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Identification of the molecular 
subtypes and construction of risk 
models in neuroblastoma
Enyang He 1,3, Bowen Shi 1,3, Ziyu Liu 1,3, Kaili Chang 1,3, Hailan Zhao 1,4, Wei Zhao 1,4 & 
Hualei Cui 1,2*

The heterogeneity of neuroblastoma directly affects the prognosis of patients. Individualization 
of patient treatment to improve prognosis is a clinical challenge at this stage and the aim of this 
study is to characterize different patient populations. To achieve this, immune-related cell cycle 
genes, identified in the GSE45547 dataset using WGCNA, were used to classify cases from multiple 
datasets (GSE45547, GSE49710, GSE73517, GES120559, E-MTAB-8248, and TARGET) into subgroups 
by consensus clustering. ESTIMATES, CIBERSORT and ssGSEA were used to assess the immune 
status of the patients. And a 7-gene risk model was constructed based on differentially expressed 
genes between subtypes using randomForestSRC and LASSO. Enrichment analysis was used to 
demonstrate the biological characteristics between different groups. Key genes were screened using 
randomForest to construct neural network and validated. Finally, drug sensitivity was assessed 
in the GSCA and CellMiner databases. We classified the 1811 patients into two subtypes based on 
immune-related cell cycle genes. The two subtypes (Cluster1 and Cluster2) exhibited distinct clinical 
features, immune levels, chromosomal instability and prognosis. The same significant differences 
were demonstrated between the high-risk and low-risk groups. Through our analysis, we identified 
neuroblastoma subtypes with unique characteristics and established risk models which will improve 
our understanding of neuroblastoma heterogeneity.

Neuroblastoma, a tumor of sympathetic origin, is the most common extracranial solid tumor in early childhood. 
Neuroblastoma account for 7–8% of childhood malignancies with a heterogeneous clinical course from local 
or spontaneous regression to extensive metastatic  disease1. The etiology of the disease is complex and diverse, 
with multiple signaling pathways involved. The mammalian target of rapamycin (mTOR) pathway promotes 
neuroblastoma cell survival and  chemoresistance2. The WNT signaling pathway, on the other hand, increases 
MYC levels in patients without MYCN  amplification3. Additionally, the ALK signaling pathway is the primary 
oncogene target pathway in sporadic and familial neuroblastoma  cases4.

As we all know, unrestricted proliferation is a common feature of malignant tumors and is closely related to 
cell cycle  dysregulation5. The cell cycle is a complex process that contains four phases: Gap 1 (G1), DNA-synthesis 
(S), Gap 2 (G2) and mitosis (M). Cell cycle proteins and cell cycle protein-dependent kinases (CDK) regulate the 
progression of cell cycle  phases6. At the same time, whether each cell cycle event is completed, correctly or not, 
is subject to a cellular checkpoint monitoring  mechanism7. The DNA damage response and the Mitotic Spindle 
Checkpoint play a key role in maintaining the health of the organism. As known, the p53 tumor suppressor 
is involved in multiple cell cycle  checkpoints8. And abnormalities in p53 can lead to cancer development and 
progression through multiple  pathways9.

Abnormalities in cell cycle-related mechanisms likewise play an important role in the onset and develop-
ment of neuroblastoma. Increased MYCN copy number was detected in 25% of patients with  neuroblastoma10, 
which was strongly associated with an unfavorable clinical  prognosis11. Meanwhile, MYCN can accelerate cell 
 proliferation12, which may be related to cell cycle protein-dependent kinase 4 (CDK4)13. For patients with neu-
roblastoma without MYCN amplification, it is more likely to exhibit chromosomal alterations and again leads 
to poor prognostic  outcomes14. This may be related to the absence of a common region that codes a series of 
proteins that play a role in the DNA damage response (DDR)15. As the research becomes more in-depth, chromo-
some instability plays an important role in the development and progression of the  disease16. Study found that 
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unbalanced loss of heterozygosity (LOH) in chromosome 11q and LOH in chromosome 1p36 are independ-
ent risk factors for poor prognosis in patients with  neuroblastoma17. 17q gain was also associated with poorer 
overall survival (OS)14. Chromosomal instability has also been observed during early human  embryogenesis18. 
However, the underlying mechanism ensures that the cell cycle proceeds correctly. Therefore, understanding the 
mechanisms involved in the cell cycle is crucial to our understanding of neuroblastoma.

Various etiologies lead to the variability among individual patients. The heterogeneity of patients poses a great 
challenge for individualized treatment. In order to evaluate patients for stratification to guide treatment, clas-
sification methods based on multiple biological indicators have been proposed and applied. Stage, age, histologic 
category, grade of tumor differentiation, the status of the MYCN oncogene, chromosome 11q status, and DNA 
ploidy were used as the classification basis for the International Neuroblastoma Risk Group Staging  System19. 
Segmental chromosomal aberrations (SCA) have also been studied as an additional genomic biomarker in com-
bination with INSS staging to guide  treatment20. Based on the concept of stratified treatment, the prognosis of 
neuroblastoma patients is gradually improving. Over the past few decades, the 5-year survival rate for patients 
with metastatic neuroblastoma has increased from less than 20% to over 50% through a combination of therapies 
including immunotherapy, stem cell therapy,  etc21. Although these staging plays a role in assessing patients and 
guiding treatment, clinical use is somewhat limited. With the development of gene chip technology, how to 
stratify patients at the genetic level to guide targeted therapy is an urgent issue.

Given the role of cell cycle abnormalities in the pathogenesis of neuroblastoma, it is essential to understand 
the causes of Chromosomal instability (CIN) in neuroblastoma and to study the chromosome and centrosome 
segregation, spindle machinery and DNA  repair1. This facilitates the exploration of individualized treatment of 
neuroblastoma patients with drugs that target the cell cycle. The aim of our study is to explore molecular sub-
typing in tumor patients by analyzing cell cycle gene expression levels to further refine individualized patient 
stratification management. Molecular subtyping and risk scores will be used to guide individualized patient 
treatment and thus improve patient prognosis.

Results
Identification of a set of 924 immune-related cell cycle genes. First, the t-SNE algorithm classified 
the 643 patients in GSE45547 into different regions based on gene expression levels, indicating heterogene-
ity among patients. This result suggested that the disease can be further subdivided into molecular subtypes 
(Fig. 1A). Consideration of the close correlation of disease with the cell cycle and immunity, to assess the level 
of infiltration of immune and stromal cells involved in the tumor microenvironment (TME) of GSE45547, the 
algorithm ESTIMATE was applied based on transcriptomic data from 643 samples. The results were also incor-
porated into the WGCNA algorithm as clinical information in the search for immune-related cell cycle genes 
(Supplementary Fig.  S1A). Subsequently, the scale-free co-expression network was obtained by WGCNA of 
1740 cell cycle gene expressions from 643 samples with immunization results (Fig.  1B). Two gene modules 
were generated with a power of 4 as the optimal soft threshold (Fig. 1C). Among these modules, the turquoise 
module exhibited the highest correlation with the result of ESTIMATE and was considered as “Immune-related 
cell cycle genes (IRCCGs) module”. And there were 924 genes in the turquoise module (a detailed list of genes 
could be available in the Supplementary Material). We further explored the function of IRCCGs by enrichment 
analysis. KEGG enrichment results for IRCCGs showed links to both immune and cell cycle-related pathways 
(Fig. 1D). The results enriched in Biological Process showed that cell cycle regulation and nuclear division were 
involved (Fig. 1E). The gene products of IRCCGs play a role in the spindle and chromosomal region (Fig. 1F). 
For Molecular Function enrichment results showed that pathways such as tubulin binding and microtubule 
binding were involved (Fig. 1G).

To make the results of the study more objective and generalizable, GSE45547, GSE49710, GSE73517, 
GSE120559, E-MTAB-8248 and GDC TARGET-NBL data were integrated for analysis. In total, 16,978 genes 
from 1811 patients were jointly detected. Before the removal of batch effect, the result of principal component 
analysis (PCA) showed that the samples were clustered by batches (Supplementary Fig. S1B). On the contrast, 
the results after data processing show that cross-platform normalization has been successful in eliminating batch 
effects (Fig. 1H). In the normalized data, the intersection of 16,978 genes with Immune-related cell cycle genes 
was 913 genes. In total, 11 genes from 924 IRCCGs were not included in the follow-up analysis. This was due to 
the fact that different microarrays have different probes and the common genes were selected for the combined 
analysis. Considering that the microarray data were all from the same platform, the five microarray datasets were 
normalized and included in the subsequent study as a whole (Supplementary Fig. S1C, Fig. 1I).

Two distinct cell cycle subtypes were identified with IRCCGs. Based on the expression matrix after 
removing batch effect of 913 IRCCGs, the all 6 datasets (n = 1811) were divided into two distinct cell cycle clus-
ters by consensus clustering (Fig. 2A), an unsupervised clustering method with the k value of 2 (Supplementary 
Fig. S2A–C). There were 871 patients in Cluster I and 940 patients in Cluster II. Moreover, the cluster consensus 
score for each subgroup was higher than 0.8 only in two-subgroup classification (Fig. 2B), which suggested that 
the classification with two subgroups was more robust than others.

To understand the differences between the clusters, the clinical information in the dataset was used to explore 
the characteristics of each of the two clusters. The heat map shows the clustering in relation to age, International 
Neuroblastoma Staging System (INSS) stages and MYCN status, along with the expression of the genes used 
for clustering in 1811 patients (Fig. 2C). The genes shown in the heat map were the top 50 genes with the larg-
est Median absolute deviation of gene expression. Further statistical analysis of the clinical information of the 
two clusters revealed that the age of Cluster 2 was smaller than that of Cluster 1 (P < 0.05). The detailed statisti-
cal results were shown in Table 1 below. Meanwhile, the status of MYCN of patients in Cluster 1 was mainly 
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amplified, while the status of MYCN of patients in Cluster 2 was mainly non amplified (P < 0.05). INSS stage, 
which is closely related to prognosis, was also significantly different in Cluster 1 and Cluster 2 (P < 0.05). Alterna-
tive lengthening of telomeres (ALT) is regulated by break-induced replication. A Sankey diagram depicts the flow 
from the two cell cycle clusters to different status of telomerase reverse transcriptase (TERT) and ALT-associated 
promyelocytic leukemia bodies (APBs) in E-MTAB-8248 and GSE120559 datasets, in which the width of the 
flow rate is proportional to the number of patients (Fig. 2D). For status of telomerase reverse transcriptase, TERT 
rearrangements were more predominant in Cluster 1 (P < 0.05), while whether ALT-associated promyelocytic 
leukemia bodies were detected or not did not differ in the two clusters directly (P > 0.05). The bar chart showed 
the three chromosomal abnormalities closely associated with prognosis in the GSE73517 dataset, they were 1p 
deletion, 11q deletion, and 17q gain (Fig. 2E). As shown inside the statistical Table1, the respective proportion of 
1p deletion and 17q gain to the total number of clusters differed in the two clusters (P < 0.05). However, the quan-
tities of 11q deletion did not differ between the two clusters (P > 0.05). Using survival data from E-MTAB-8248 
and GDC TARGET-NBL, the differences in prognosis between the two clusters were compared. The results 
showed that the prognostic status of Cluster 2 was better than that of Cluster 1, which was consistent with the 
distribution of clinical prognostic indicators between the two groups (Fig. 2F).

Characterization of immunity in two clusters. The immune microenvironment is closely related to 
tumors and the expression of immune checkpoints is a reflection of the immune response. Among the five 
microarray datasets integrated, 24 immune checkpoints were selected for comparison between clusters. As the 
results demonstrate, except for LAG3, CD276and CD86, the levels of immune checkpoints were higher in Clus-
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Figure 1.  Identification and functional analysis of IRCCGs. (A) The results of the t-SNE algorithm show 
heterogeneity in the patients. (B) Analysis of network topology for various soft-thresholding powers. The left 
panel shows the scale-free fit index as a function of the soft-thresholding power. The right panel displays the 
mean connectivity as a function of the soft-thresholding power. Based on the scale-free fit index greater than 
0.9, we chose 4 as the soft thresholding power. (C) At the top is Clustering dendrogram of genes with assigned 
module colors. At the bottom is Module-trait associations. Each cell contains the corresponding correlation 
and P value. The darker the color of the cell, the higher the correlation. (D) Results of KEGG enrichment. The 
numbers in the graph indicated the counts of the pathway. (E) Results of Biological Process enrichment. The line 
between dots indicated the presence of identical genes between pathways. (F) The top 5 pathways of Cellular 
Component enrichment was demonstrated. The length of the yellow bar indicated the number of pathway genes. 
The height of the blue bar indicated the number of intersecting genes. (G) The first 5 enriched to Molecular 
Function terms and the genes in the terms. (H,I) Principal component analysis (PCA) of the gene expression in 
datasets. The visualization of patients by scatter plots were based on the top two Dims of gene expression profiles 
with the removal of batch effect.
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Figure 2.  Identification of subtypes and clinical correlations of subtypes. (A) Consensus matrix heatmap with 
cluster count of 2. (B) The bar-plots represent the consensus scores for subgroups and we chose the results 
with consensus scores greater than 0.8. (C) Heatmap of Top 50 Immune-related cell cycle genes levels and 
distribution of age, MYCN status, and INSS stage in the two clusters. (D) The Sankey diagram showing whether 
TERT was rearrangement and whether APB existed. (E) The bar chart showed the distribution of chromosomal 
abnormalities in the two clusters. (F) The Kaplan–Meier curves showed the OS time of the two clusters of 
patients inside the E-MTAB-8248 and the TARGET datasets.

Table 1.  Comparison of clinical characteristics between the two clusters.

Data source Clinical information Cluster1 Cluster 2 P value

ALL6 datasets

Age P < 0.001

 < 18 months 381 619

 ≥ 18 months 490 321

ALL6 datasets

MYCN status P < 0.001

Amplified 317 29

Non amplified 554 911

ALL6 datasets

INSS stage P < 0.001

1 75 264

2 70 203

3 120 111

4 526 215

4s 80 147

E-MTAB-8248 + GSE120559

TERT status 0.007

Wild type 192 198

TERT rearrangement 28 11

E-MTAB-8248 + GSE120559

APBs status 0.492

Negative 182 178

Positive 38 31

GSE73517

Chromosomes 1 P < 0.001

1p deletion 34 10

Others 26 35

GSE73517

Chromosomes 11 0.529

11q deletion 18 11

Others 42 34

GSE73517

Chromosomes 17 0.013

17q gain 36 16

Others 24 29
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Figure 3.  Comparison of immunization of two clustered subtypes. (A) Box plots showed the mRNA expression 
of immune checkpoints in two clusters (*P < 0.05; **P < 0.01; ***P < 0.001). (B) Stacked bar chart showed the 
percentage of immune cells in 1811 patients. (C) Box plots were used to display the distribution of the cell 
proportions calculated by the CIBERSORT algorithm of immune cells between the two clusters (*P < 0.05; 
**P < 0.01; ***P < 0.001). (D) Box plot of the distribution of immune cell expression between the two clusters 
as calculated by the ssGSEA algorithm (*P < 0.05; **P < 0.01; ***P < 0.001). (E–J) Box plots were created to 
visualize the distribution of the Stromal Score, Immune Score, ESTIMATES Score, and  Tumor Purity, which 
were calculated by the ESTIMATE algorithm between the two clusters in the GSE45547 (E), GSE49710 (F), 
GSE73517 (G), GSE120559 (H), E-MTAB-828 (I) and TARGET (J) datasets.
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ter 2 than in Cluster 1 (Fig. 3A). Based on which CIBERSORT were used to estimate the immune infiltration and 
a bar chart was used to show the percentage of immune cells in each patient (Fig. 3B). To compare the variability 
of immunization between clusters in GSE45547, an analysis was conducted to compare the differences between 
the two clusters of immune cells according to the clustering grouping. The results indicate a significant variability 
in the immune cells of the two clusters (Fig. 3C). Further quantification of immune cells using ssGSEA shows 
that Cluster 2 has more immune cells overall than Cluster 1 (Fig. 3D). In the other five datasets, again using 
the CIBERSORT results and the ssGSEA results compared between the two clusters, Cluster 2 all showed more 
immune infiltration (Supplementary Fig. S3A–E).

The immune status of the patients was further assessed inside the six datasets using the ESTIMATE algorithm. 
The analysis results surface higher Tumor Purity in Cluster 1 than in Cluster 2 in the GSE45547 dataset (P < 0.05). 
Relatively, Stromal Score, Immune Score, and ESTIMATE Score in Cluster 1 were lower than in Cluster 2 
(P < 0.05) (Fig. 3E). The same analysis was validated for the other five datasets (Fig. 3F–J). Combining the results 
of the previous analysis, we believe that Cluster 2 belongs to the class of rich immune status and Cluster 1 is the 
class of poor immune status.

Identification of subgroup DEGs and functional annotation. In order to investigate the key genes 
causing the differences between clusters in depth, a total of 4945 differential genes were obtained using “DESeq” 
package in the TARGET data between the two clusters, of which 1022 were highly expressed genes in Cluster 
1 relative to Cluster 2 and 3923 were lowly expressed genes (Fig. 4A) (Supplementary Fig. S4A). The variance 

Figure 4.  Identification DEGs and functional annotation of DEGs. (A) Volcano plot depicted the distribution 
of DEGs in TARGET dataset (Cluster1 VS Cluster2) and labeled the top 5 genes with the smallest ranking 
according to adjusted P value. (Genes with adjusted P value > 0.05 were not shown in the plot). (B) Heatmap 
of the DEGs derived from the 5 microarray datasets. (C) The Ven diagram showed the number of intersecting 
genes in the results of the difference analysis. (D) The TOP 30 genes based on the MCC algorithm, with the 
darker colors, indicating the higher MCC scores. (E,F) Bar graph (E) showed the results of GO enrichment and 
Bubble plots (F) showed KEGG enrichment results for Cluster 1 relative to Cluster 2 highly expressed genes. 
The numbers in the Bar graph represented the counts in the pathway. (G,H) Bar graph (G) showed the results of 
GO enrichment and Bubble plots (H) showed KEGG enrichment results for Cluster 1 relative to Cluster 2 low 
expressed genes. The numbers in the Bar graph represented the counts in the pathway. In the GO enrichment 
results (E,G), BP refers to Biological Process, CC denotes Cellular Component, and MF represents Molecular 
Function.
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analysis of the five normalized datasets using the “limma” package yielded 238 variance genes. There were 161 
up-regulated genes and 77 down-regulated genes (Cluster1 VS Cluster2) in the result (Fig. 4B). A total of 206 
intersecting genes from the two difference analyses were designated as intergroup difference genes for Clusters 1 
and 2 (Fig. 4C). We then constructed a Protein–Protein Interaction (PPI) network using the STRING database 
(Supplementary Fig. S4B). The TOP 30 genes based on the MCC algorithm were further demonstrated using the 
the cytoHubba plug-in in Cytoscape (Fig. 4D).

To gain insight into the function of the differential genes, enrichment analysis was performed. For the 
highly expressed genes (Cluster1 VS Cluster2) between the two clusters, GO enrichment results showed that 
these genes were closely associated with the cell cycle progression (Fig. 4E). The TOP 5 terms in Biological 
Process were chromosome segregation, mitotic nuclear division, nuclear division, organelle fission and sister 
chromatid segregation. The results of Cellular Component were mainly involved in chromosomal region; 
chromosome, centromeric region; condensed chromosome; condensed chromosome, centromeric region and 
spindle. Microtubule binding; tubulin binding; microtubule motor activity; catalytic activity (acting on DNA) 
and cytoskeletal motor activity were the TOP 5 terms in Molecular Function. KEGG analysis suggested that 
highly expressed genes (Cluster1 VS Cluster2) were mainly associated with Cell cycle, DNA replication, Oocyte 
meiosis and other pathways closely related to the cell cycle (Fig. 4F).

The enrichment results for low expressed genes showed an association with immunity. GO enrichment 
results mainly include antigen processing and presentation of exogenous peptide antigen via MHC class II and 
MHC class II protein complex binding (Fig. 4G). Similarly, the results of KEGG enrichment were closely related 
to immunity (Fig. 4H). Generally, the enrichment analyses showed that DEGs not only play an important role 
in the division of chromosome but are also associated with repair of DNA and immunity. At the same time, 
the enrichment results of each of the two group DEGs corresponded to the results of the previous clinical and 
immunological analyses.

Identification of prognostic key genes and establishment risk score model. Based on the enrich-
ment results, which imply that DEGs were strongly associated with chromosomal instability and disease hetero-
geneity in patients, we decided to search for key genes from within DEGs to construct a risk model. Firstly, we 
preliminarily screened out 177 OS-related genes with a filtering threshold of P value less than 0.01 by univariate 
Cox regression analysis in E-MTAB-8248 dataset (Supplementary Table 1) and displayed their top 10 significant 
genes by forest map (Fig. 5A). In the next step, “randomForestSRC” package were used to filter the key vari-
ables. As shown in the Fig. 5B, the oob error rate tends to stabilize when tree > 200, while the importance of the 
variables was judged using Variable Importance (VIMP) algorithm and the longer blue bars indicate the more 
important variables (Fig. 5B). We selected the TOP 50 most important genes based on the VIMP for inclu-
sion in the LASSO Cox regression model (Supplementary Fig. S5A). With an optimal λ value (Fig. 5C,D), 7 
genes (NMU, E2F3, UBE2S, DHFR, MIA, CHD5, and FAXDC2) retained their individual Cox coefficients after 
LASSO regularization (Supplementary Table 2). Using the established formula, the risk score was calculated for 
each sample (Fig. 5E). With a best cut-off value (Supplementary Fig. S5B), the dataset was divided into low-risk 
and high-risk groups (Fig. 5F). Kaplan–Meier analysis demonstrated that patients with higher risk score exhib-
ited worse progression-free survival (PFS) and OS in the E-MTAB-8248 dataset (Fig. 5G,H).

Validation of the risk score model. First, the receiver operating characteristic (ROC) curves of clinical 
indicators related to prognosis were compared inside the E-MTAB-8248 dataset, and the risk scores were all 
better than these indicators (Fig. 6A). In addition, ROC curve analysis indicated that the area under the curve 
(AUC) values of OS signature in 1-, 3-, and 5-year were 0.9527, 0.87266, and 0.8792, indicating that our progno-
sis signatures have favorable discrimination (Fig. 6B). Meanwhile, in the GDC TARGT-NBL dataset, risk scores 
were also strongly correlated with OS (Fig. 6C). In addition, we analyzed and mapped the expression profiles 
of seven genes in different risk subgroups of 1670 patients, and significant expression differences could be seen 
(Fig. 6D). We further compared the distribution of the seven gene expressions in a variety of tumors. UBE2S 
was found to be highly expressed in most tumor tissues, while MIA was mainly concentrated in tumor tissues 
of melanoma (SKCM) (Supplementary Fig. S6A). The mutations of the seven genes were further explored in a 
variety of tumors, and it could be found that the highest mutation rate was CHD5, followed by E2F3. And the 
types of mutations were mainly concentrated in Amplification, Deep Deletion and Missense Mutation (Fig. 6E).

The results of the previous ESTIMATE algorithm were used to compare groups based on high and low risk. 
The analysis results surface higher Tumor Purity in high-risk group than in low-risk group in the GSE45547 
dataset (P < 0.05). Relatively, Stromal Score, Immune Score and ESTIMATE Score in high-risk group were lower 
than in low-risk group (P < 0.05) (Fig. 6F). In GSE49710, GSE73517, GSE120559 and E-MTAB-8248, Tumor 
Purity, Immune Score and ESTIMATE Score had the same variation in the high-risk versus low-risk groups 
(Supplementary Fig. S6B–E). We further compared the expression of immune checkpoints between high and 
low risk groups (Fig. 6G). Combined with the results of ssGSEA it can be concluded that the low-risk group had 
a better immune status (Fig. 6H).

Compare differences between high and low risk groups. The distribution of risk scores inside 
MYCN status, age and INSS stages was further explored in 1670 patients from all 5 microarray datasets. The 
results revealed that patients with MYCN amplification status, age ≥18 months and progressive worsening of 
INSS staging all had higher risk scores (Fig. 7A). Patients in E-MTAB-8248, GSE73517 and GSE120559 were 
divided into two groups, high-risk and low-risk, based on the optimal cut-off values. As shown in the Table 2, 
TERT rearrangements were more common in the high-risk group (P < 0.05). However, the positive of ALT-
associated promyelocytic leukemia bodies was not statistically different between the two groups (P > 0.05). After 
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Gene
UBE2S
NMU
DHFR
E2F3
FAXDC2
MND1
MIA
CHD5
CKS2
CREG2

HR
3.628
1.432
3.679
2.744
0.479
2.308
0.499
0.687
2.643
0.627

lower 95%CI
2.386
1.274
2.392
1.965
0.373
1.731
0.392
0.603
1.850
0.527

upper 95%CI
5.519
1.611
5.658
3.832
0.615
3.079
0.636
0.783
3.776
0.745

pvalue
p<0.001
p<0.001
p<0.001
p<0.001
p<0.001
p<0.001
p<0.001
p<0.001
p<0.001
p<0.001
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Figure 5.  Construction of the risk model. (A) The forest plot showed the HR and 95% confidence interval 
of the most significant TOP 10 genes in the univariate regression results, sorted by P value. (B) The left graph 
showed the variation of Error rate with the number of trees. The right graph showed the ranking of genes 
according to the importance of the VIMP algorithm, where blue represents favorable to the correct judgment 
of the endings and red represents unfavorable. (C) Each line in the above graph represented a gene, the vertical 
coordinate was the value of the coefficient, the lower horizontal coordinate was log(λ), and the upper horizontal 
coordinate was the number of non-zero coefficients in the model at this time. (D) Based on cross-validation, for 
each value of λ, around the mean value of the target covariate shown in red, we can obtain a confidence interval 
for the target covariate. The two dashed lines indicate each of the two particular λ values. We chose lambda.1se 
as the final model parameter. (E) Each point in the scatter plot represented the survival status and survival time 
of a patient. The horizontal coordinates were the patients ranked from lowest to highest according to their risk 
scores. (F) Based on the risk score of each point in the scatter plot representing one patient, we divided them 
into high-risk and low-risk groups. (G,H) The Kaplan–Meier curves showed the progression-free survival time 
(G) and OS time (H) of the two risk groups of patients inside the E-MTAB-8248 dataset.
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Figure 6.  Validation and investigation of risk models. (A) The ability of clinical indicators and risk scores 
to determine prognosis at year 1, year 3, and year 5 were compared using ROC curves. (B) The ROC curve 
demonstrates the ability of the risk score to determine prognosis at year 1, year 3, and year 5. (C) The Kaplan–
Meier curves showed the OS time of the two risk groups of patients inside the TARGET dataset. (D) The heat 
map demonstrated the expression levels of seven risk model genes in patients. (E) Mutations of 7 risk model 
genes in multiple tumors. (F) Comparison of differences in ESTIMATES results between high and low risk 
groups. Red dots indicated that patients belong to Cluster 1 and green dots indicated that patients belong to 
Cluster 2. (G) Box plots showed the mRNA expression of immune checkpoints in two risk groups (*P < 0.05; 
**P < 0.01; ***P < 0.001). (H) Box plot of the distribution of immune cell expression between the two risk groups 
as calculated by the ssGSEA algorithm (*P < 0.05; **P < 0.01; ***P < 0.001).
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that, the relationship between risk grouping and chromosomal instability was further explored. The results of 
the analysis confirmed that 1p deletion and 17q gain differed in the high- and low-risk subgroups and that the 
high-risk group was more likely to have these aberrations (P < 0.05). In contrast, 11q deletion was not statistically 
different between the two groups (P < 0.05) (Fig. 7B).

We further delved into the closely related mechanisms of clinical and risk grouping through analysis of 
variance. Patients with 1670 microarray data were further divided into high and low risk groups based on the 
risk model for difference analysis. A total of 314 differential genes were obtained, including 146 down-regulated 
genes and 168 up-regulated genes (high-risk VS low-risk). As shown in the heatmap, the difference genes were 
able to distinguish well between high and low risk groups (Fig. 7C). The volcano plot showed the top five genes in 
the differential genes ranked according to their adjusted P value (Supplementary Fig. S7A). We then constructed 
a PPI network using the STRING database (Supplementary Fig. S7B,C). The TOP 10 genes based on the MCC 
algorithm were further demonstrated in down-regulated genes and up-regulated genes (Fig. 7D).

Enrichment analysis of differential genes in the Hallmark database using the GSVA algorithm revealed signifi-
cant differences between the two groups in numerous pathways (Fig. 7E). In the high-risk group, the significant 
pathways were MYC Targets_V2, MYC Targets_V1, E2F Targets, Unfolded protein response, Mtorc1 signaling, 
G2M chickpoint and DNA repair. In the low-risk group, Apical surface, UV response_DN, Apical junction, 
Complement, HEME metabolism and Myogenesis were the significant pathways. Further analysis using GSEA 
enrichment method, we could find that the pathways of GO in the high-risk group were mitotic sister chromatid 
segregation, nuclear chromosome segregation and sister chromatid segregation. The TOP 3 terms of low-risk 
group were antigen processing and presentation, antigen processing and presentation of exogenous antigen and 

Figure 7.  Comparison between high and low risk groups. (A) Comparison of risk scores in MYCN status, age 
groups and INSS stages. (B) The Sankey diagram showed the distribution of chromosomal abnormalities in the 
two risk groups. (C) The heat map showed the levels of differential genes between the high and low risk groups. 
(D) TOP 10 hub genes identified by MCC algorithm. (E) The bar graph showed the results of GSVA enrichment. 
Purple represented the major pathways enriched to in the high-risk group and green represented the major 
pathways in the low-risk group. (F) The TOP 3 most significant GO enriched terms in the high-risk and low-risk 
groups. (G) The TOP 3 most significant KEGG enriched pathways in the high-risk and low-risk groups.
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antigen processing and presentation of exogenous peptide antigen (Fig. 7F). The KEGG results, on the other 
hand, showed that the high-risk group was mainly closely associated with the three pathways of the Cell cycle, 
DNA replication and Ribosome (Fig. 7G). The pathways in the low-risk group were focused on immune-related 
pathways such as Amphetamine addiction, Hematopoietic cell lineage and Rheumatoid arthritis. Based on the 
enrichment results, the worse prognosis in the high-risk group may be related to this.

Construction of neural network and integrated prognostic models to guide treatment. The 
random forest algorithm was employed to select the neural network genes. We used both the Mean Decrease 
Accuracy (MDA) and the Mean Decrease Gini (MDG) to obtain the top 50 most important genes, and took the 
intersection of the two as the final key genes. Through the graph of rate, error versus number of trees, we chose 
mtry = 6, ntree = 1200 as the final parameter of the model (Supplementary Fig. 8A,B). In our final fitted model, 
the out-of-bag (OOB) value was 2.95%. As shown in Fig. 8A, 37 genes were finally identified for the construction 
of neural network models for neuroblastoma patients. By experiment, the number of hidden layers was 1, with a 
total of 20 hidden neurons, and learningrate = 0.1 as the final setting of the model (Fig. 8B). Meanwhile, the Acti-
vation Function we chose was “tanh”. We completed the training using 643 patients from the GSE45547 dataset 
and performed external validation in 493 patients from GSE49710 with good results (AUC = 0.966) (Fig. 8C).

We further explored whether these two indicators are related to survival. The clustering grouping and risk 
score were included in the univariate Cox regression analysis, which revealed that both the Cluster 1, and the 
higher risk score were risk factors affecting prognosis (Table 3). Clinical indicators such as age, whether MYCN 
was amplified, and INSS staging were further included for multifactorial regression analysis and the results 
revealed that only the risk score and age were an independent risk factor for prognosis (Supplementary Fig. 8C). 
To facilitate the assessment of prognosis, nomograms were constructed by age and risk score. The probability of 
survival at 1, 3, and 5 years were predicted by calculating the number of points (Fig. 8D).

We further evaluated the significance of clustering and risk score to guide treatment. Immunotherapy 
as a treatment modality with great potential, we compared the distribution of potentially used targets in 
immunotherapy between the two clustered subgroups. We could find different expression levels of immunotherapy 
targets in Cluster 1 and Cluster 2, suggesting that different clusters using different immunotherapy may be more 
prognostic (Fig. 8E). Cell cycle targeted therapy is also an important modality of treatment. It was interesting 
to note that the cell cycle checkpoints were significantly different between the two groups (Fig. 8F,G). The 
expressions of CDK2, CDK4 and CDK6 were higher in Cluster 1 than in Cluster 2, while the expressions of ATM 
were higher in Cluster 2 than in Cluster 1. We also analyzed the correlation with the IC50 of oncology drug in 
the GDSC database by GSCA using the genes that used for neural network (Fig. 8H). Based on the results of the 
analysis, we believe that Cluster 2 may be more appropriate for the four drugs RDEA119, Selumetinib, Trametinib 
and PD-0325901. Data from the CellMiner database of NCI-60 cell lines were downloaded and sensitivity 
analyses were performed between risk scores and drugs that had undergone Clinical trials and FDA approved. 
We set P < 0.01 as our filtering index and showed the results with a heatmap (Fig. 8I). Based on the results of the 
analysis, it could be found that most of the drugs were negatively correlated with risk scores.

Discussion
As a highly heterogeneous solid tumor, individualized treatment of neuroblastoma to improve its prognosis is a 
problem at this stage. Currently, neuroblastoma is mainly based on the INRG risk stratification system to guide 
the treatment of different  patients22. Despite this, the 5-year EFS for children with metastatic neuroblastoma 
and aged 18 months or older is only close to 50%23. As cell cycle-targeted inhibitors are being studied and cell 
cycle-related mechanisms are gaining ground in neuroblastoma patients, the use of cell cycle-related genes 

Table 2.  Comparison of clinical characteristics between the two risk groups.

Data source Clinical Information High-risk Low-risk P value

E-MTAB-8248 + GSE120559

TERT status P < 0.001

Wild type 130 260

TERT rearrangement 30 9

E-MTAB-8248 + GSE120559

APBs status 0.310

Negative 138 222

Positive 22 47

GSE73517

Chromosomes 1 P < 0.001

1p deletion 35 9

Others 18 43

GSE73517

Chromosomes 11 0.302

11q deletion 17 12

Others 36 40

GSE73517

Chromosomes 17 P < 0.001

17q gain 39 13

Others 14 39
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Figure 8.  Neural Networks and Treatment Analysis. (A) Importance ranking chart of variables based on 
MDA and MDG. (B) Neural network structure schematic. The outer red layer represents the input layer, the 
middle blue represents the 20 hidden neurons, and the output layer is yellow. (C) ROC curves demonstrate the 
classification performance of the neural network in the GSE49710 dataset. (D) Assessment of patient survival 
probability using nomograms. (E) Immunotherapy target gene expression levels. (F) G1/S cell cycle checkpoint 
gene expression levels. (G) G2/M cell cycle checkpoint gene expression levels. (H) GDSC database drug 
sensitivity analysis results. (I) Heat map of correlation between risk score and drug sensitivity.

Table 3.  Result of the univariate Cox regression analysis.

Variables HR z P value
95% confidence 
interval

Cluster 0.153 − 4.532 5.85e−06 0.068 0.344

Risk score 6.876 7.555 4.20e−14 4.170 11.339
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is important for identifying molecular subtypes and finding therapeutic targets or prognostic biomarkers in 
neuroblastoma patients.

We first demonstrated the feasibility of typing patients according to their genes by downscaling 643 
samples using the tSNE algorithm based on gene expression levels. Considering the promising application of 
immunotherapy, in our study, we initially identified 924 immune-related cell cycle genes using the WGCNA 
algorithm. These genes were negatively correlated with ESTIMATE Score and positively correlated with Tumor 
Purity. Based on the above genes, we classified the 1811 patients into two clusters with distinct differences.

In terms of clinical information, the two clusters have their own significant characteristics. Overall, the 
clinical indicators in Cluster 1 were all more inclined toward an unfavorable prognosis relative to Cluster 2. The 
percentage of patients in Cluster 2 with an age < 18 months was much higher than in Cluster 1 (P < 0.05). For 
the distribution of MYCN status in the two groups, Cluster 1 can be considered as MYCN amplified group and 
Cluster 2 as MYCN non-amplified group. Although 29 out of 940 patients in Cluster 2 were MYCN amplified 
status, which indirectly illustrates the limitation of using a single biological indicator classification in clinical 
situations. For the commonly used INSS staging, stage 4 accounted for 60% of the total in Cluster 1, while 
in Cluster 2 this proportion was only about 22%. The study showed that the older the child was diagnosed 
(18 months as cut-off value), the amplified MYCN status and INSS stage was stage 4, all three of which were 
markers of unfavorable  prognosis22,24. Cluster 1 also showed more chromosomal instability, as demonstrated 
by the fact that patients with 1p-deletion and 11q-deletion were more concentrated in Cluster 1 (P < 0.05). The 
TERT rearrangements phenomenon was likewise more common in Cluster 1 (P < 0.05). However, there were no 
difference in the distribution of 17q-gain and ALT-associated promyelocytic leukemia bodies in the two clusters 
(P > 0.05). The Kaplan–Meier curves plotted by the survival analysis also corroborated that the OS time of Cluster 
2 was better than that of Cluster 1. We further explored the immune infiltration between the two clusters. We 
performed immune evaluation inside each of the six datasets using the three algorithms CIBERSORT, ssGSEA 
and ESTIMATE. Combining the results, we can assume that the Cluster 2 have a better immune status. This may 
also partially explain why Cluster 2 has a better prognosis.

Immune checkpoints as a basis for immunotherapy, we evaluated the expression of 24 immune checkpoints 
between two clusters. We found that LAG3, CD276 and CD86 were highly expressed in Cluster 1, while most of 
the immune checkpoints were highly expressed in Cluster 2. This was inseparable from the characteristics of the 
disease. MYCN amplification correlated to a higher number of LAG3 + type 1 regulatory (Tr1) cells in peripheral 
 blood25. CD276(B7-H3) is highly expressed in tumors and restricted expression in normal tissues which is a 
potential therapeutic  target26. In the experiment, Chimeric antigen receptor T cells against CD276 were able to 
overcome the heterogeneity of  neuroblastoma27. The high expression of CD86 may be associated with higher 
tumor purity in Cluster 1. Research shows that CD86 induced a T-cell immune response in neuroblastoma 
in vitro and served as an effective tumor vaccine in the tumor prevention  model28.

The results of the enrichment analysis of differential genes between the two clusters further revealed the 
differences in pathway mechanisms between the two clusters. The highly expressed genes in Cluster 1 were 
concentrated in cell cycle-related pathways involving chromosome segregation, microtubule binding and 
chromosomal region. The analysis of the previous clinical information also showed that Cluster 1 exhibited 
more chromosomal instability. Similarly, Cluster 2 has a better immune status as evidenced in the enrichment 
results. Evidence suggests that tumor-specific MHC-II is associated with a good prognosis for cancer patients, 
including those treated with  immunotherapy29.

In order to better assess the individual situation of each patient, we tried to construct a risk model using 
DEGs between the two clusters. Further analysis showed that it had better predictive power than traditional 
biomarkers. We first obtained 177 genes from DEGs that were closely associated with survival using Cox model 
screening (P < 0.01). Random Survival Forest (RSF), a machine learning survival algorithm, has many applications 
in  biomedicine30,31. In this study, VIMP values of each gene that calculated by RSF was used to further screen 
for genes closely related to survival. The 50 genes with the largest VIMP values were included in the Lasso Cox 
regression model finally 7 genes (NMU, E2F3, UBE2S, DHFR, MIA, CHD5, FAXDC2) were obtained for the 
construction of the model. Among these, NMU, E2F3, UBE2S and DHFR belong to Cluster 1 relative to Cluster 
2 of highly expressed genes. While MIA, CHD5 and FAXDC2 were low expression genes.

Neuromedin U (NMU) derives its name from its powerful contraction effect on the muscles of the rat 
 uterus32. Although neurons regulate type 2 congenital lymphocytes via neuromedin  U33, high NMU expression 
is associated with poor prognosis of  cancer34,35. E2F Transcription Factor 3 (E2F3) interacts with retinoblastoma 
protein directly to regulate the expression of genes participating in the cell cycle. Harold I Saavedra et al. found 
that E2F3 overexpression causes centrosome amplification and uncontrolled mitosis in several studies, which 
can promote chromosomal instability leading to  tumors36,37. Ubiquitin Conjugating Enzyme E2 S (UBE2S) has 
been shown to promote ovarian cancer development by promoting the PI3K/AKT/mTOR signaling pathway 
to regulate cell  cycle38. Meanwhile, UBE2S can work with TRIM28 in the nucleus to accelerate the cell cycle 
through ubiquitination of p27 to develop hepatocellular  carcinoma39. In recent years, Dihydrofolate Reductase 
(DHFR), a key enzyme in one-carbon metabolism, has been well recognized as a target for cancer  therapy40,41. 
A positive coefficient for the four genes mentioned above in the risk model means that the higher the level of 
gene expression, the more at risk the patient is.

MIA may promote the separation of cells from the extracellular  matrix42. Chromodomain Helicase DNA 
Binding Protein 5 (CHD5) has demonstrated its unique role as a novel tumor suppressor in a variety of 
 cancers43–45. Fatty acid hydroxylase domain containing 2 (FAXDC2), a member of the fatty acid hydroxylase 
superfamily, is a neo gene that enhances megakaryocyte maturation, suggesting that it may have a potential 
value as a therapy for  differentiation46. Taken together, the seven risk model genes include both those that 
have been intensively studied and those that lack research, suggesting the potential broad research value of 
risk model genes in neuroblastoma. At the same time, ROC curve analysis indicated that the AUC values of 
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OS signature in 1-, 3-, and 5-year were 0.9527, 0.87266, and 0.8792, indicating that our prognosis signatures 
have favorable discrimination. Moreover, the risk model showed better predictiveness compared to other single 
clinical biological indicators.

A between-group analysis of the two groups grouped based on risk scores revealed distinct differences in 
immune levels and clinical information between the two groups. We could find that LAG3, CD276 and CD86 
were highly expressed in the high-risk group. Combining multiple immunization algorithms, we could assume 
that the low-risk group has a better immune status. Results with clinical analysis showed that patients with MYCN 
amplification status, age ≥ 18 months and progressive worsening of INSS staging all had higher risk scores which 
demonstrated the consistency of the risk model with the clinical. The GSEA enrichment results in the high-risk 
group showed a strong correlation with the MYC pathway. MYC genes are a class of nucleoprotein oncogenes, 
and as a broadly acting transcription factor, MYC regulates cell differentiation and proliferation through a variety 
of mechanisms, including the transcriptional amplification of target  genes47,48. In addition, the high-risk group 
is closely associated with signaling pathways such as cell cycle and chromosome segregation. Abnormalities 
in these pathways may drive patients toward a poor prognosis. In contrast the low-risk group showed a strong 
correlation with immunity, which together with the results of the immune analysis corroborated the better 
immune status of the low-risk group.

Two molecular subtypes of neuroblastoma successfully classified patients, and a risk model based on the 
analysis of differences between subtypes better quantitatively assessed the survival status of patients. At this stage, 
neural network models have become a powerful tool for machine learning. To better apply the results of the 
study in the clinic, we used the results of inter-cluster variance analysis to construct a neural network classifier 
applicable to neuroblastoma patients. A neural network based on 37 genes built in 643 patients was well validated 
in the classification of 493 patients (AUC = 0.966).

The goal of molecular subtypes and risk models is to help patients develop individualized treatment plans 
and improve prognosis. This study provides the results of sensitivity analyses for multiple drug data. Cell cycle-
targeted therapy serves as a promising therapeutic  tool49 . With the clinical success of CDK4/6 inhibitors, 
targeting individual cell cycle components may become an effective anti-cancer  strategy50. The distribution 
of cell cycle checkpoints between the two clusters had their own significant characteristics. For Cluster 1, with 
higher expression levels of CDK4, CDK6 and PLK1, we can take the treatment by applying cell cycle brakes. 
Drugs in this segment include palbociclib, ribociclib and abemaciclib, which target CD4/651, and BI  253652 and 
 GSK46136453 which target PLK1. In contrast, ATM was highly expressed in Cluster 2. Patients may be treated 
through M3541 and AZD0156 by accelerating the cell  cycle15.

Among these, immunotherapy has great potential to fight against cancer, and immunotherapy for 
neuroblastoma is gradually being studied in depth. GD2 is the most common target antigen for neuroblastoma 
 immunotherapy54,55. Although B4GALNT1, the enzyme that catalyzes the final step of GD2 synthesis, did 
not differ between the two clusters, ST3GAL5 and ST8SIA1, genes more upstream in the synthesis pathway, 
were more highly expressed in Cluster 1 than in Cluster 2. It has been shown that downregulation of ST8SIA1 
promotes the loss of GD2, leading to a bottleneck in the synthesis and expression of GD2, which results in 
the failure of anti-GD2  antibodies56. The results of studies on B7-H3 (CD276), ALK, GPC2, and PHOX2B as 
novel immunotherapeutic targets show great promise for the treatment of  neuroblastoma57,58. In this study, a 
comparison of the expression of these targets revealed higher expression in Cluster 1.

The heterogeneity of neuroblastoma is manifested in several ways, and we hope to be able to classify different 
patient categories and assess the risk profile of patients at the genetic level. Based on the results of the study, a 
rational individualized treatment plan is further assigned to the patient. Individualized treatment is beneficial 
to the patient’s prognosis, while making the best use of medical resources and reducing the financial burden 
on the patient. Although our molecular subtype and risk models performed well in the assessment of clinical 
performance, immune status and survival prognosis, certain limitations should be noted in this study. All of 
our results were obtained by analyzing patient information and gene expression profiles in public databases, 
which may be influenced by the data leading to biased results. However, we compensated for this shortcoming 
by collecting as many patients as possible.

Conclusions
We have developed a neural network model to classify neuroblastoma patients and a risk model to assess the 
prognostic status of patients. The intergroup mechanistic differences revealed in the study are more beneficial 
to our understanding of neuroblastoma. At the same time, the molecular subtypes and risk model will be used 
to help clinicians choose the best treatment strategy. The 37 subtype classification genes and 7 risk model genes 
obtained in this study provide new ideas for further experiments.

Materials and methods
Data acquisition and preprocessing. The set of genes of cell cycle-related signaling pathways in GO and 
KEGG and pathways were downloaded through the Molecular Signatures  Database59 (https:// www. gsea- msigdb. 
org/ gsea/ msigdb/ index. jsp) and collated to obtain 1865 cell cycle-related genes for further studies. Common 
immune checkpoint and cell cycle checkpoint names were collected through literature reading and translated to 
match the gene names in the expression matrix. Data on the expression levels of target genes in multiple cancers 
were obtained from the Gene Expression Profiling Interactive Analysis  platform60 (GEPIA, http:// gepia. cancer- 
pku. cn/). Exploring and visualizing mutations in target genes from multidimensional cancer by The cBioPortal 
for Cancer  Genomics61 (http:// www. cbiop ortal. org).

A systematic search of publicly available transcriptomic data with clinical annotation for neuroblastoma was 
performed. In total, five microarray datasets with clinical information and one RNA-sequencing (RNA-seq) 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://www.cbioportal.org
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datasets named TARGET-NBL which was downloaded from Genomic Data Commons (https:// gdc. cancer. gov/) 
was included in our study. Microarray gene expression data that contained  GSE4554762, GSE49710,  GSE7351763 
and  GSE12055964 were downloaded from Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) 
and E-MTAB-824865 was download from ArrayExpress (https:// www. ebi. ac. uk/ biost udies/ array expre ss). For the 
downloaded microarray data were normalized. For TARGET dataset, the FPKM value of gene expression and the 
counts value were both downloaded. In all datasets, patients without MYCN status were removed. We used the 
t-distributed stochastic neighbor embedding (t-SNE) algorithm to downscale the multidimensional expression 
data of patients for the observation of tumor heterogeneity. For subsequent integration of the dataset, we adopted 
the ComBat method in R language with “sva”  package66 (version 3.44.0) to remove the batch effect between the 
datasets. The principal component analysis was used to evaluate whether the batch effect was removed.

Identification of immune-related cell cycle genes (IRCCGs). Included in the analysis were the 
cell cycle-related genes obtained from the previous collation. Weighted gene co-expression network analysis 
(WGCNA)67 was performed using the “WGCNA” package (version 1.71) to construct a scale-free co-expression 
network and identify a gene module that was mostly associated with ESTIMATE results. The genes in that mod-
ule were identified as Immune-related cell cycle genes (IRCCGs).

Consensus clustering. We used the “ConsensusClusterPlus”  package68 (version 1.60.0) in R and the clus-
tering was selected on the basis of the identified Immune-related cell cycle genes. The maximum cluster number 
was set to be 5. The final cluster number was determined by the consensus matrix and the cluster consensus score 
(> 0.8). The higher cluster consensus scores indicate more robust clustering.

Immune infiltration analysis. The tumor purity of samples, StromalScore, ImmuneScore, and ESTI-
MATEScore were estimated using R package “estimate”69 (version 1.0.13).  CIBERSORT70 was used to quantify 
the relative abundance of 22 immune cell species in the sample. The Single-sample gene set enrichment analysis 
(ssGSEA) algorithm was employed to quantify the abundance of 28 immune cell types in different samples.

Differentially expressed gene analysis between clusters or risk groups. Patients were divided 
into different groups according to the result of cluster analysis or the result of risk score. DEGs of microarray 
datasets were explored between two groups using the “limma”  package71 (version 3.52.2). DEGs of sequencing 
datasets were explored between two groups using the “DESeq2” R package (version 1.36.0). The DEG cut-off was 
set as |log2 (Fold Change) |> 1 and adjusted P value < 0.05. The visualization of the variance analysis results was 
in the form of volcano plots and heatmaps.

Enrichment analysis and protein–protein interaction network of the differentially expressed 
genes. DEG functional enrichment analysis, including Gene Ontology (GO)72 and Kyoto Encyclopedia 
of Genes and Genomes (KEGG)73 analysis, was carried out using the “clusterProfiler” R  package74 (version 
4.4.4). Adjusted P value < 0.05 was considered statistically significant. The R package “GSVA” (version 1.44.2) 
was used to perform enrichment analysis in the Hallmark database, and the cutoff value was set to 10. For the 
GSEA enrichment results, we set the screening metrics as |Normalized Enrichment Score (NES)|> 1, NOM P 
value < 0.05 and FDR (adjusted P value) < 0.05.

The PPI network was performed automatically by Search Tool for the Retrieval of Interacting Genes/Proteins 
(version 11.5; https:// string- db. org/). Cytoscape software (version 3.9.1) was used for visualization. Moreover, 
CytoHubba plug-in was used to identify significant genes in this network as hub genes. We used Maximal Clique 
Centrality (MCC) algorithms to calculate the top 30 hub genes.

Establishment of the prognostic risk score. Firstly, we performed single factor analysis by propor-
tional hazards model in the E-MTAB-8248 dataset using the results of inter-cluster analysis of variance. Analysis 
was achieved through “survival” R packages (version 3.3.1) and genes with P < 0.01 were screened as prognosis-
related genes. Next, we used the random survival forest (RSF) model from the “randomForestSRC” R package 
(version 3.1.1) to further filter candidate genes that were closely related to survival. The algorithm ranked each 
gene according to importance, and we selected the 50 most important genes to be included in the subsequent 
analysis. By “glmnet” R package (version 4.1-4), these 50 genes were used as the input of the least absolute 
shrinkage and selection operator (LASSO) Cox regression model and ultimately to screen out the significant 
genes. We finally obtained 7 genes for the construction of the risk score model in our analysis. Based on the 
expression values of the corresponding genes of the patients and the Cox coefficients, we can calculate the risk 
score for each patient according to the algorithm of the inner product of matrices. The calculation was publicly 
announced as follows:

Construction of neural network for clusters. Random forest algorithm from the “randomForest” R 
package (version 4.7-1.1) was applied to screen for the most important candidate genes correlated with different 
clusters in GSE45547 dataset. Based on the results of ranking the importance of genes, we selected the intersect-
ing genes in the top 50 genes of both the Mean Decrease Accuracy (MDA) and the Mean Decrease Gini (MDG) 
as the input genes for constructing the neural network. The R package “neuralnet” (version: 1.44.2) has been 

risk score =
∑7

n=1
Coefficient(genen)× Expression(genen)

https://gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/biostudies/arrayexpress
https://string-db.org/
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used to develop a deep learning model of the candidate genes after the expression values of genes were standard-
ized to the maximum and lowest values. We set a hidden layers and 20 hidden neurons in the GSE45547 dataset 
to train the model. For our constructed neural network model in GSE49710 for external validation.

Drug sensitivity analysis. The analysis of the correlation between gene sets and drugs was obtained from 
an analysis with the online site  GSCA75 (http:// bioin fo. life. hust. edu. cn/ GSCA/#/). This analysis platform inte-
grates data on drug sensitivity and gene expression from the GDSC database. CellMiner (https:// disco ver. nci. 
nih. gov/ cellm iner/ home. do) is a database designed for the cancer research community to facilitate integration 
and study of molecular and pharmacological data for the NCI-60 cancerous cell lines. We downloaded data 
about the NCI-60 drug trials and screened it for inclusion in our study for drugs that had undergone Clinical tri-
als and FDA approved. After collation of the data, we used correlation analysis to assess the relationship between 
risk scores and drug sensitivity.

Survival analyses and nomogram construction. The Kaplan–Meier method was used to draw survival 
curves by “survminer” package (version 0.4.9). Single factor analysis by proportional hazards model was used to 
identify prognostic factors. Multi factor analysis by proportional hazards model was used to identify independ-
ent prognostic factors. A prognostic nomogram including all independent prognostic factors was constructed to 
predict the OS of neuroblastoma patients by “rms” package (version 6.3-0).

Statistical analysis. All data processing and analysis were performed in R software (version 4.2.1) by RStu-
dio. In order to compare two groups of continuous variables, we used independent Student’s t-tests to calculate 
the statistical significance, and differences between non-normally distributed variables were calculated using the 
Wilcoxon rank sum test. We used the chi-square test or Fisher’s exact test to analyse the statistical significance 
between the two sets of categorical variables. All statistical P values were two-sided, and P < 0.05 was considered 
statistically significant.

Ethics approval and inform consent. The study was based on open-source data from multiple databases. 
Ethical approval has been provided for the patients involved in these databases. Therefore, there are no ethical 
issues with this article.

Data availability
The genetic and clinical data used in this study are available in the GEO (GSE45547: https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE45 547; GSE49710: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE49 710; GSE73517: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE73 517; GSE120559: https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE12 0559), GDC (https:// xenab rowser. net/ datap ages/? cohort= 
GDC% 20TAR GET- NBL& remov eHub= https% 3A% 2F% 2Fxena. treeh ouse. gi. ucsc. edu% 3A443) and ArrayExpress 
(https:// www. ebi. ac. uk/ biost udies/ array expre ss/ studi es/E- MTAB- 8248? query=E- MTAB- 8248) databases. Cell 
cycle-related genes were obtained from the MSigDB (KEGG: https:// www. gsea- msigdb. org/ gsea/ msigdb/ human/ 
genes et/ KEGG_ CELL_ CYCLE. html; GOBP: https:// www. gsea- msigdb. org/ gsea/ msigdb/ human/ genes et/ GOBP_ 
CELL_ CYCLE. html). Data on the expression levels of 7 risk model genes in multiple cancers were obtained from 
the GEPIA (http:// gepia. cancer- pku. cn/ detail. php? click tag= matrix) platform. Mutations in 7 risk model genes 
from multidimensional cancer by the cBioPortal for Cancer Genomics (https:// www. cbiop ortal. org/ resul ts/ oncop 
rint? cancer_ study_ list= laml_ tcga_ pan_ can_ atlas_ 2018% 2Cacc_ tcga_ pan_ can_ atlas_ 2018% 2Cblca_ tcga_ pan_ 
can_ atlas_ 2018% 2Clgg_ tcga_ pan_ can_ atlas_ 2018% 2Cbrca_ tcga_ pan_ can_ atlas_ 2018% 2Ccesc_ tcga_ pan_ can_ 
atlas_ 2018% 2Cchol_ tcga_ pan_ can_ atlas_ 2018% 2Ccoa dread_ tcga_ pan_ can_ atlas_ 2018% 2Cdlbc_ tcga_ pan_ 
can_ atlas_ 2018% 2Cesca_ tcga_ pan_ can_ atlas_ 2018% 2Cgbm_ tcga_ pan_ can_ atlas_ 2018% 2Chnsc_ tcga_ pan_ 
can_ atlas_ 2018% 2Ckich_ tcga_ pan_ can_ atlas_ 2018% 2Ckirc_ tcga_ pan_ can_ atlas_ 2018% 2Ckirp_ tcga_ pan_ can_ 
atlas_ 2018% 2Clihc_ tcga_ pan_ can_ atlas_ 2018% 2Cluad_ tcga_ pan_ can_ atlas_ 2018% 2Clusc_ tcga_ pan_ can_ atlas_ 
2018% 2Cmeso_ tcga_ pan_ can_ atlas_ 2018% 2Cov_ tcga_ pan_ can_ atlas_ 2018% 2Cpaad_ tcga_ pan_ can_ atlas_ 
2018% 2Cpcpg_ tcga_ pan_ can_ atlas_ 2018% 2Cprad_ tcga_ pan_ can_ atlas_ 2018% 2Csarc_ tcga_ pan_ can_ atlas_ 
2018% 2Cskcm_ tcga_ pan_ can_ atlas_ 2018% 2Cstad_ tcga_ pan_ can_ atlas_ 2018% 2Ctgct_ tcga_ pan_ can_ atlas_ 
2018% 2Cthym_ tcga_ pan_ can_ atlas_ 2018% 2Cthca_ tcga_ pan_ can_ atlas_ 2018% 2Cucs_ tcga_ pan_ can_ atlas_ 
2018% 2Cucec_ tcga_ pan_ can_ atlas_ 2018% 2Cuvm_ tcga_ pan_ can_ atlas_ 2018&Z_ SCORE_ THRES HOLD=2. 
0& RPPA_ SCORE_ THRES HOLD=2. 0& profi leFil ter= mutat ions% 2Cstr uctur al_ varia nts% 2Cgis tic& case_ set_ 
id=w_ mut& gene_ list= NMU% 252C% 2520E 2F3% 252C% 2520U BE2S% 252C% 2520D HFR% 252C% 2520M IA% 
252C% 2520C HD5% 252C% 2520F AXDC2 & genes et_ list=% 20& tab_ index= tab_ visua lize& Action= Submit). The 
data used for drug analysis were obtained from the GSCA (http:// bioin fo. life. hust. edu. cn/ GSCA/#/ drug) and 
CellMiner (https:// disco ver. nci. nih. gov/ cellm iner/ loadD ownlo ad. do) databases. All other data that support the 
conclusions of this study are provided in the article and its supplementary files.
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