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Dynamic patterns 
of electroosmosis peristaltic 
flow of a Bingham fluid model 
in a complex wavy microchannel
H. A. Hosham 1*, Esraa N. Thabet 2,3, A. M. Abd‑Alla 3 & S. M. M. El‑Kabeir 2

The purpose of this paper is to present a rigorous analysis of streamline patterns and their bifurcation 
to a viscoplastic Bingham fluid model that involves heat and mass transfer in an electroosmotic flow 
through a complex wavy microchannel. The Bingham fluid act as a solid medium in the core layer, 
which divides the channel into three distinct sections utilized to model the problem as a switched 
dynamical system between these zones. To track multiple steady states (stagnation points) and 
related trapping phenomena, we perform both analytical and numerical bifurcation analysis of each 
subsystem with respect to different physical effects such as electrical double layer thickness and 
Helmholtz‑Smoluchowski velocity. The key feature of the technique presented here is its ability to 
reveal the peristaltic transport characteristics of the Bingham fluid model in the presence or absence 
of symmetric flow properties. The primary novelty here is the ability to regulate the location and 
stability of the equilibrium points in the domain of interest. This leads to the detection of global 
bifurcations that reflect important dynamic elements of the model. Our results highlighted a new 
category of complex behavior that controls transitions between qualitatively different transport 
mechanisms, as well as a class of non‑classical trapping phenomena.

List of symbols
á , Ĥ , t̂  , ε̂i  The microchannel’s half width, transverse wall vibration of the microchannel, time, and 

amplitude of waves in fixed frame
� , c, µ , ρ , ρe  Wavelength, wave speed, dynamic viscosity of fluid, fluid density, density of the total ionic 

charge
Ŝxy , Ŝ0 , Ś , γ .  Shear stress, yield stress, viscous dissipation, and rate of shear strain
Û , V̂  , P̂ , Êx  , Êy  Velocity components, pressure in fixed frame, components of electric field Ê , respectively
Cp , K, Kŕ , σ  Specific heat, thermal conductivity, rate of chemical reaction on species concentration, and 

electrical conductivity of the fluid
T̂ , Ĉ , � , úe , Ǵ  Dimensional temperature, Concentration, electrical potential function, Helmholtz-Smolu-

chowski velocity, and normalized Joule heating term
έ , n̂+ , n̂− , ze  Electrical permittivity of ionic solution, positive and negative ions with the bulk concentra-

tion n̂0 , and z is the valency of ions, e denotes the electron charge
Dm , kB , Ta  Diffusivity of chemical species, Boltzmann constant, and average or mean temperature of 

electrolytic solution
Te , Ts , Ce , Cs  Internal temperature of the fluid, surface temperature, internal concentration of the fluid, 

and surface concentration, respectively
Dl , kr , Nd  Debye length, chemical reaction, and concentration difference parameters
Re, Br, Sc  Reynolds, Brinkman, and Schmidt numbers, respectively

The use of bio-inspired materials has been increasingly prevalent in modern engineering model improvements. 
In order to update traditional engineering systems and attain previously unheard-of levels of endurance and 
performance, a number of intricate processes have been developed using biological systems. One such process 
is peristaltic movement. The contraction and expansion of a fluid-filled, flexible, tubular structure is known as 
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peristalsis. Peristalsis has a wide variety of uses, and there are numerous researches regarding it in the  literature1–5 
Numerous physiological processes, such as bile transfer in a bile duct, semen movement in the vas deferens, 
and blood flow in tiny capillaries are governed by this idea. Both blood pumps and heart-lung devices operate 
on a similar  premise6,7.

Boosting heat transfer inside a channel is crucial to create more compact heat exchangers, which are used in 
a variety of engineering applications like cooling for electronic devices, air conditioning equipment, and ocean 
thermal energy conversion technologies. For scientists and engineers, the creation of these technologies is of 
the utmost  importance8.

Microchannel procedures produce electroosmotic fluxes, and chemical separation is used in a variety of bio-
technology  applications9–11. The field of electrokinetic transfer has seen a boom in modern fluid mechanics. The 
interaction of electrolytic fluids with external electric fields, either static or alternating, is explored experimentally 
and analytically. Charge distributions, wetted surfaces, zeta potentials, and electric double layers are just a few 
of the fascinating phenomena it exhibits. Electrokinetic encompasses a wide range of phenomena, including 
electroosmosis, electrophoresis, and diffusiophoresis (where chemical gradients are important). Electroosmosis 
in narrow micro-vessels12. Diversified bio microfluidics  systems13.

Complex peristaltic pumping or complex boundary wall wavy patterns are two more significant peristaltic 
pumping occurrences. In industry, complicated pumping phenomena are employed to increase the effectiveness 
of micro and nano pumps, particularly in the medical field. Electroosmotic flow of pseudoplastic nano liquids 
via peristaltic pumping biomimetic propulsion is causing complex wavy, curving surfaces to be studied. Complex 
wavy channel with MHD  effects14–16. electro-magneto-hydrodynamics17. Heat and mass transfer in complicated, 
wavy microchannels of microvascular blood  flow18, and some literatures were  found19–24.

A branch of non-Newtonian fluids known as viscoplastic materials has a yield stress threshold for the applied 
stress. The material deforms as a viscous fluid for applied stresses greater than the yield stress; for applied forces 
less than the yield stress, the material behaves as a rigid solid. The phrase “viscoplastic materials” in this context 
often refers to substances that solely have viscous and plastic qualities. The first and simplest model is the Bing-
ham  fluid25. Numerous engineering applications, including petroleum engineering, the discharge of groundwater 
into aquifers, and MHD generators, require a thorough understanding of Bingham fluid  flow26–28.

When parameters are altered or when variables and processes interact, dynamic systems theory outlines 
methods for analysing stability and changes in a system’s overall  structure29–32. With the help of this method, you 
may identify the dynamics of fluid physical events and gain a better knowledge of the behaviour of the system as a 
whole. Regarding this, stability and bifurcation theory for streamline patterns has recently been created in order 
to offer critical insights for regulating and recognizing fluid transport mechanisms in specific classes of fluid-
mechanical  systems33,34. There have been several attempts to discuss the structural bifurcations and associated 
stagnation spots for two-dimensional incompressible flow, with the flow supposedly being explicitly represented 
by a polynomial  form35,36. The streamline patterns and bifurcations around the stagnation (equilibrium) regions 
of peristaltic flow of various biological fluids are  explored37–39, they determined the important qualitative aspects 
of the peristaltic flow, such as “bolus” (or “trap”) on the assumption that the flow motion shape was produced 
by a uniform channel.

In this paper, we focus on the topology of streamlines in a viscoplastic Bingham fluid model that includes 
heat and mass transfer in an electroosmotic flow through a complex wavy microchannel, especially on issues 
about bifurcations and stability, which are used to predict flow phenomena in streamline patterns when physical 
parameters are changed. The Bingham fluid (which exhibits the dual behaviour of a fluid and a solid) channel 
has one plug region and two distinct non-plug regions in the wave frame. Because the flow behavior in the plug 
region is constant, the nonlinear switched dynamical system is formed by connecting the obtained expression of 
the stream function with velocity fields in two distinct non-plug regions. The equilibrium points of each subsys-
tem are calculated analytically and numerically, and a bifurcation analysis of these points is performed to show 
how topological characteristics change as one or more physical parameters are changed. The equilibrium point is 
classified as admissible or virtual depending on whether it is within or outside the domain of validity. The transi-
tion of virtual to admissible equilibrium points and the possibility of bifurcation in each domain independently 
are obtained. A heteroclinic connection is formed when a streamline connects two or more saddle-points. The 
use of heteroclinic connections in a subsystem or a full system has the advantage of completely trapping the 
flow between the orbits of the connection. If a heteroclinic connection exists, the distance between two saddle 
points is used to determine the minimum (or maximum) trapping zone limits. The bifurcation results are used 
to explain the effect of various physical parameters on fluid flow behaviors, such as flow rate, plug region size, 
electrical double layer thickness, and Helmholtz-Smoluchowski velocity.

The paper is structured as follows: Sect. “Mathematical configuration” explains the mathematical formulation 
of the viscoplastic Bingham fluid model and its potential applications. Section “Explicit analytical solutions” 
provides closed form solutions for the stream and potential functions, as well as particle concentration and 
temperature distribution. Section “Bifurcations of equilibria and nonlinear behavior” describes the details of 
the formed dynamical system, and analytical formulas for the position and nature of the equilibrium points in 
a specific scenario are obtained. Section “Results and discussion” describes the numerical bifurcation analysis 
approach that is used to analyze the model’s actual scenario. Section “Conclusions” discusses the impact of dif-
ferent physical parameters on fluid flow behaviors and presents the results of numerical bifurcation analysis.

Mathematical configuration
Geometric structure. The electroosmosis peristaltic transport flow is described using a complex wavy 
two-dimensional microchannel. An externally supplied electric field is used through this channel to adjust the 
electroosmotic flow of an aqueous ionic solution in a non-Newtonian fluid (Bingham viscoplastic fluid), see 
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Fig. 1. Viscous dissipation and joule heating are also considered. A mathematical model of wall  deformation17,18 
is shown below.

where ε̂i needs to fulfil the condition 
∑m

i=1 ε̂i ≤ á.
Bingham fluid is a viscoplastic fluid, a type of non-Newtonian fluid in which the flow field is divided into two 

regions: an un-yielded zone in which the fluid is at rest or undergoes stiff motion, and a yielded zone in which 
the fluid flows like a viscous liquid. In the un-yielded zone, the second invariant of the extra stress tensor is less 
than or equal to the yield stress and a constitutive relation is undefined. In the yielded region, this invariant 
exceeds the yield stress and a constitutive relation exists for the extra stress tensor. Thus, the location and shape 
of the yield surface(s), i.e. the interface between these two sets, is also a part of the solution of flow problems of 
such fluids. Viscoplastic fluids occur in various chemical, metal, and food industries, e.g., margarine, mayonnaise 
and ketchup. The constitutive equation of an incompressible Bingham fluid is based on the assumption that the 
fluid remains at rest or moves as a rigid body if the second invariant of the extra stress tensor Sxy is less than or 
equal to the yield stress S0.

The constitutive  equation18,25 that is required to describe a Bingham model is:

where Ŝ0 represents yield stress and ̂̇γ  represents the rate of strain tensor. As a direct consequence, the Bingham 
fluids act as a solid medium in the core layer.

Bingham fluid applications. The hypothetical viscous fluid has a yield strength that needs to be exceeded 
before it may flow. A lava channel, for example, is defined as a stream of flowing lava contained within zones of 
static (i.e., solid and motionless) lava or lava levees. Levees may not exist in the original channel until the paren-
tal flow settles over what forms the channel and produces natural levees. Therefore, lava behaves as a multiphase 
non-Newtonian fluid, for example  see40. In this context, most lava flows are obvious applications of Bingham 
fluids. additionally, Bingham Fluid can be designed as the interaction of blood’s non-Newtonian nature and its 
flow through arteries, such as microvascular blood flow through a complex wavy microchannel,  see10,18.

Governing equations. The governing equations that serve as guiding principles for electroosmotic fluid 
 flow18 are given by:

(1)Ĥ
(
X̂, t̂

)
= á+

m∑

i=1

ε̂i sin

(
2iπ

�

(
X̂ − ĉt

))
, m ∈ Z+

.

(2)Ŝxy =
{
Ŝ0 + µ̂̇γ ; Ŝxy ≥ Ŝ0,

Ŝ0; Ŝxy < Ŝ0,

(3)∂Û

∂X̂
+ ∂V̂

∂Ŷ
= 0,

Figure 1.  The geometric representation of electroosmosis flow is depicted in a microchannel resembling a 
wave.
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where, De = ∂

∂ t̂
+ Û ∂

∂X̂
+ V̂ ∂

∂Ŷ
 is the differential operator. The variables and parameters used in the preceding 

system are defined in List of symbols section. Due to the presence of an electric double layer (EDL) in the micro-
channel, the electric potential is calculated using the Poisson  equation12, which can be expressed as:

such that ρe = ze
(
n̂+ − n̂−

)
.

In this context, the Nernst-Planck equation for ionic number distribution is utilized to assess potential dis-
tribution as follows:

We introduce the following set of non-dimensional variables and parameters to help get explicit analytical 
solutions to the governing equations.

Explicit analytical solutions
Debye-Huckel modifies the Poisson equation as follows:

where, Dl = aze
√

2n0
έTakB

 . Additionally, the dimensionless quantities (10) allow for a reduction of the Nernst-
Planck Eq.  (9) to establish the ionic distribution as follows:

Solving the above equation with the associated conditions ( ∂n±
∂y = 0  at   ∂�

∂y = 0 ), and ( n± = 1 at � = 0 ) 
we obtain:

Thus, the Eq.  (11) becomes

(4)ρDeÛ = − ∂P̂

∂X̂
+ ∂ ŜX̂X̂

∂X̂
+ ∂ ŜX̂Ŷ

∂Ŷ
+ ρeÊx ,

(5)ρDeV̂ = − ∂P̂

∂Ŷ
+ ∂ ŜX̂Ŷ

∂X̂
+ ∂ ŜŶ Ŷ

∂Ŷ
+ ρeÊx ,

(6)ρCpDeT̂ = K

(
∂2T̂

∂X̂2
+ ∂2T̂

∂Ŷ2

)
+ Ś + σ

(
Ê.Ê

)
,

(7)DeĈ = Dm

(
∂2Ĉ

∂X̂2
+ ∂2Ĉ

∂Ŷ2

)
+ KŕĈ.

(8)∇2�̂ = −ρe

έ
,

(9)Den̂± = Dmze

kBTa

[
∂

∂X̂

(
n̂±

∂�̂

∂X̂

)
+ ∂

∂Ŷ

(
n̂±

∂�̂

∂Ŷ

)]
+ Dm

(
∂2n̂±
∂X̂2

+ ∂2n̂±
∂Ŷ2

)
.

(10)

x = x̂

�
, y = ŷ

á
, t = t̂c

�
, u = û

c
,

v = v̂

δc
, h = Ĥ

á
, ε = ε̂

á
, , Re = ρcá

µ
, δ = á

�
, Sxy =

ŜX̂Ŷ á

µc
,

S0 =
Ŝ0á

µc
, p = P̂á2

µ�c
,

θ = T − Ts

Te − Ts
, φ = C − Cs

Ce − Cs
, � = ze�̂

kBTa
, Ś = sxy

∂u

∂y
,

Ǵ = σ Ê2x á
2

K(Te − Ts)
, Br = µc2

K(Te − Ts)
, kr =

Krá
2

ν
,

Sc =
ν

Dm
, Nc =

Cs

(Ce − Cs)
, úe = −Exρέ

µc
, n = n̂

n0

(11)
∂2�

∂y2
= −Dl

2
(n+ − n−).

(12)
∂2n±
∂y2

± ∂

∂y

(
n±

∂�

∂y

)
= 0.

(13)n± = exp (∓�).



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8686  | https://doi.org/10.1038/s41598-023-35410-2

www.nature.com/scientificreports/

The above equation can be linearized using low-zeta potential approximation (i.e, sinh (�) ≃ � ), as:

The potential function is obtained as a explicit solution of Eq.  (15) subject to the boundary conditions 
( 0 = ∂�

∂y |y=0 and 1 = � |y=h ) as:

The governing Eqs. (1)-(7) for electroosmotic fluid flow are reduced to non-dimensional forms using the 
dimensionless quantities (10), lubrication theory, low Reynolds, and large wavelength approximations, as follows:

Physical boundary conditions for temperature, concentration, and velocity are imposed  as18:

The axial velocity is determined by solving the Eq. (20) with boundary conditions (24) as follows:

The solution for the normalized temperature distribution is found by solving Eq. (22) and using the associ-
ated boundary conditions (24) as follows:

where (to simplify, use Dp = ∂p
∂x ),

(14)
∂2�

∂y2
= Dl

2 sinh (�).

(15)
∂2�

∂y2
= Dl

2�.

(16)� =
cosh

(
Dly

)

cosh (Dlh)
.

(17)h(x, t) = 1+
m∑

i=1

εi sin (2iπ(x − t)),

m∑

i=1

εi ≤ 1

(18)sxy =
{

S0 + ∂u
∂y , sxy ≥ s0,

s0, implicit that ∂u
∂y = 0 sxy < s0,

(19)
∂u

∂x
+ ∂v

∂y
= 0,

(20)
∂sxy

∂y
= ∂p

∂x
− D2

l úe
cosh

(
Dly

)

cosh (Dlh)
,

(21)
∂p

∂y
= 0,

(22)
∂2θ

∂y2
= −Ǵ − BrŚ,

(23)
∂2φ

∂y2
= krSc(φ + Nd).

(24)
sxy |y=0 = u |y=h=

∂θ

∂y
|y=hpl= 0, sxy |y=hpl= s0

θ |y=h = φ |y=hpl= 1, φ |y=h= 0.

(25)
u = úe

(
1− cosh

(
Dly

)

cosh (Dlh)
+ Dl

(
y − h)

) sinh
(
Dlhpl

)

cosh (Dlh)

)

+ 1

2

∂p

∂x

(
y2 − h2

)
− hpl

∂p

∂x

(
y − h)

)
, hpl ≤ y ≤ h

(26)θ = C4y
4 + C3y

3 + C2y
2 + C1y + C0,
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Further solving Eq. (23) with the subject to the boundary conditions given Eq.(24) yields,

where α1 = krSc and α2 = krScNd.

Bifurcations of equilibria and nonlinear behavior
The main goal of this section is to describe and control the nonlinear behavior of all flow modes using dynamical 
system theory and state space simulations. The equations of motion of individual fluid particles in a two-dimen-
sional flow can be written in classical form, with the stream function acting as the Hamiltonian switched dynami-
cal system. The following regions are defined based on the problem formulation and stage configuration flow. 

(a) Upper region of non-plug flow �1 := {
(
x, y

)
∈ R

2 | hpl ≤ y ≤ h
(
x, y

)
}.

(b) Plug flow region �2 := {
(
x, y

)
∈ R

2 | 0 ≤ y ≤ hpl}.
(c) Lower region of no-plug flow �3 := {

(
x, y

)
∈ R

2 | y ≤ 0}.

Thus, for the vector ξ ∈ R
2 , the switching lines are defined by y = hpl and y = 0 and the vector fields fi(ξ ,ϑ) are 

smooth functions on the corresponding region �i , i=1,2,3. The switching system is characterized as:

where ϑ ∈ R
d is a d-dimensional parameter space and ξ =

(
x, y

)T ∈ R
2 . It should be emphasized that no 

dynamics occur for any ξ ∈ �2 since the fluid velocity is considered to be constant (i.e., f2(ξ ,ϑ) = c ) through-
out any cross-section of the channel perpendicular to the channel axis, which means that all particles in a 
given cross-section in �2 have same velocity and direction of motion. Further, for all ξ ∈ �3 the vector filed 
f3(ξ ,ϑ) = f1(ξ ,ϑ) |hpl=0.

The equilibrium points (or stagnation points) are the solution points ξ̄ in a flow field where the local velocity 
ξ̇ of the fluid found to be zero. The classification of equilibria into admissible, virtual, and boundary points is 
critical for capturing the system’s dynamic.

Definition 1 Assume that P̌ ∈ R
2 is a equilibrium point of the system (27), then 

(a) If P̌ ∈ �i and Fj |P̌= 0 for any i = j , i, j = 1, 2, 3 , then P̌ is referred as an admissible(valid) point.
(b) If P̌ ∈ �i and Fj |P̌= 0 for any i  = j , i, j = 1, 2, 3 , then P̌ is referred to as a virtual point (because it is not 

located in its associated region).
(c) If P̌ := {x ∈ R

2 | y = hpl and f1(P̌) = 0} or P̌ := {x ∈ R
2 | y = 0 and f3(P̌) = 0} , then P̌ is referred to a 

boundary point.

C0 =
1

12Dl
2(cosh (hDl))

2

((((
3 ú2e + hDp

2
(
h3 − 2 h2hpl + 2 hpl

3
))
Br

+12+ 6 Ǵh2 − 12 hǴhpl

)
Dl

2 + 48Br Dpúe

)
(cosh (hDl))

2

+ 2Br Dp

(
hDl

(
−12+

(
−3 hpl

2 + h2
)
Dl

2
)
sinh

(
hplDl

)

−12Dl

(
h− 0.5 hpl

)
sinh (hDl)− 6Dl sinh

(
yDl

)
hpl

+6Dl
2hpl cosh

(
hplDl

)
h− 24 cosh

(
yDl

))
úe cosh (hDl)

− 3Dl
2Br

((
−2 hDl cosh

(
hplDl

)
− 4 sinh

(
yDl

)

+4 sinh (hDl)) sinh
(
hplDl

)
+

(
cosh

(
yDl

))2 + hDl
2
(
−2 hpl + h

))
ú2e

)
,

C1 =
1

6Dl(cosh (hDl))
2

(
6 hpl

(
−1/6Dp

2Br hpl
2 + Ǵ

)
Dl(cosh (hDl))

2

+3Br Dpúe
((
4+ Dl

2hpl
2
)
sinh

(
hplDl

)

+4 sinh
(
yDl

)
− 2Dl cosh

(
hplDl

)
hpl

)
cosh (hDl)

−3Dl
2Br ú2e

(
cosh

(
hplDl

)
sinh

(
hplDl

)
+ hplDl

))

C2 =
−2G cosh2 (hDl)+ Dl

2Br ú2e

4(cosh (hDl))
2

, C4 = − 1

12
BrDp,

C3 =
DpBr

(
Dphpl cosh (hDl)− Dl sinh

(
hplDl

)
úe
)

6 cosh (hDl)
.

φ = 1

α1 sinh
(√

α1
(
h− hpl

))
(
−α2 sinh

(√
α1
(
h− hpl

))
+ (α1

+α2) sinh
(√

α1
(
h− y

))
+ α2 sinh

(√
α1
(
y − hpl

)))
.

(27)ξ̇ =
{

f1(ξ ,ϑ), ξ ∈ �1,
f2(ξ ,ϑ), ξ ∈ �2,
f3(ξ ,ϑ), ξ ∈ �3,
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Switches between distinct types of dynamical behavior may be performed by describing the transition of 
virtual to admissible equilibrium points, as well as the possibility of bifurcation in each domain independently.

It is beneficial to consider a specific situation in order to fully comprehend the basic flow motion through 
the wavy channel. Hence, we consider the flow mode when úe = 0 and therefore the two-dimensional flow is 
defined by stream function as:

where ∂pc
∂x = −3

(
q+h−hpl

)
(
h−hpl

)3  . Hence, the vector fields of the dynamical system (27) is identified as:

The identification of equilibrium points and the study of their stability is an important step in the analysis 
of fluid dynamics. The equilibrium points of the vector fields (29) can be derived by setting f1(ξ ,ϑ) = 0 and 
f2(ξ ,ϑ) = 0 . Then, by solving the obtained system of nonlinear equations, the equilibrium point are obtained as:

where h̄ is evaluated at the point x̄ . The values of x̄ which represent the solutions of ẋ = 0 is more complicated. 
One possible solution is given by setting ∂h

∂x = 0 , i.e., x̄ is the solution of

For instance, let m = 2 , then the above equation becomes

which has a solution

Note that if m ≥ 3 , it is difficult to find the zeros of the function (31) explicitly, we can compute the values 
of x̄ using various numerical methods, such as the Newton method. Figure 2 shows that the nonlinear behavior 
of the function (31), whose roots are observed as x-intercepts, occurs at x-values where the function value is 0. 

(28)�c =






1
6

∂pc
∂x

�
h− y

�2�
2h+ y − 3hpl

�
− y + h+ q, y ∈ �1,

cy, y ∈ �2,
1
6

∂pc
∂x |hpl=0

�
h− y

�2�
2h+ y

�
− y + h+ q, , y ∈ �3,

(29)

f1(ξ ,ϑ) =




− 1
2
∂pc
∂x

�
h− y

��
h− 2 hpl + y

�
− 1

∂h
∂x

�
∂pc
∂x

�
h− y

��
hpl − y − h

�
− 1

�
+

1
6
∂2pc
∂x2

�
h− y

�2�
3hpl − 2h− y

�


, f2(ξ ,ϑ) =

�
c
0

�
, f3(ξ ,ϑ) = f1(ξ ,ϑ) |hpl=0 .

(30)ȳ = ±
h̄− hpl√

3

√√√√3q+ h̄− hpl

q+ h̄− hpl
+ hpl ∈ �1, ȳ = ± h̄√

3

√
3q+ h̄

q+ h̄
∈ �3

(31)
m∑

i=1

2π iεi sin (2π ix) = 0

ε1 cos (2π x)+ 2 ε2 cos (4π x) = 0

x̄ = 1

2π
arccos

(
−ε1 +

√
ε12 + 32 ε22

8ε2

)
, x̄ = 1

2π

(
π + arccos

(
ε1 +

√
φ1

2 + 32 ε22

8ε2

))
.

Figure 2.  Nonlinear behavior of the function (31) and its x-roots.
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It should be noted that the boundary points are deduced as LP =
(
x̄, hpl

)
 and LP = (x̄, 0) . Figure 3a illustrates the 

location of admissible and virtual equilibrium points in a specific situation.
The linearization of generalized system (27) at the point LP =

(
x̄, ȳ

)
∈ �1 ( or LP ∈ �3 ) is given by

such that if úe = 0 , then � = �c . We note that trace(J) = 0 and det(J) = �xx�yy −�2
yx for all points 

(
x̄, ȳ

)
∈ R . 

Thus, the equilibrium point LP is either a saddle or a center for the Hamiltonian system (27) iff det(J) < 0 or 
det(J) > 0 , respectively. If det(J) = 0 , the point LP becomes degenerate equilibrium point.

The configuration of the possible bifurcation of the above explicit formulas of equilibrium point is sufficient 
to report the most of the significant different flow behavior that may occur in this situation. It is clear in Fig. 3b 
that the center points generate fluid boluses around them, and the saddle points connection in the context of 
the existing heteroclinic curve forms a trapping zone.

In general situation, úe �= 0,

(32)J =
(

�xy �yy

−�xx −�yx

)

(x̄,ȳ)
,

Figure 3.  The location of equilibrium points, admissible point symbol ∗ and virtual point symbol ◦ and the 
dynamic behavior that surrounds admissible points, when úe = 0, hpl = 0.3, q = −0.123,φ(j) = �5

j=1

4j
100

.
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where

We are unable to proceed with the explicit bifurcation analysis of the above vector fields due to their high 
level of nonlinearity. Therefore, in the following section, we will extend our analysis of bifurcation using an 
efficient numerical technique.

Numerical bifurcation analysis. Numerical analysis is an important tool in dealing with nonlinear bifur-
cation problems in various biological and physical systems. One of the main advantage of this approach is that it 
is used to measure the steady-state curves for an undetermined system of equations.

The solutions to the following piecewise nonlinear system are helpful in determining all potentially admis-
sible, virtual, boundary, and degenerate equilibrium points, as well as their bifurcation.

A nonlinear system F
(
x, y,ϑ

)
= 0 may have an infinite or finite number of roots, and these roots can be 

extremely sensitive to small changes in one or more parameters of ϑ . Therefore, the main idea is to present an 
optimal technique for computing all roots of F

(
x, y,ϑ

)
 and detecting various types of behavior around these 

roots, resulting in a complete picture of various multiphase (i.e. in �1 and �3 ) flow behaviors.
It should be noted that there is no equilibrium point for the system ξ̇ = f2

(
x, y,ϑ

)
, y ∈ �2 . However, some 

virtual points for the system (35) can be located in the domain of �2 (see for example Fig. 3b). As a first stage in 
computing the equilibrium points, a fixed � is chosen to be a sector-like domain, which is defined as: 
� = �1 ∪�2 where �1 = {

(
x, y

)
∈ R

2, | a ≤ x ≤ b, y ∈ �1} and �2 = {
(
x, y

)
∈ R

2, | a ≤ x ≤ b, y ∈ �3} . This 
implies that the sector � shears the same domain along the x-axis, weher a, b ∈ Z . According to numerical 
domain decomposition, limiting the size of the solution domains improves computational efficiency and reduces 
the amount of computing effort necessary to solve the system (35). Then these real intervals of interest �1 and 
�2 will further divide into finite sub-intervals based on nonlinear system behaves at different regions (i. e., the 
sub-intervals are not necessarily equidistant) as: �1 = [�m−1

1 ,�m
1 ] and �2 =

[
�n−1

2 ,�n
2

]
, m,n ∈ Z+ . Then, 

in each subinterval �1 and �2 , we use Newton’s iterative technique to solve the two system (35) independently, 
and the explicit equilibrium points (30) are considered an initial guess. Finally, we use the Matlab package (Mat-
Cont)for numerical bifurcation analysis to classify the output equilibrium points and calculate their linear stabil-
ity and related  bifurcation39).

Results and discussion
In this section, we discuss the impact of different physical parameters on fluid flow behaviors using numerical 
bifurcation analysis.

Trapping phenomenon: Based on a dynamical examination of flow behavior around equilibrium points, this 
phenomenon can be discovered in two scenarios, namely local and global modes of system behavior. The flow is 
trapped in terms of local mode when the system (35) has center points (closed orbits) that cause the streamline 
to split to enclose a bolus of fluid particles. In general, the global mode is defined as structural changes in the 
characteristic frame that cannot be identified when examining the stability of equirbira by computing the eigen-
values of the associated Jacobian. A heteroclinic connection is a type of global mode formed when a streamline 
connects two or more saddle-points. One advantage of using heteroclinic connections in such a system is that 
the flow is completely trapped between the connection orbits. Furthermore, the distance between two saddle 
points for a heteroclinic connection is used to determine the minimum and maximum limits of the trapping 
zone. In all subsequent computations, we consider the amplitude of the various waves to be ε = �5

j=1

3.4j
100

 . In this 
context, Fig. 4 depicts the largest invariant curve connecting two distances of saddle points, which establishes 
the maximum trapping zone.

(33)� =






úe

�
0.5Dl

2(h−y)
2
sinh

�
Dlhpl

�
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�
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(
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)
=

{
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(
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)
= 0, if y ∈ �1,

f3(x, y,ϑ) = 0, if y ∈ �3,
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The plug flow region �2 is identified and controlled by the parameter hpl . Hence, we discuss how changes 
in the parameter hpl affect the flow behavior in the upper region of the channel due to changes in the location 
and stability of the equilibrium points. At hpl = 0.1 and keeping all the parameters fixed, as shown in Fig. 4. 
In Fig. 5a, we notice that the flow behavior in region �1 changes due to the presence of a plug flow region and 
the heterocilinic connection between the upper and lower regions of the channel is destroyed, resulting in two 
distinct trapping regions, although the flow behavior in region �3 remains unchanged. When the parameter hpl 
is increased to hpl = 0.3 , two distinct heterocilinic connections emerge in the upper region, and the size of the 
trapping bolus is reduced, see Fig. 5b.

By taking the Debye length Dl (i.e., the electrical double layer thickness) as a bifurcation parameter (all 
other parameters fixed as úe = 1, hpl = 0.2, q = −0.18366 ), It is seen in Fig. 6 increasing the value of Dl causes 
some equilibrium points to vanish (disappear), while others points move to become boundary points. The fixed 
parameters of the system are given as: úe = 1, hpl = 0.2, q = −0.18366 , where Fig. 6a is created with Dl = 3.0 
while Fig. 6b is created with Dl = 5.0 . This explains why the boluses are initially reduced in size and then vanish 
as the value of Dl increases, i.e., the trapping zone does not occur with a large value of Dl.

Figure 4.  The maximum trapping zone occurs when úe = Dl = 1, hpl = 0.0, q = −0.18366.

Figure 5.  The impact of the parameter hpl on channel flow behavior in �1 , keeping all of the parameters with 
Fig. 4 fixed. (a) At hpl = 0.1 , the heteroclinic connection between �1 and �3 is terminated. At hpl = 0.3 , two 
distinct heteroclinic connections appear in �1 , and the trapping bolus size is reduced.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8686  | https://doi.org/10.1038/s41598-023-35410-2

www.nature.com/scientificreports/

Following that, we show how different Helmholtz-Smoluchowski velocity úe variations affect flow behavior in 
the upper and lower regions of the channel in terms of bifurcation of equilibrium points. At hpl = 0 , the channel 
becomes symmetric on either side of the x-axis. In addition, depending on whether the Helmholtz-Smoluchowski 
velocity parameter is negative or positive, the electrical field acts in the positive axial direction or is oriented in 
the reverse x-direction. The maximum trapping zone is shown in Fig. 7a and b, but the configuration of bolus 
dynamics inside this zone differs depending on whether úe is positive or negative. When úe = −5 , the size of 
boluses increases noticeably, whereas when úe = 5 , the size of boluses decreases. When hpl = 0.2 , the flow in 
channel becomes asymmetric on both sides of the x-axis, see Fig. 7c and d. Further, the upper row of boluses 
converts to a family of heteroclinic connections that form a family of trapping zones that vary in size depending 
on whether úe is negative or positive, whereas the lower row of boluses does not change.

Temperature fields in �1 and �3 are determined of an interesting situation when the flow is trapped in both 
regions using the same parameters as shown in Fig.5 (i.e., úe = Dl = 1, hpl = 0.2, q = −0.18366 ). The contour of 
the temperature field across the microchannel is shown in Fig. 8a–c for negative, zero, and positive values of Joule 
heating term Ǵ and the Brinkman number is fixed Br = 1.0 ( whereas Fig. 8d holds for Ǵ = 1.0 and Br = 0.5 ) 
as the clarification of the changing and periodic temperature fields evolves to a nation of periodic dynamics. 
Fig. 9 depicts the fluid concentration behavior when the Schmidt number, chemical reaction, and concentration 
difference parameters are varied.

Conclusions
The qualitative aspects of an electroosmotic peristaltic Bingham fluid model, specifically geometrical properties 
of flow fields such as bifurcation and the stability of its streamline patterns, are investigated. This model simulates 
the effect of heat and mass transfer on Bingham fluid flow through a complex wavy microchannel influenced by 
electroosmosis. The following are the key results of the current study:

• Analytical and numerical bifurcation analysis is used to systematically identify dynamic behavior and char-
acterize fluid flow to reveal associated physical phenomena.

• Our results indicate that heteroclinic connections to saddle points are the primary cause of the trapping 
phenomenon in two scenarios, namely the presence or absence of symmetric flow.

• The non-uniform geometry caused by the plug region and varying amplitude ratio parameters has a signifi-
cant impact on the trapping phenomenon.

• We assert that the trapping zone does not exist with a large Debye length Dl because the model’s equilibrium 
points vanish (disappear) or become boundary points.

• The impact of Helmholtz-Smoluchowski velocity úe has been demonstrated in a case with interesting and 
complex behavior. The flow, for example, generated a maximum trapping zone; our bifurcation findings 
explain why the configuration of the bolus dynamics within this zone varies depending on whetherúe is 
positive or negative.

Figure 6.  The effect of the Debye length parameter Dl on trapped flow behavior ( úe = 1, hpl = 0.2, q = −0.18366 ): 
(a) Dl = 3 and (b) Dl = 5.
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• A parametric study is carried out to evaluate the effect of the Joule heating term, chemical reaction, and 
the Brinkman and Schmidt numbers on the temperature field contour across the microchannel and fluid 
concentration behavior.

Figure 7.  The effect of Helmholtz-Smoluchowski velocity úe on trapped flow behavior ( Dl = 1.1, hpl = 0.0, q = −0.25 ): 
at hpl = 0 (a)úe = −5 and (b)úe = 5 and at hpl = 0.2 (c) úe = −5 , (d) úe = 5.
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Figure 8.  The contour of the full temperature field at úe = Dl = 1, hpl = 0.1, q = −0.18366 : for Br = 1.0 and 
varying Ǵ as (a) Ǵ = −1 (b) Ǵ = 0.0 (c) Ǵ = 1 , whereas (d) holds for Ǵ = 1.0 and Br = 0.5.
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