agents on the directed edge from node a to node
b of the complex network.

We employ xi and yj for LR due to its formulation. For general complex network, LR can only serve as an
approximate estimator, unless the network is relatively simple enough to allow for an exact representation. In
contrast, conventional algorithms for origin-destination estimation3,7 use the number of agents on the edges, Fab .
Hence, in developing our DNN framework, we will be using only Fab but not including xi and yj . This mode of
data measurement is used in sections “General complex networks” and “Application: bus loop service”.

Nevertheless, in order for us to provide a fair evaluation of our DNN framework as compared to Vardi’s7 and
Tebaldi-West’s3 approaches, we will consider a separate type of measurement in our comparison against these
traditional approaches. In this case, we count the number of agents in xi and Fab over some fixed time interval, i.e.
these numbers are aggregated instead of the actual numbers at every time step. Then, T such measurements are
collected (where this T is now the number of independent aggregated measurements, instead of the length of the
time series). This means of aggregated measurement is in fact implemented by Vardi and Tebaldi-West, although
Vardi’s formulation uses two variables: one counts the number of agents from origin to destination, and the other
counts the agents on the edges, which he denotes by Xi and �Y respectively. To avoid confusion with our notation,
we have renamed our xi as Vi while retaining the use of the Vardi’s vector of aggregated number of agents on all
edges �Y in our formulation. We will use these aggregated variables in our DNNGRU studies as well as that of our
LR formulated using these variables described in the Supplemental Material (SM). Note that this mode of data
measurement is employed in section “Comparison amongst DNNGRU, LR, EM and other traditional methods”.

A linear regression approach.  Let us consider a complex network of nodes where agents from an origin
node can end up at any destination node in the network. In our context, an edge in the network corresponds to
a carrier route that facilitates transfer of agents between the two nodes connected by it. For example, data server
hubs are linked through a series of fibre-optic cables (carriers). As not all data server hubs are directly connected
due to geography, data (agents) transfer between a pair of data servers may traverse other data servers along the
way, as depicted in Fig. 1a–c. In another example, the bus service in Fig. 1d comprises a loop of 12 bus stops
served by buses going around. In other words, buses (carriers) must sequentially traverse one bus stop after
another to deliver commuters (agents) in some fixed order along the prescribed loop.

In a network with MO origins and MD destinations, there are MO(MD − 1) free parameters which quantify
the probability distribution of agent-transfer from one node to another. This is because at each of the MO origins,
there are MD destinations and these probabilities sum to 1. Whilst we do not know where each agent goes, we
can write down this general multivariate linear system:

subject to the constraints
∑MD

j=1
ζij = 1 , for i = 1, . . . ,MO . Here, xi are the number of agents the carrier picks

up from origins i = 1, . . . ,MO whilst yj are the number of agents that carrier delivers at destinations
j = 1, . . . ,MD . The sought after quantities are ζij , denoting the OD probabilities of agents from i to j. As Eq. (1)
does not account for agent-transfer through the edges with different travelling paths between the same origin
and destination, it serves basically as an approximation model.

Assuming that ζij are stationary and hence independent of time, repeated measurements will yield different
xi and yj leading to an overdetermined set of equations given through Eq. (1). The OD coefficients ζij can then be
deduced by linear regression (LR), given dataset (xi , yj) to be fitted31. In other words, we analytically solve for ζij

(1)yj =

MO∑

i=1

ζijxi , for j = 1, . . . ,MD ,

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

through the minimisation of the mean squared error. As LR gives coefficients ζij ∈ R , there are occasions when
ζij < 0 . We handle this by minimally shifting the entire ζij to make all ζij ≥ 0 , and then normalise them so that
the MO constraints below Eq. (1) are satisfied. This formulation constitutes a linear framework of OD estima-
tion modelled by a complex network that relates to a particular system of interest. Depending on the system
under examination, the variables xi and yj are determined from the relevant measured empirical data. We have
compared our LR approach with quadratic programming where the optimisation is performed by imposing the
additional constraint that ζij is non-negative. While quadratic programming is observed to perform consistently
better than LR at small data size, LR takes a significantly shorter time to reach the solution relative to quadratic
programming. Both approaches nonetheless converge to the same solution when sample size increases.

In the case of the bus system, publicly accessible information such as the number of people on buses and the
duration buses spend at bus stops26 can be used to provide xi = number of people boarding and yj = number
of people alighting the associated bus. In the context of data servers, xi and yj are deducible from the traffic load
passing through the fibre-optic cables carrying packet bits since increased/decreased load is due to xi/yj from/
to a data server.

DNN with supervised learning.  The main idea of our approach is to determine the OD probabilities
ζij from easily accessible or directly measurable information, specifically the number of agents on the edges of
the complex network. This ability to infer ζij is particularly important when it is impossible to measure ζij . For
example, it is extremely challenging for investigators to figure out the tracks of nefarious hackers/fugitives who
would doubtlessly obfuscate their direct transfer of data packets across various data servers. Such problems like
commuters in transportation systems as well as fugitive hunting motivate the inference of the most likely desti-
nation of agent transfer, from an origin, so that we can better improve service and connectivity or to better locate
a target’s whereabouts. We will thus measure the prediction accuracy of our algorithms developed in this paper
in predicting the most popular destination with respect to an origin.

In order to deal with these more general situations, we develop a DNN architecture composed of GRU (i.e.
DNNGRU) to output ζij by supervised learning, where training may be performed on real-world datasets which
are amply available. In addition, labelled data can also be generated through simulation from systems with
known characteristics for DNN to generalise from them to new unseen inputs. Figure 2 gives an overview on
the approach of this work, where information of the number of agents on the edges (e.g. number of people on
buses after leaving bus stops) are passed into DNNGRU to infer OD probabilities of the network.

Figure 1.   (a) Hypothetical example of three origin data servers (red x) connected to three destination data
servers (green ∗ ) in Asia-Pacific. (b) Pictorial visualisation of data server connections of (a). (c) Network
representation of (a, b). (d) Blue Route of the NTU campus shuttle bus service27,28. (e) Network representation of
(d), where the nodes are linked via a semi-express configuration29,30. Each of the six coloured arrows represents
one semi-express bus picking up commuters from distinct subsets of origins. Subsequently, all buses allow
alighting at all destinations D1, . . . ,D6.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

Our DNN can take as input a more generic form of the dataset with (xi , yj) implicitly contained, as compared
to LR described in the previous subsection. It thus encompasses a more general data and model structure of the
system-under-study such that the actual mechanism of the carriers may be complex and nonlinear. Supervised
learning then allows our DNN to learn directly and more generally from labelled ζij . Furthermore, we adopt a
DNN with sigmoid activation to naturally output the correct range of ζij ∈ [0, 1] . An important characteristic
of our designed DNN architecture is the incorporation of GRU to enable inference from time series. The GRU
is a recurrent unit with hidden memory cell that allows for information from earlier data to be combined with
subsequent data in the time-series. This is crucial as the dataset (xi , yj) may carry temporal information. For
instance, buses recently picking up commuters would leave less people for subsequent buses, hence cascading
effects (like bus bunching, overtaking, load-sharing27,32) induce deviations from Eq. (1) which ignores temporal
correlation as it treats each datum independently.

Comparison amongst DNNGRU, LR, EM and other traditional methods.  We directly compare
our DNNGRU and LR approaches with the traditional Vardi’s expectation-maximisation (EM) algorithm, Wil-
lumsen’s entropy maximisation, as well as Bayesian method on Vardi’s network as a testbed7. For this purpose,
we adapt the generation of data according to the approach of Vardi: The number of agents on the edges are meas-
ured over an extended time period3,7. This would be a setup where a counter tracks the overall number of agents
that passes through an edge throughout the entire day, for instance. In this case, samples from various days are
independent, with the number of people Xk generated for each origin-destination pair being a Poisson random
variable with a fixed mean �k . Vardi’s network has four nodes, and consequently 12 OD components in �X (see
Methods for a review of Vardi’s EM algorithm and notations).

We generate datasets in the following manner: For each dataset, each �k is an integer chosen from [1, 20].
Then, an �X is drawn, with �Y computed via Eq. (4). Here, �Y is the vector of number of agents on the edges of the
network. The ζij are computed from appropriately normalising �� with respect to each origin node. In other words,
the ground truth of ζij are: ζ11 = �1/(�1 + �2 + �3) , etc. Therefore, for each dataset, we have ζij and �Y  . The goal
is to infer ζij from �Y  . We collect T samples of �Y in each dataset for that specific ζij , and this provides the input for
DNNGRU, as well as Vardi’s algorithm. More datasets can be generated by resetting �� . For LR to be applicable
as an exact model, we need to input an additional piece of information, viz. the total number of people originat-
ing from each origin node, �V  . The exact solution of ζij by LR is given in SM. This additional information is also
provided to train an alternative DNNGRU, which we call “DNNGRU-V” to distinguish it from the version that
does not include �V as its input.

Separate DNNGRUs (as well as DNNGRU-Vs) are trained to output ζij for each i ,
so a network with MO origin nodes has MO DNNGRUs. Furthermore for each i, we let
T = 1, 3, 5, 10, 20, 30, 50, 70, 100, 140, 200, 300, 500, 750, 1000 , and apply transfer learning (see Methods) to
separately train different DNNGRUs for different T. Training comprises 250 k datasets (where ζij has been
randomised), with another 10 k as validation during training. Additionally, 50 k datasets (with randomised ζij )
are for testing. Note that we can train a single DNNGRU for all origin nodes, and we have done that. It turns
out that having separate DNNGRUs exclusively for each origin node would improve the accuracy as compared
to a single DNNGRU for all origins. Hence we only consider separate DNNGRUs. Later on when dealing with
general complex networks in section “General complex networks”, such separate DNNGRUs allow us to study
the effect of topology on accuracy with respect to each origin.

After obtaining these probabilities ζij , we determine the most popular destination j with respect to origin i by
selecting the corresponding j with the highest probability ζij . We also determine how accurate is the prediction

Figure 2.   Number of agents Nst from each edge s of a complex network are measured at a time instant t. After
preprocessing them into time-series of length T for every edge, the inputs Nst (where s = 1, 2, . . . , L , and
t = 1, 2, . . . ,T ) are fed into a DNNGRU and trained by supervised learning to predict ζij . Separate DNNGRUs
are trained for each origin Oi and each time-series length T. From the outputs ζij , we construct the likelihood of
agents going from Oi to Dj , as well as identify the most likely destination from each origin node.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

of ζij with respect to the true value, by two different measures, viz. the difference ε = |ζij,predicted − ζij,true| , as well
as the coefficient of determination r2 (see Method) for the straight line fit of ζij,predicted = ζij,true . Figure 3a shows
the percentage error E in predicting the most popular destination, versus the number of samples T. Figure 3b
shows the percentage of the predictions where ε > 0.05 , versus T. Figure 3c shows 1− r2 for the straight line fit
of ζij,predicted = ζij,true , versus T.

Evidently, DNNGRU outperforms EM with the usual data of number of agents on all the edges. We also
observe LR to perform better than DNNGRU and EM, which results from the exploitation of the additional data
of �V  . Note that �V is easily obtainable for example by placing a counter that tracks every agent that leaves that
node, without actually knowing where the agents are going. The use of �V has also resulted in improvement in

Figure 3.   (a–c) Comparison amongst DNNGRU and Vardi’s EM algorithm for Vardi’s network7 as well as
LR and DNNGRU-V with additional data on the total number of agents from the origin nodes. Shown in
parentheses of the legend in (c) are the exponents of a power law fit. (d–f) Corresponding comparison amongst
DNNGRU, LR, and Vardi’s EM algorithm7 for the loop in Fig. 4a. (g–i) Corresponding comparison amongst
DNNGRU, LR and an analytical averaging for a lattice with MO = MD = 3 in Fig. 4g. Here, LR in Eq. (1) is only
an approximation as it does not track the exact number of yj . In (h), note that for T > 500 , DNNGRU and the
analytic treatment have 0% error in predicting ζij to be within 0.05 from the true value. Therefore, this would be
−∞ on the log-scale, which is not shown.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

the outcome of DNNGRU-V, where it is observed to have superior performance relative to LR. DNNGRU (and
DNNGRU-V) is advantageous here by benefiting from the many weights and biases to be tuned from supervised
learning with a deep neural network. Basically, the enhanced performances of DNNGRU and DNNGRU-V
over Vardi’s algorithm and LR, respectively, arise from the gains accrued by learning from data. Nonetheless,
the performance of DNNGRU-V would converge to that of LR in the asymptotic limit of large T since LR gives
exact solution (see Fig. 1a SM). On the other hand, LR shows better performance compared to EM due to its
lower modelling uncertainties from fewer underlying assumptions. As for entropy maximisation and Bayesian
inference, the results are below par and hence not displayed. The latter two methods have not addressed the
underdetermination problem and consequently are still burdened by the high uncertainty of their results. See
SM for more details.

Incidentally, results corresponding to Fig. 3c where the predictions are the actual OD intensities instead of
ζij are shown in Fig. 1b of SM. To predict the actual OD intensities, we just multiply the predicted probabilities
ζij with the corresponding average total number of people at the origins. This is fully in accordance to how Vardi
intended to apply his expectation-maximisation algorithm. In terms of the actual OD intensities, again LR,
DNNGRU, DNNGRU-V all outperform EM.

A performance analysis and comparison between DNNGRU (without �V  ), LR, and EM have also been per-
formed for a loop network (Fig. 4a) with the same outcome observed. Details are given in Methods, with cor-
responding results displayed in Fig. 3d–f. The data generation here is not based on measuring the agents over
a specified time interval, as prescribed by Vardi’s network7. Instead, it is based on the realistic flow of agents
from one edge to the next edge, which we elaborate further in the next subsection on general complex networks.
The point here is, DNNGRU and LR are superior to Vardi’s EM algorithm. All three methods receive the same
information of the number of agents on the edges at every time step, over T time steps.

General complex networks.  Consider a network with MO origin nodes and MD destination nodes. At
each time step, origin i can generate any number from 1 to P agents each assigned to go to destination j with
probability ζij . Then, the agents propagate to subsequent edges in their paths as the time step progresses. Agents
take the shortest path via edges of the network. If there are many shortest paths, one is randomly chosen (out
of a maximum of n pre-defined shortest paths). We consider two versions, viz. when an agent traverses an edge,
it spends one time step before leaving that edge to another edge or arriving at its destination (without lag); or
it spends l time steps on the edge before proceeding (with lag). The number of agents on each edge is recorded
every time step. The system is allowed to evolve, and the last T time steps are taken to train a DNNGRU.

We consider various such complex networks in our study (Fig. 4). As presented in the previous subsection
where we compared with Vardi’s EM algorithm, Fig. 4a is a directed loop with MO = MD = 6 . Then, we study
three networks: Fig. 4b lattice, Fig. 4c random, Fig. 4d small-world, with the same number of origins and desti-
nations ( MO = MD = 6 ) as well as edges (24 edges or 48 directed edges). These three networks provide a basis
for comparison across different network topologies. Subsequently, we adopt two real-world internet networks33:

Figure 4.   (a) Directed loop, with 11 ADE. (b) Lattice, with 38 ADE. (c) Random, with 32 ADE, (d) Small-
world, with 24 ADE, (e) VinaREN, with 24 ADE, (f) MYREN, with 40 ADE, (g) smaller lattice, with 18 ADE. In
each network, Oi (red) are origins, Dj (green) are destinations. (a–d) have 6 origins and 6 destinations, whilst (e)
has 10 origins and 9 destinations with 6 intermediate nodes (grey), (f) has 16 origins and 15 destinations with
6 intermediate nodes (grey). The smaller lattice in (g) has 3 origins and 3 destinations. (b–d) all have 24 edges
(48 directed edges, since each edge represents both directions), so they differ on their topologies being a lattice,
random, or small-world network.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

Fig. 4e VinaREN, and Fig. 4f MYREN, to investigate the effects of real network topologies. The internet VinaREN
and MYREN in Fig. 4e, f have MO = 10,MD = 9 and MO = 16,MD = 15 , respectively. Note that the directed
loop in Fig. 4a is also a real-world network of interest, and is studied in greater detail in section “Application: bus
loop service”. In our study, we have set P = 10 , n = 4 , and l ∈ {1, 10} . Also, the number of agents originating from
each origin is changed every 20 time steps to introduce stochasticity and variation, though ζij is kept constant
throughout each dataset. The adjacency matrices for the networks in Fig. 4b–d and their set of shortest paths used
from Oi to Dj are summarised in SM. Those for the other networks are deducible in a straightforward manner
from Fig. 4. On top of these complex networks, we find it instructive to study a small lattice with MO = MD = 3
(Fig. 4g), where we carry out an analytic treatment and compare against DNNGRU and LR.

We refer to the number of active directed edges (ADE) as those links that are actually being used, i.e. forming
part of the shortest paths from origins to destinations. The number of ADE for the networks in Fig. 4a–g are,
respectively: 11, 38, 32, 24, 24, 40, 18. More ADE implies more information being tracked. Let the number of
agents on every ADE at every time step form the feature dataset to be fed into the input layer of a DNNGRU,
lasting T time steps (c.f. Fig. 2). Unlike the previous subsection where we tested on Vardi’s network, information
of �V is not supplied to DNNGRU, i.e. we no longer consider DNNGRU-V in the rest of this paper.

A small lattice.  In order to gain a deeper understanding on the performance of LR and DNNGRU, we employ
a small lattice (Fig. 4g) that is amenable to analytical treatment. The analytical treatment essentially tracks the
paths of agents through the various edges, to arrive at a set of equations which exactly solves for all the unknown
variables (elaborated in SM). Specifically, as the agents propagate from an origin node of the small lattice, those
who are destined for the same end node may traverse different paths, and the travelling pattern of the agents can
be modelled analytically. Nonetheless, there is still stochasticity in the analytical treatment due to the stochastic
nature of agents spawning at the origins. And with the evaluation of ζij based on the ratio of two integer number
(of agents), there can still be uncertainties in the prediction of ζij . Note that the analytical treatment is achiev-
able here due to the small lattice having few nodes with a relatively high number of edges. On the other hand,
LR as given by Eq. (1) is only an approximation as it does not track the correct number of yj . Thus, we observe
the better performance of the analytical treatment over LR in Fig. 3g–i. DNNGRU matches with the analytical
results, but appears to be slightly inferior in the asymptotic limit with large T, perhaps due to the optimisation of
DNNGRU not finding the absolute best minimum of the loss.

Topological effects of the complex networks.  Let us concern ourselves with the three networks: lattice; random;
and small-world (Fig. 4b–d), which have the same number of origin and destination nodes, and also the same
number of edges. Due to the different topologies of these networks, they have distinct ADE and thus diverse
shortest paths that the agents could travel from the origin node to destination node. As DNNGRU learns a
model that takes these different shortest paths of the agents into account while LR does not, DNNGRU outper-
forms LR in prediction accuracy as shown in Fig. 5. (Note that LR is an exact model for the loop in Fig. 4a, and
we see convergence between LR and DNNGRU for large T in the top row of Fig. 5).

Figure 6 shows results of DNNGRU applied to the networks in Fig. 4a–f, so we can compare the performances
across various networks on the same plots. We examine how topology influences the performance of the three
networks with equal number of nodes and edges using DNNGRU, i.e. those in Fig. 4b–d. It turns out that the
small-world topology performs the worst, given the same number of nodes and edges, because many shortest
paths prefer taking the common “highway edges”, the very property that makes it small-world. The ramification
of this is its lesser ADE (at 24) which carries less information than the lattice or random networks with greater
ADE. This observation is, however, inconsistent with the fact that the random network which has a lesser ADE
of 32 outperforms the lattice network with a higher ADE of 38. The deeper reason is revealed by looking into
the performance variation across different origin nodes within the network.

Recall that each origin node i is trained with its own DNNGRU to exclusively predict ζij for that i. Figure 7
reports the results for 1− r2 versus T with respect to each particular origin node. Corresponding results for
the percentage errors of predicting the most popular destination as well as those for ε > 0.05 are given in SM.

Since the lattice, random and small-world networks have origin nodes with different topological properties,
the agents could have alternative pre-defined shortest paths to take. Consequently, different network topologies
do indeed lead to different origin nodes performing better than others. We can determine the relatively worst
performing origin nodes in these networks, by examining the graphs in Fig. 7. For the lattice, origin nodes O3
and O4 (which are equivalent, due to the symmetry of the lattice) have a relatively higher error compared to
the other origin nodes. For the random network, the worst performing origin nodes are O2 and O3 with O6 also
relatively poor, whilst those for the small-world network are O1 , O2 and O3.

Accuracy in inferring ζij relies on the ability to disentangle the individual i, j components from the combined
information when they add up on the shared edges. The lattice in Fig. 8a shows how O3 (and O4 , by symmetry)
tends to be inferior compared to the rest, because it is the furthest away from all destination nodes. This means
that it has to traverse relatively more edges, and consequently overlap with more edges used by other origin nodes.

Another way an origin node can become inferior is due to a parasitic origin node that taps on it to get to the
destinations. This is obvious in the random and small-world networks, as depicted in Fig. 8b, c. For the random
network, O3 has essentially all its paths relying on all those used by O2 . This makes both of them suffer slightly
worse performance, since it is more difficult to ascertain the ζij to be attributed to which of them. Other origin
nodes have more diverse paths, allowing for more information available to infer their own ζij . Similarly for the
small-world network, O2 and O3 are parasitic origin nodes with majority of their paths going via those of O1 ,
resulting in all three of them being slightly inferior than other origin nodes.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

Figure 5.   DNNGRU outperforms LR in the lattice, small-world and random networks with the same number
of nodes and edges, as LR serves as an approximation. For the loop, LR is an exact model and asymptotically
matches the performance of DNNGRU.

Figure 6.   (a) The percentage error in predicting the most popular destination with respect to an origin, for
various networks. Each plot point is the result of supplying as input data the last T time steps of the number of
agents on every ADE of the network. (b) The corresponding plot showing the percentage of predictions where
ε > 0.05 . (c) The corresponding plot showing 1− r2 , with r2 being the coefficient of determination of fitting
ζij,predicted = ζij,true . Shown in brackets in the legends of (c) are the exponents for the respective best fitted power
laws. See Fig. 2 in SM for corresponding plots with lag of l = 10 to traverse an edge.

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

Let Eij be the total number of edges that origin nodes Oi and Oj would overlap, when getting to all destinations.
We summarise the values of Eij for these three networks in Table 1. Generally, origin nodes that have greater
overlap, i.e. larger Eij , would tend to be less accurate. These can be made more precise by encapsulating them into
an index χi for each origin node Oi which quantifies the relative degree of overlap amongst them:

In Eq. (2), Ei is the number of edges that are involved in getting from Oi to all destinations. The division by MO − 1
serves to make χi as an averaged quantity over all the overlapping origin nodes (minus one to exclude itself). The
division by Ei is to normalise as nodes with more edges would tend to proportionally overlap more with other
origins’ edges. The rationale for taking the sum of squares of Eij (as opposed to just the sum of Eij ) is because
an edge overlap involves two such origin nodes Oi and Oj , hence Eij should arguably appear as two factors. The
squaring would also more greatly penalise higher overlapping numbers as compared to fewer overlaps. This is

(2)χi =
1

Ei(MO − 1)

∑

i �=j

E2ij .

Figure 7.   In contrast to Fig. 6 where each plot point is the average result over all origins, here are the
corresponding results with respect to each origin, for 1− r2 . For VinaREN and MYREN, many origin nodes
are equivalent. Hence, there are only 4 distinct types of origins for VinaREN and 3 distinct types of origins for
MYREN. See Figs. 3–5 in SM for the plots of E and ε , as well as with lag l = 10.

Figure 8.   The lattice, random and small-world networks from Fig. 4b–d. Here, we highlight the origin nodes
that are relatively worst in predicting the most popular destination, compared to other origin nodes. (a) (lattice)
O3 and O4 are the least accurate. Shown here is with respect to O3 , which is the furthest from all destination
nodes. So, O3 has many edges which overlap with the edges used by others. (b) (random) Shown here are the
edges used by O2 to get to all destination nodes, with O3 being a parasitic origin node. This is because whilst O3
uses O3 → D2 and O3 → D2 → O4 → D1 , it otherwise overwhelmingly goes to O2 and traverses all the edges
used by O2 to get to the destination nodes. (c) (small-world) Shown here are the edges used by O1 to get to all
destination nodes, with O2 and O3 both being parasitic nodes as they overwhelmingly go to O1 and traverse all
the edges used by O1 to get to the destination nodes.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

especially critical for an origin node with its parasitic companion which together share a larger amount of edges
Eij , and which would raise both their indices values χi and χj by ∼ E2ij.

As revealed in Table 1, larger values of χi would correspond to that origin node Oi being less accurate (or larger
error) relative to other origin nodes within that network, as deduced from Fig. 7. Incidentally, this index χi also
appears to correspond to the random network performing better than the lattice, with the small-world network
as the worst. The average values χ̄ of χi for these networks (random, lattice, small-world) are 1.46, 2.75, 3.94,
respectively. This was, in fact, already deduced from Fig. 6 earlier. Intriguingly, the average index χ̄ explains
why the random network with 32 ADE manages to outperform the lattice with 38 ADE: The former’s average
χ̄ is smaller which indicates less overlapping of edges used between the origin nodes. Thus, by accounting for
the overlapping of edges as a measure of how hard it is to disentangle which agents are from which origins to
which destinations, we obtain an indicator of which origin nodes are easier to predict the OD probabilities. On
the other hand, we are able to verify this empirically using the model-free DNNGRU on each origin node (as
displayed in Fig. 7).

No overlap, partial overlap, superhighway networks.  In this subsection, we provide a direct illustration of the
effects of topology and sharing of edges on the accuracy of predicting OD information through a study of ideal-
ised networks as shown in Fig. 9. Here, three network with six origins and six destinations are considered. The

Table 1.   Crosstables for the lattice, random and small-world networks from Fig. 4b–d. The numbers in
parentheses in the left most column of each crosstable indicate the total number of edges Ei involved for that
node to get to all destinations. These crosstables show the number of edges Eij that origin node Oi overlaps with
those of origin node Oj , when getting to any destination. Rows in bold show the poorer or poorest performing
nodes for that network, as deduced from Fig. 7. As revealed by the crosstables, these correspond to large values
of χi , signifying greater overlaps.

Node O1 O2 O3 O4 O5 O6 χi

Lattice

 O1(11) – 6 7 3 3 0 1.87

 O2(16) 6 – 8 10 4 3 2.81

 O3(16) 7 8 – 8 10 3 3.58

 O4(16) 3 10 8 – 8 7 3.58

 O5(16) 3 4 10 8 – 6 2.81

 O6(11) 0 3 3 7 6 – 1.87

Random

 O1(12) – 4 2 5 2 5 1.23

 O2(8) 4 – 6 3 0 5 2.15

 O3(10) 2 6 – 3 1 5 1.50

 O4(14) 5 3 3 – 6 3 1.26

 O5(9) 2 0 1 6 – 0 0.91

 O6(10) 5 5 5 3 0 – 1.68

Small-world

 O1(9) – 9 9 5 5 5 5.27

 O2(12) 9 – 10 6 6 5 4.63

 O3(14) 9 10 – 6 8 5 4.37

 O4(9) 5 6 6 − 8 3 3.78

 O5(15) 5 6 8 8 – 5 2.85

 O6(8) 5 5 5 3 5 – 2.73

Figure 9.   Three networks with 6 origins and 6 destinations, with differing levels of overlap. (a) No overlap. (b)
Partial overlap. (c) Superhighway.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

first has no overlap, so inferring ζij from the edge counts does not contain the uncertainties of the origin or desti-
nation on which the agent traverses, though there is still stochasticity involved since agents choose their destina-
tions probabilistically. The second network has partial overlap, since two origin nodes share a common edge. The
inference of ζij can be achieved by simple linear regression involving the pair of nodes, based on Eq. (1). Finally,
the third network has all six origin nodes sharing a common superhighway edge. Similar to the second network,
here linear regression is directly applicable with all six origin nodes.

The results are shown in Fig. 10 . It is evident that no overlap is the easiest to infer ζij , with the superhighway
network being the hardest. Because LR provides an exact formulation of the three networks, it consistently
performs the best given sufficient data. In all the three networks, we observe that accuracy improves in a power
law manner with more data, with DNNGRU matching the results of LR. We can calculate χ̄ for each of these
networks. The index value for the no overlap network is zero, since Eij = 0 for all pairs of origins. For the partial
overlap network, the sum of E2ij in Eq. (2) is only 72 as each origin only overlaps with one other origin. Finally, the
sum of E2ij for the superhighway network is 5× 72 since each origin overlaps with five other origins. Consequently,
χ̄ = 0, 1.225, 6.125 , respectively for the no overlap, partial overlap and superhighway networks. This again shows
χ̄ as a measure of the degree of shared edges, with higher values signifying lower accuracy. Nevertheless, note
from Fig. 10 that increasing the data size would improve the prediction accuracy in a power law manner in all
cases, even for a superhighway network where all information pass through a common edge.

Real‑world complex networks.  Let us now consider the topology of three real-world complex networks: the
directed loop, VinaREN, and MYREN. The directed loop corresponds to a bus transport network that provides
loop service with MO = MD = 6 origin and destination bus stops. In comparison to the topology of the net-
works of the last section which have the same number of origin and destination nodes, the directed loop with
only 11 ADE performs worst. This results from a larger average overlapped index χ̄ = 6.51 due to a greater num-
ber of overlapped edges and parasitic origin nodes which implies poorer accuracy as it is harder to disentangle
the various ODs. Nonetheless, the directed loop is the only network amongst those in Fig. 4a–d where all origin
nodes display essentially equivalent performance. The indices χi for these origins are 6.00, 6.60, 6.91, 6.93, 6.63,
6.00, respectively, which are highly similar and consistent with them having comparable accuracies. The directed
loop offers no alternative shortest path, so every agent from origin i to destination j takes the same path. The
application of the directed loop for a bus loop service will be detailed in the next section.

For the internet networks VinaREN and MYREN, they have more destinations MD to deal with, and generally
report larger errors in predicting the most popular destination. Their ADE are comparable to the smaller net-
works in Fig. 4b–d, such that they do not quite possess proportionately sufficient ADE to deal with more nodes.
This is a consequence of the features that many real-world internet networks are scale-free and small-world34,35.
Whilst these two networks are relatively small to be considered anywhere near being scale-free, this is nonethe-
less plausibly the situation with scale-free networks which are ultra small36,37: Scale-free networks probably have
comparably poorer performance due to the ultra few ADE. In the case of VinaREN and MYREN, this small-world
feature leads to the presence of common highway edges which cause considerable overlapping of edges. This
explains the worst performance of VinaREN and MYREN compared to the rest of the network topologies. In
addition, because of the presence of alternative shortest paths in the MYREN network relative to the VinaREN
network, which introduces additional uncertainties, the MYREN network performs worse compared to VinaREN.

Application: bus loop service.  We consider a loop of MO origin bus stops with MD destination bus stops
served by N buses in the form of Fig. 4a. Without loss of generality, origins are placed before destinations, all
staggered. Regular buses go around the loop serving all bus stops sequentially. To describe other complex net-
work topologies in a bus system, we additionally implement a semi-express configuration where buses only board
commuters from a subset of origins whilst always allow alighting29. This configuration turns out to be chaotic,
but outperforms regular or fully express buses in minimising commuters waiting time with optimal performance

Figure 10.   Performance comparison between DNNGRU and LR for the three networks in Fig. 9.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

achieved at the edge of chaos30. Let N = MO = MD = 6 . This system represents a morning commute scenario
where students living in the NTU campus residences commute to faculty buildings (Fig. 1d). (The map shows 7
residences and 5 faculty buildings. We approximate this with MO = MD = 6 ). The complex network for semi-
express buses (carriers, i.e. edges) are depicted in Fig. 1e. Each semi-express bus boards people from three ori-
gins, then allows alighting at every destination. Different semi-express buses do not board from the same origin
subset.

Unlike edges in general complex networks, each bus in a bus network maintains its identity as a carrier
between nodes. In other words, passengers from different buses do not mix even if the buses share the same
road. On the other hand for general complex networks, an edge connecting a pair of nodes would combine all
agents that traverse it. This makes bus systems relatively easier to be analytically treated, and so we can compare
performances by DNNGRU and LR.

We can simulate each of these two bus systems given some ζij to generate: α ) the number of commuters on the
buses after leaving a bus stop; and β ) the duration that the buses spend at bus stops. Our parameters are based
on real data measured from NTU campus shuttle buses26,27,38. We record 10 laps of service for each bus. This is
reasonable as a bus takes ∼ 20 minutes a loop corresponding to 3.5 h of service for the morning commute from 8
am to 11:30 am. All buses’ time series are concatenated into one single feature, for each α and β . Empirically, this
longer time series turns out to significantly improve performance, compared to each bus representing separate
features. As before, DNN training comprises 250 k datasets, with another 10 k as validation during training.
Additionally, 50 k datasets are for testing. The latter are also used by LR to predict ζij . The various DNN archi-
tectural details are given in Methods.

With respect to i = 1 (other origins i = 1 to be trained separately), DNNGRU predicts ζ1j using ( α,β ), α , or
β . LR predicts ζij for all i, using α where (xi , yj) are directly deducible, and from which we take ζ1j for comparison.
Figure 11a shows the performance of DNNGRU clearly outperforming LR in predicting ζ1j . The green, blue,
orange, red bars respectively represent ε ≤ 0.05 , 0.05 < ε ≤ 0.10 , 0.10 < ε ≤ 0.15 , 0.15 < ε , where ε is the dif-
ference between the predicted ζ1j and the true ζ1j . Generally, using α , β or both for DNNGRU are equally good.
A semi-express network topology has higher prediction accuracy than that of regular buses since it allows for
more diverse data to learn from. The former topology is also a more efficient bus system29, and conceivably in
general complex networks as it provides greater variety of pathways than one single loop (as discussed in section
“General complex networks”).

From ζ1j obtained by DNNGRU and LR using α , we order the destination ranking for origin i = 1 according
to their probabilities and display their prediction accuracies in Fig. 11b. These are compared with directly clas-
sifying destination ranking by GRU or dense layers using α . Direct classification requires training individual
DNNs for each rank, i.e. one DNN learns to predict the most likely destination, another learns to predict the
second most likely one, etc. Despite having dedicated DNNGRUs to classify each rank, they turn out to always
be inferior to one DNNGRU predicting ζ1j to then obtain the ranking. Intriguingly, they are only marginally
superior (but not always) to LR. Consequently, if there are insufficient training data for DNNGRU, LR serves as
a quick estimate with respectable accuracy compared to DNNGRU. Dense DNNs are consistently poorest due
to its simplicity in not inferring temporal information in the time series, and also nowhere comparable to LR.
DNNGRU regressing ζ1j is always the best. Architectural details on using DNNGRU for direct classification and
dense DNN for classification are given in Methods.

Classifying destination ranking produces a U-shape, with predicting the least likely destination being most
accurate. This is generally true for all the networks studied in Fig. 4 as well, when trying to predict the other
rankings other than the most popular destination. Errors in predicting ζ1j may mess up the ordering, and those
in between (2nd most likely, · · · , 2nd least likely) can be affected both above and below. The most and least likely
ones are only affected from below or above, respectively, with the latter being bounded by zero—giving it slightly
better accuracy. Incidentally, DNN direct classification generally tends to overfit from excessive training, with
test accuracy systematically less than train accuracy. Conversely, DNN regressing for ζ1j does not seem to suffer
from overfitting with test accuracy remaining comparable to train accuracy.

These results are useful for practical applications, as it informs us which bus stops should be prioritised and
which may be skipped if needed. Train loops are another common loop services. For instance, major cities in
the world have light rail system connected to rapid transit system. Unlike buses, trains have dedicated tracks free
from traffic. Therefore, they are cleanly scheduled to stop over prescribed durations and do not experience bunch-
ing. This implies β is not applicable, as the duration a train spends at a station is not proportional to demand.

Figure 11.   (a) Regression: predicting ζ1j by DNNGRU using ( α,β ), α , β ; and by LR using α . (b) Classification:
predicting the most, second most, · · · , least likely destinations from origin i = 1 by three different DNN
architectures, and LR using α.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

Nevertheless, α is measurable for inferring the OD distribution ζij of this train loop. Moreover, we can use DNN
with supervised learning which is network-free on routes with multiple loops and linear/branching topologies.

Discussion
The main purpose of our paper is to introduce a machine learning approach to infer origin-destination (OD)
distribution in a complex network. More specifically, we implement a recurrent deep neural network architec-
ture, which is trained by supervised learning using labelled data. These labelled data comprise the number of
agents at every time step on each link/edge of the network, with the labels being the OD probability distribution.

The motivation for employing a recurrent neural network (as opposed to other non-neural network machine
learning approach) is that it allows for processing temporal information present within the time-series input
data on the number of agents on each link/edge of the network. Furthermore, when using a recurrent neural
network, the same architecture can be used regardless of the time-series length. We tried both LSTM and GRU
architectures and found the accuracy results to be essentially identical, with the latter requiring significantly less
computational resources. This is why we focused on DNNGRU and demonstrated its application throughout
this paper.

Whilst there have been extensive methods in the literature of OD inference, we believe that the performance
of our DNNGRU is fairly evaluated by comparison with analytical solutions of the expected values, especially
in some small networks where such analytical solutions of the expected values can be computed. Therefore, we
calculated such expected values using linear regression in the case of the loop network and the small lattice net-
work for comparison with the results from DNNGRU. Additionally, we compared our results with some other
methods like expectation-maximisation, Bayesian inference and entropy minimisation. We find that providing
analytical solution for the expected value and comparison with this should provide sufficient demonstration of
our DNNGRU results, as opposed to directly evaluating the vast other methods found in the literature.

Our DNNGRU does not require knowledge of the underlying topology of the network. We only need to
track the number of agents on each link/edge of the network. Hence, we do not need to provide the adjacency
matrix which are required in most other approaches like Vardi’s expectation-maximisation, Bayesian inference,
and even graph neural networks (GNN). This is a key advantage of our supervised learning approach using
DNNGRU instead of GNN.

Scalability.  Scalability is always an issue with any algorithm/method. For small networks that we inves-
tigated here, we used “most popular destination” as one of our metrics. With many more nodes in a larger
network, our DNNGRU can just increase the number of nodes in the input and output layers accordingly. This
is demonstrated by our implementation on VinaREN and MYREN which are larger than 6 origins and 6 destina-
tions. For a recurrent neural network (like our DNNGRU), the computational time is dictated primarily by the
length of the time-series input, not the number of nodes within the input and output layers. This is because the
latter can be computed in parallel but the former must be computed sequentially.

In terms of memory usage, larger network with more nodes would contain more edges. Since our input data
comprises number of agents on edges, then the memory would scale proportionally with the number of edges. As
most real-world networks tend to be scale-free and/or small-world, the number of edges grow much slower than
the number of nodes in the network. This is illustrated in our two real-world network examples of VinaREN and
MYREN (see Fig. 4): They have 25 and 37 nodes respectively as compared to 12 nodes in our smaller networks
(loop, lattice, random, small world). However, the VinaREN and MYREN networks only have ADE (active
directed edges) of 24 and 40, respectively, which are comparable to the ADEs of our smaller networks (11, 38, 32,
24, respectively). In other words, these examples show that whilst the number of nodes are 2× or 3× more, the
number of ADE remains of the same order. Hence, the memory requirement for larger networks remains modest.

However, the accuracy of trying to predict the single most popular destination when scaling up the number
of nodes would inevitably suffer. This is true for any algorithm or model trying to make such a singular predic-
tion. Perhaps with more nodes like 1000 destinations, or 1,000,000, instead of asking for the single most popular
destination (which would certainly be difficult), we can ask for the “top 10% popular destination”. This provides
a way of scaling with the number of nodes to obtain meaningful results.

Concluding remarks.  Knowledge of ζij is akin to possessing knowledge of the dynamical law of the system.
With respect to this dynamical law, we can figure out optimal configurations of buses for delivery of commuters
from their origins to desired destinations. As a concrete implementation, the latter is achieved via multi-agent
reinforcement learning (MARL) recently carried out29. However, arbitrary ζij were tested there like uniform
distribution (fixed proportion of commuters alighting at every destination) or antipodal (commuters alight at
the destination opposite where they boarded on the loop). More complicated ζij can certainly be prescribed for
the MARL framework in Refs.29,39, but the most useful one would be the actual ζij corresponding to the bus loop
service being studied, like our NTU campus loop shuttle bus service27,28,38. Thus, the algorithm presented here is
complementary to the MARL framework in Ref.29. We intend to further implement our algorithm to city-wide
bus networks from publicly accessible data26 with MARL optimisation, to be reported elsewhere. Other complex
systems (c.f. Fig. 1) can be similarly modelled towards improving the efficiency of agent-transfer or impeding
undesirable transactions.

In studying general complex networks, we revealed how different network topologies can lead to (dis)advan-
tageous performances, quantifying in terms of χi and the presence of alternative shortest paths. We also studied
how different origin nodes’ properties may make them perform slightly better than other origin nodes, in the
examples of the lattice, random, small-world networks, as well as real-world networks like the loop, VinaREN
and MYREN. Notably, we demonstrated empirically that the use of recurrent neural network architecture like

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

GRU allows for longer time-series data to generally yield more accurate predictions, with the time-series data
length and prediction error appearing to scale as a power law.

Whilst we have illustrated a concrete application in a university bus loop service, the framework pre-
sented here can be used in various other areas like Internet tomography1,3,7,10,40, city-wide bus/traf-
fic networks3–5,12,14,15,17,35,41–53, as well as in mapping global epidemic/pandemic propagation and contact
tracing16,18,22,54–62. As we have shown how DNNGRU and our formulation of linear regression consistently out-
perform existing methods using expectation-maximisation with moments7, Bayesian inference3 and entropy
maximisation10, we expect further impactful advancements in OD inference based on this work. With DNNGRU
being network-free where it only requires training it with data by supervised learning with no requirement of
analytical modelling, this approach is scalable. We envision significant improvements in OD mapping in these
other fields, bringing with them major enhancements whilst respecting privacy.

Methods
DNNGRU hyperparameters.  We employ a deep neural network (DNN) with two hidden layers consist-
ing of gated recurrent units (GRU). The input layer comprises the measurement of the number of agents on each
active directed edge (ADE) of a complex network at some moment in time. If there are L ADE, then there are L
units in the input layer. As the next two (hidden) layers are GRUs stacked on one another, the input data to the
input layer can contain T time steps. In other words, each of the L units in the input layer comprises a time series
of length T. Finally, the output layer comprises MD units (recall that MD is the number of destination nodes),
each giving the probability of agents from some specific origin node i to end up at destination j. Different DNNs
are trained individually for different origin nodes i. (See Fig. 2).

For a given setup, the input layer and output layer have fixed number of units. So, the number of GRU hid-
den layers and the number of units in each GRU hidden layer are user-defined. We fix each GRU hidden layer
to have 128 units. We observe that increasing the width of the hidden layers generally improve performance.
However, the number of trainable weights and biases in the DNNGRU would rapidly blow up with increasing
width size. The choice of 128 units for each hidden GRU layer balances this, with ∼ 150 k trainable weights and
biases, which can be well-trained by 250k training datasets. On the other hand, whilst two hidden layers definitely
outperform one hidden layer, three or more hidden layers do not show improved performance over two hidden
layers. Thus, two hidden layers seem optimal.

DNNGRU training is carried out on TensorFlow 2.3 using Keras63. Default activation function is used for
GRU, whilst the output layer uses sigmoid. Although the sum of all output values is 1 (c.f. the summation equa-
tion below Eq. (1)), softmax does not seem desirable as it sometimes leads to stagnant training. The loss function
used is binary cross entropy, optimised with the standard ADAM. An L2 recurrent regularisation is applied on
the GRU hidden layers. This prevents blowing up of the weights which occasionally occurs during training if no
regularisation is used. Batch size of 128 is used, which is generally better than 64 or 32. However, larger batch
sizes would tax the GPU VRAM, leading to sporadic GPU breakdowns. Training is carried out over 200 epochs.
Generally, optimal performance is achieved well before 200 epochs and continues to incrementally improve. No
significant overfitting is observed, so no early stopping is implemented. In fact, for many of the DNNs, training
accuracy is essentially similar to validation accuracy. Sometimes, the latter is slightly less than the former, but
typically continues to improve over training epochs. Incidentally, input quantities which are small ( ≪ 100 ) are
left as they are, whilst larger input values ( � 100 ) are better to be rescaled by appropriate division, so that the
DNN performs optimally.

Transfer learning.  With GRU layers, the input layer can take any time series length T and as long as the
number of ADE L remains the same, then the DNNGRU architecture remains the same. A longer T would
require longer training time since the time series data are processed sequentially by the DNNGRU and cannot
be parallelised. This unmodified DNNGRU architecture regardless of T allows the implementation of transfer
learning when supplying inputs of different temporal lengths T to obtain each plot point in Figs. 3, 5, 6, 7. So
with respect to each origin node i, a DNNGRU is trained completely from scratch with T = 1000 . After this
has completed, the trained weights are used as initial weights for the next shorter time series with T = 750 , and
trained for only 20 epochs instead of the full 200 epochs. This generally leads to optimised performance similar
to that from complete training with random initial weights (we carried out some tests and this is generally true),
but only takes 10% of training time. Then, the trained weights for T = 750 are used as initial weights to train a
DNNGRU for T = 500 , and so on until T = 1.

The coefficient of determination r2.  The coefficient of determination, r2 is given by

where ζij,predicted is the mean of all ζij,predicted . This imposes an exact fit of ζij,predicted = ζij,true with zero intercept,
as opposed to the correlation coefficient of a linear regression fit that allows for an unspecified intercept to be
determined from the fitting. Note that the coefficient of determination r2 can take negative values, which would
imply that the predictions are worse than the baseline model that always predicts the mean ζij,predicted (i.e.
ζij,true = ζij,predicted  , giving r2 = 0 ). Hence, r2 < 0 are not shown in the plots in Figs. 3, 5, 6, 7, as they imply that
the predictions are just so poor, they are essentially nonsensical. In contrast, r2 = 1 implies perfect predictions
(since every ζij,predicted = ζij,true).

(3)r2 = 1−

∑(
ζij,predicted − ζij,true

)2
∑(

ζij,predicted − ζij,predicted
)2 ,

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

Vardi’s expectation‑maximisation algorithm.  We present an analytical comparison between linear
regression (LR) and Vardi’s expectation-maximisation (EM), to elucidate how a switch in paradigm from trying
to infer actual whole numbers of the OD matrix to instead inferring the probabilities would lead to significant
improvements in the predictions. It is instructive to consider a directed loop for this purpose as shown in Fig. 4a,
which is also what happens when a bus picks up people from MO origin bus stops and then delivers them at MD
destination bus stops (c.f. Fig. 1d). This bus system is the subject of section “Application: bus loop service”, which
is based on the NTU shuttle bus service27.

The bus would pick up xi commuters from each of the origin bus stops ( i = 1, . . . ,MO ), and then let yj com-
muters alight at each of the destination bus stops ( j = 1, . . . ,MD ) according to ζij , which leads to Eq. (1). In
other words, everybody who alights at destination bus stop j for each j = 1, . . . ,MD comprises everybody who
boarded from each of the origin bus stops who wants to go to bus stop j. Since we can repeatedly measure all
the xi and yj as the bus loops around over time, Eq. (1) is naturally in a form where LR is directly applicable.
The OD probabilities ζij are coefficients of a multivariate system of linear equations, and the best set of values of
ζij is the one that would minimise the mean squared error of the predicted yj given the xi according to Eq. (1),
versus the measured yj.

On the other hand, Vardi7 approaches the problem differently. Instead of evaluating the OD number of com-
muters from the OD probabilities ζij , Vardi determines the actual OD whole numbers of commuters by modelling
them directly as Poisson random variables with mean �k , where k = 1, . . . ,MOMD . With the correct Poisson
parameters �k representing the mean (and variance) of each OD from some Oi to some Dj , the actual number of
people who want to go from Oi to Dj is the random variable Xk ∼ Poisson(�k).

Without loss of generality, let us fix MO = MD = 6 as in Fig. 4a. This gives the following matrix equation:

The column vector �X is the collection of all 36 possible OD for this network. More specifically, we define

with XOiDj denoting the actual number of people who go from Oi to Dj . The column vector �Y comprises the num-
ber of commuters on each of the ADE, i.e. the 11 edges that are being used in this loop: O1O2,O2O3, . . . ,D5D6 .
Explicitly,

where YO1O2 is the number of people on the directed edge O1O2 , etc. Then, A is an 11× 36 matrix that relates the
vector �X of number of people for each OD to the vector �Y of number of people on each ADE. This matrix A is
referred to as the “routing matrix”. For this loop network, we can determine A to be:

For example, the first component in Eq. (4) says that everybody picked up from O1 must go via O1O2 , regardless
of whether they are going to D1, . . . ,D6 . So Y1 = "total number of people on the directed edge O1O

′′
2 is the sum

of all the people originating from O1 . The second component says that everybody picked up from O1 and O2 must
go via O2O3 , etc., until the sixth component, which is the sum of every commuter since they must all pass via
O6D1 . Now the 7th component refers to the number of commuters on the directed edge D1D2 . Since everybody
who wants to go to D1 has alighted, they do not traverse this edge regardless of which origin they came from.
So Y7 excludes XO1D1 ,XO2D1 ,XO3D1 ,XO4D1 ,XO5D1 ,XO6D1 , and so on for the rest of the components of �Y  . This is
how the routing matrix A is constructed.

It is obvious in Eq. (4) that there are 36 unknown components of �� = (�1, . . . , �36)
T , with �X ∼ Poisson(��) .

However, there are only 11 independent equations, corresponding to each of the rows in Eq. (4). This is typical
of OD inference problems where the number of ADE that provide measurements is less than the number of OD.
Vardi’s approach is to figure out the maximum likelihood of �� from observing �Y  . The key idea of overcoming
the problem of underdetermination is to make use of moments (as well as the normal approximation given a
large sample of measured �Y ’s) to generate more and sufficient equations (details in Ref.7), leading to an iterative
algorithm that would converge to the optimal �� . Let �̄Y be the mean of all �Y  ’s which are sampled by measuring
the number of commuters at each ADE, and �S be the corresponding covariance matrix arranged as a column
vector. On top of that, let B be a matrix obtained from A where each row of B is the element-wise product of a
pair of rows of A (details in Ref.7). Note that �S and B are the result of the normal approximation and the use of
first and second order moments to generate more equations. Vardi then constructs the following augmented
matrix equation

(4)�Y = A�X.

(5)�X =
(
XO1D1 ,XO1D2 ,XO1D3 ,XO1D4 ,XO1D5 ,XO1D6 ,XO2D1 ,XO2D2 , . . . ,XO6D6

)T
,

(6)�Y =
(
YO1O2 ,YO2O3 , . . . ,YD5D6

)T
,

(7)A =





1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1
0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1





.

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

This results in an iterative algorithm for computing ��:

Here, �k , Ȳi , Si , aik , bik are the components of ��, �̄Y , �S,A,B , respectively. Once �� has been found, then we can
normalise with respect to each origin to obtain the probabilities ζij.

DNN architecture for bus loop service.  For the bus loop service, there are N buses serving the loop
of bus stops. Unlike the situation for the general complex networks, here the input data comprises number of
people on the bus after the bus leaves a bus stop, α ; and/or the duration the bus spends stopping at a bus stop, β .
In principle, we can let each input unit be the number of people on each bus, and/or the duration the bus spends
stopping at a bus stop as a second feature for the input. Nevertheless, we find that concatenating these time series
from all buses into one single long time series as the input turns out to empirically boost performance. This
perhaps arises due to complex interactions amongst the buses, viz. the number of people picked up by a leading
bus affects the remaining number of people picked up by trailing buses.

Hence for DNNGRU, the input layer comprises α and/or β , where these features are the concatenation of
the time-series of all N buses. If only α or β is used, then the input layer comprises that one single unit with a
concatenated time-series. The rest is the same as the DNNGRU architecture used for general complex networks,
viz. two hidden GRU layers with default activation each with width of 128 units, followed by an output layer with
MD units with a sigmoid activation. So the output is ζij for each destination j.

For directly classifying the rank of destination bus stop, the loss function used is sparse categorical cross
entropy, which is the standard loss function used in a classification problem with many labels. Then, an argmax
is applied to the output layer, such that the unit with the largest value is deemed as the prediction of the destina-
tion bus stop of the stipulated rank. This loss function compares the correctness of the predicted destination
bus stop with respect to the actual destination bus stop. Direct classification differs from directly regressing for
the values of ζij where the loss function used is binary cross entropy that measures the closeness of the values of
the predicted ζij from the true value. Finally in the case where dense layers are used in the direct classification,
the GRU units are simply replaced by regular densely connected feedforward layers. The input layer is not one
single feature, but comprises all values of α which is then fed into two densely connected layers each of width
128 units followed by an output layer with MD units.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.

Received: 13 August 2022; Accepted: 17 May 2023

References
	 1.	 Coates, A., Hero, A. III., Nowak, R. & Yu, B. Internet tomography. IEEE Signal Process. Mag. 19, 47–65. https://​doi.​org/​10.​1109/​

79.​998081 (2002).
	 2.	 Kruithof, J. Telefoonverkeersrekening. De Ingenieur 52, E15–E25 (1937).
	 3.	 Tebaldi, C. & West, M. Bayesian inference on network traffic using link count data. J. Am. Stat. Assoc. 93, 557–573. https://​doi.​org/​

10.​1080/​01621​459.​1998.​10473​707 (1998).
	 4.	 Bera, S. & Rao, K. V. K. Estimation of origin-destination matrix from traffic counts: The state of the art. Eur. Transp. 2011, 2–23

(2011).
	 5.	 Dey, S., Winter, S. & Tomko, M. Origin-destination flow estimation from link count data only. Sensors 20, 5869. https://​doi.​org/​

10.​3390/​s2018​5226 (2020).
	 6.	 Saberi, M., Mahmassani, H. S., Brockmann, D. & Hosseini, A. A complex network perspective for characterizing urban travel

demand patterns: Graph theoretical analysis of large-scale origin-destination demand networks. Transportation 44, 1383 (2017).
	 7.	 Vardi, Y. Network tomography: Estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91, 365–377.

https://​doi.​org/​10.​1080/​01621​459.​1996.​10476​697 (1996).
	 8.	 Van Zuylen, J. H. The information minimizaing method: Validity and applicability to transport planning. In New Developments

in Modelling Travel Demand and Urban Systems (ed. Jansen, G. R. M. et al.) (Springer, 1978).
	 9.	 Willumsen, L. Estimation of o-d matrix from traffic counts: A review. In Working Paper 99, Institute for Transport Studies, University

of Leeds (1978).
	10.	 Van Zuylen, J. H. & Willumsen, L. G. The most likely trip matrix estimated from traffic counts. Transp. Res. Part B: Methodol. 14,

281–293. https://​doi.​org/​10.​1016/​0191-​2615(80)​90008-9 (1980).
	11.	 Dey, S. & Fricker, J. Bayesian updating of trip generation data: Combining national trip generation rates with local data. Transpor-

tation 21, 393 (1994).
	12.	 Hazelton, M. L. Estimation of origin-destination matrices from link flows on uncongested networks. Transp. Res. Part B: Methodol.

34, 549–566. https://​doi.​org/​10.​1016/​S0191-​2615(99)​00037-5 (2000).
	13.	 Carvalho, L. A Bayesian statistical approach for inference on static origin-destination matrices in transportation studies. Techno-

metrics 56, 225–237. https://​doi.​org/​10.​1080/​00401​706.​2013.​826144 (2014).

(
�̄Y
�S

)
=

(
A
B

)
��.

(8)

�k ←
�k∑

i aik +
∑

i bik

×

(
∑

i

aikȲi∑
p aip�p

+
∑

i

bikSi∑
p bip�p

)
.

https://doi.org/10.1109/79.998081
https://doi.org/10.1109/79.998081
https://doi.org/10.1080/01621459.1998.10473707
https://doi.org/10.1080/01621459.1998.10473707
https://doi.org/10.3390/s20185226
https://doi.org/10.3390/s20185226
https://doi.org/10.1080/01621459.1996.10476697
https://doi.org/10.1016/0191-2615(80)90008-9
https://doi.org/10.1016/S0191-2615(99)00037-5
https://doi.org/10.1080/00401706.2013.826144

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

	14.	 Cascetta, E., Papola, A., Marzano, V., Simonelli, F. & Vitiello, I. Quasi-dynamic estimation of o-d flows from traffic counts: For-
mulation, statistical validation and performance analysis on real data. Transp. Res. Part B: Methodol. 55, 171–187. https://​doi.​org/​
10.​1016/j.​trb.​2013.​06.​007 (2013).

	15.	 Bauer, D. et al. Quasi-dynamic estimation of od flows from traffic counts without prior od matrix. IEEE Trans. Intell. Transp. Syst.
19, 2025–2034. https://​doi.​org/​10.​1109/​TITS.​2017.​27415​28 (2018).

	16.	 Balcan, D. et al. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. 106, 21484–
21489. https://​doi.​org/​10.​1073/​pnas.​09069​10106 (2009). https://​www.​pnas.​org/​conte​nt/​106/​51/​21484.​full.​pdf.

	17.	 Dragu, Vasile & Roman, Eugenia Alina. The origin-destination matrix development. MATEC Web Conf. 290, 06010. https://​doi.​
org/​10.​1051/​matec​conf/​20192​90060​10 (2019).

	18.	 Ciavarella, C. & Ferguson, N. M. Deriving fine-scale models of human mobility from aggregated origin-destination flow data.
PLoS Comput. Biol. 17, 1–18. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10085​88 (2021).

	19.	 Gunnar, A., Johansson, M. & Telkamp, T. Traffic matrix estimation on a large ip backbone: A comparison on real data. In Proceed-
ings of the 4th ACM SIGCOMM Conference on Internet Measurement, IMC ’04 149–160 (Association for Computing Machinery,
2004). https://​doi.​org/​10.​1145/​10287​88.​10288​07.

	20.	 Cho, K. et al. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:​1406.​1078
(2014).

	21.	 Grassia, M., De Domenico, M. & Mangioni, G. Machine learning dismantling and early-warning signals of disintegration in
complex systems. Nat. Commun. 12, 5190 (2021).

	22.	 Murphy, C., Laurence, E. & Allard, A. Deep learning of contagion dynamics on complex networks. Nat. Commun. 12, 4720 (2021).
	23.	 Jiang, W., Ma, Z. & Koutsopoulos, H. N. Deep learning for short-term origin–destination passenger flow prediction under partial

observability in urban railway systems. Neural Comput. Appl. 34, 4813–4830. https://​doi.​org/​10.​1007/​s00521-​021-​06669-1 (2022).
	24.	 Pamuła, T. & Żochowska, R. Estimation and prediction of the OD matrix in uncongested urban road network based on traffic

flows using deep learning. Eng. Appl. Artif. Intell. 117, 105550. https://​doi.​org/​10.​1016/j.​engap​pai.​2022.​105550 (2023).
	25.	 Ramli, M. A. et al. Improved estimation of commuter waiting times using headway and commuter boarding information. Phys. A

501, 217–226. https://​doi.​org/​10.​1016/j.​physa.​2017.​12.​022 (2018).
	26.	 NTU bus data. https://​baser​ide.​com/​maps/​public/​ntu/, Singapore public buses data: https://​datam​all.​lta.​gov.​sg/​conte​nt/​datam​all/​

en.​html (2022).
	27.	 Saw, V.-L., Chung, N. N., Quek, W. L., Pang, Y. E. I. & Chew, L. Y. Bus bunching as a synchronisation phenomenon. Sci. Rep. 9,

6887. https://​doi.​org/​10.​1038/​s41598-​019-​43310-7 (2019).
	28.	 Quek, W. L., Chung, N. N., Saw, V.-L. & Chew, L. Y. Analysis and simulation of intervention strategies against bus bunching by

means of an empirical agent-based model. Complexity 2021, 2606191 (2021).
	29.	 Vismara, L., Chew, L. Y. & Saw, V.-L. Optimal assignment of buses to bus stops in a loop by reinforcement learning. Phys. A 583,

126268. https://​doi.​org/​10.​1016/j.​physa.​2021.​126268 (2021).
	30.	 Saw, V.-L., Vismara, L. & Chew, L. Y. Chaotic semi-express buses in a loop. Chaos 31, 023122 (2021).
	31.	 Rencher, A. & Christensen, W. Methods of Multivariate Analysis. Wiley Series in Probability and Statistics (Wiley, UK, 2012).
	32.	 Chew, L. Y., Saw, V.-L. & Pang, Y. E. I. Stability of anti-bunched buses and local unidirectional kuramoto oscillators. In Recent

Trends in Chaotic, Nonlinear and Complex Dynamics 429–454. https://​doi.​org/​10.​1142/​97898​11221​903_​0016 (2021).
	33.	 The Internet Topology Zoo. http://​www.​topol​ogy-​zoo.​org/​datas​et.​html (2022).
	34.	 Watts, D. & S, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998).
	35.	 Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701. https://​doi.​org/​10.​1103/​PhysR​

evLett.​87.​198701 (2001).
	36.	 Chung, F. & Lu, L. The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. 99, 15879–15882.

https://​doi.​org/​10.​1073/​pnas.​25263​1999 (2002).
	37.	 Cohen, R. & Havlin, S. Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701. https://​doi.​org/​10.​1103/​PhysR​evLett.​90.​

058701 (2003).
	38.	 Saw, V.-L. & Chew, L. Y. No-boarding buses: Synchronisation for efficiency. PLoS ONE 15, e0230377 (2020).
	39.	 Saw, V.-L., Vismara, L. & Chew, L. Y. Intelligent buses in a loop service: Emergence of no-boarding and holding strategies. Com-

plexity 2020, 7274254 (2020).
	40.	 Cao, J., Davis, D., Wiel, S. V. & Yu, B. Time-varying network tomography: Router link data. J. Am. Stat. Assoc. 95, 1063–1075

(2000).
	41.	 Latora, V. & Marchiori, M. Is the Boston subway a small-world network?. Phys. A 314, 109–113 (2002).
	42.	 Barry, J. J., Newhouser, R., Rahbee, A. & Sayeda, S. Origin and destination estimation in New York city with automated fare system

data. Transp. Res. Rec. 1817, 183–187. https://​doi.​org/​10.​3141/​1817-​24 (2002).
	43.	 Barry, J. J., Freimer, R. & Slavin, H. Use of entry-only automatic fare collection data to estimate linked transit trips in New York

city. Transp. Res. Rec. 2112, 53–61. https://​doi.​org/​10.​3141/​2112-​07 (2009).
	44.	 Zhao, J., Rahbee, A. & Wilson, N. H. M. Estimating a rail passenger trip origin-destination matrix using automatic data collection

systems. Comput.-Aided Civ. Infrastruct. Eng. 22, 376–387. https://​doi.​org/​10.​1111/j.​1467-​8667.​2007.​00494.x (2007).
	45.	 Trépanier, M., Tranchant, N. & Chapleau, R. Individual trip destination estimation in a transit smart card automated fare collection

system. J. Intell. Transp. Syst. 11, 1–14. https://​doi.​org/​10.​1080/​15472​45060​11222​56 (2007).
	46.	 Farzin, J. M. Constructing an automated bus origin-destination matrix using farecard and global positioning system data in são

paulo, brazil. Transp. Res. Rec. 2072, 30–37. https://​doi.​org/​10.​3141/​2072-​04 (2008).
	47.	 Nassir, N., Khani, A., Lee, S. G., Noh, H. & Hickman, M. Transit stop-level origin-destination estimation through use of transit

schedule and automated data collection system. Transp. Res. Rec. 2263, 140–150. https://​doi.​org/​10.​3141/​2263-​16 (2011).
	48.	 Gordon, J. B., Koutsopoulos, H. N., Wilson, N. H. M. & Attanucci, J. P. Automated inference of linked transit journeys in London

using fare-transaction and vehicle location data. Transp. Res. Rec. 2343, 17–24. https://​doi.​org/​10.​3141/​2343-​03 (2013).
	49.	 Munizaga, M. A. & Palma, C. Estimation of a disaggregate multimodal public transport origin-destination matrix from passive

smartcard data from santiago, chile. Transp. Res. Part C: Emerg. Technol. 24, 9–18. https://​doi.​org/​10.​1016/j.​trc.​2012.​01.​007 (2012).
	50.	 Nunes, A. A., Galvão Dias, T. & Falcão e Cunha, J. Passenger journey destination estimation from automated fare collection system

data using spatial validation. IEEE Trans. Intell. Transp. Syst. 17, 133–142 (2016).
	51.	 Hora, J., Dias, T. G., Camanho, A. & Sobral, T. Estimation of origin-destination matrices under automatic fare collection: The case

study of porto transportation system. Transp. Res. Procedia 27, 664–671. In 20th EURO Working Group on Transportation Meeting,
EWGT 2017, 4–6 September 2017 (Budapest, Hungary, 2017).

	52.	 Yang, X., Lu, Y. & Hao, W. Origin-destination estimation using probe vehicle trajectory and link counts. J. Adv. Transp. 2017,
4341532 (2017).

	53.	 Li, X. et al. A hybrid algorithm for estimating origin-destination flows. IEEE Access 6, 677–687. https://​doi.​org/​10.​1109/​ACCESS.​
2017.​27744​49 (2018).

	54.	 Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. 99, 7280–7287.
https://​doi.​org/​10.​1073/​pnas.​08208​0899 (2002).

	55.	 Zhao, K., Musolesi, M., Hui, P., Rao, W. & Tarkoma, S. Explaining the power-law distribution of human mobility through trans-
portation modality decomposition. Sci. Rep. 5, 9136 (2015).

https://doi.org/10.1016/j.trb.2013.06.007
https://doi.org/10.1016/j.trb.2013.06.007
https://doi.org/10.1109/TITS.2017.2741528
https://doi.org/10.1073/pnas.0906910106
https://www.pnas.org/content/106/51/21484.full.pdf
https://doi.org/10.1051/matecconf/201929006010
https://doi.org/10.1051/matecconf/201929006010
https://doi.org/10.1371/journal.pcbi.1008588
https://doi.org/10.1145/1028788.1028807
http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/s00521-021-06669-1
https://doi.org/10.1016/j.engappai.2022.105550
https://doi.org/10.1016/j.physa.2017.12.022
https://baseride.com/maps/public/ntu/
https://datamall.lta.gov.sg/content/datamall/en.html
https://datamall.lta.gov.sg/content/datamall/en.html
https://doi.org/10.1038/s41598-019-43310-7
https://doi.org/10.1016/j.physa.2021.126268
https://doi.org/10.1142/9789811221903_0016
http://www.topology-zoo.org/dataset.html
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1103/PhysRevLett.90.058701
https://doi.org/10.1103/PhysRevLett.90.058701
https://doi.org/10.3141/1817-24
https://doi.org/10.3141/2112-07
https://doi.org/10.1111/j.1467-8667.2007.00494.x
https://doi.org/10.1080/15472450601122256
https://doi.org/10.3141/2072-04
https://doi.org/10.3141/2263-16
https://doi.org/10.3141/2343-03
https://doi.org/10.1016/j.trc.2012.01.007
https://doi.org/10.1109/ACCESS.2017.2774449
https://doi.org/10.1109/ACCESS.2017.2774449
https://doi.org/10.1073/pnas.082080899

19

Vol.:(0123456789)

Scientific Reports | (2023) 13:8287 | https://doi.org/10.1038/s41598-023-35417-9

www.nature.com/scientificreports/

	56.	 Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl. Acad. Sci. 112,
11887–11892. https://​doi.​org/​10.​1073/​pnas.​15049​64112 (2015).

	57.	 Wesolowski, A., Buckee, C. O., Engø-Monsen, K. & Metcalf, C. J. E. Connecting mobility to infectious diseases: The promise and
limits of mobile phone data. J. Infect. Dis. 214, S414–S420. https://​doi.​org/​10.​1093/​infdis/​jiw273 (2016).

	58.	 Gomez, S., Fernandez, A., Meloni, S. & Arenas, A. Impact of origin-destination information in epidemic spreading. Sci. Rep. 9,
2315 (2019).

	59.	 Grantz, K. H. et al. The use of mobile phone data to inform analysis of Covid-19 pandemic epidemiology. Nat. Commun. 11, 4961
(2020).

	60.	 Buckee, C. O. et al. Aggregated mobility data could help fight Covid-19. Science 368, 145–146. https://​doi.​org/​10.​1126/​scien​ce.​
abb80​21 (2020).

	61.	 Pepe, E. et al. Covid-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Sci. Data 7,
230 (2020).

	62.	 Cintia, P. et al. The relationship between human mobility and viral transmissibility during the Covid-19 epidemics in Italy (2021).
arXiv:​2006.​03141.

	63.	 Chollet, F. et al. Keras. https://​keras.​io (2015).

Acknowledgements
This work was supported by the Joint WASP/NTU Programme (Project No. M4082189). The GPUs at our dis-
posal for this work are RTX 2070 Super, GTX 1650 Super, GTX 1050, GTX 970, Quadro K620. We thank Andri
Pradana for letting us use his GTX 970 GPU for training our deep neural networks.

Author contributions
V.-L.S. and L.Y.C. designed research; V.-L.S. and L.Y.C performed research; V.-L.S. analysed data; V.-L.S., L.Y.C.,
L.V. and S. performed analytical study; V.-L.S. performed numerical simulations; V.-L.S. and L.Y.C. wrote the
manuscript; V.-L.S. prepared all figures, all authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​35417-9.

Correspondence and requests for materials should be addressed to L.Y.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1073/pnas.1504964112
https://doi.org/10.1093/infdis/jiw273
https://doi.org/10.1126/science.abb8021
https://doi.org/10.1126/science.abb8021
http://arxiv.org/abs/2006.03141
https://keras.io
https://doi.org/10.1038/s41598-023-35417-9
https://doi.org/10.1038/s41598-023-35417-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Inferring origin-destination distribution of agent transfer in a complex network using deep gated recurrent units
	Results
	Data measurements.
	A linear regression approach.
	DNN with supervised learning.
	Comparison amongst DNNGRU, LR, EM and other traditional methods.
	General complex networks.
	A small lattice.
	Topological effects of the complex networks.
	No overlap, partial overlap, superhighway networks.
	Real-world complex networks.

	Application: bus loop service.

	Discussion
	Scalability.
	Concluding remarks.

	Methods
	DNNGRU hyperparameters.
	Transfer learning.
	The coefficient of determination .
	Vardi’s expectation-maximisation algorithm.
	DNN architecture for bus loop service.

	References
	Acknowledgements

