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Due to the frequent occurrence of numerous emergency events that have significantly damaged 
society and the economy, the need for emergency decision-making has been manifest recently. It 
assumes a controllable function when it is critical to limit property and personal catastrophes and 
lessen their negative consequences on the natural and social course of events. In emergency decision-
making problems, the aggregation method is crucial, especially when there are more competing 
criteria. Based on these factors, we first introduced some basic concepts about SHFSS, and then 
we introduced some new aggregation operators such as the spherical hesitant fuzzy soft weighted 
average, spherical hesitant fuzzy soft ordered weighted average, spherical hesitant fuzzy weighted 
geometric aggregation, spherical hesitant fuzzy soft ordered weighted geometric aggregation, 
spherical hesitant fuzzy soft hybrid average, and spherical hesitant fuzzy soft hybrid geometric 
aggregation operator. The characteristics of these operators are also thoroughly covered. Also, 
an algorithm is developed within the spherical hesitant fuzzy soft environment. Furthermore, we 
extend our investigation to the Evaluation based on the Distance from Average Solution method in 
multiple attribute group decision-making with spherical hesitant fuzzy soft averaging operators. And a 
numerical illustration for “supply of emergency aid in post-flooding the situation” is given to show the 
accuracy of the mentioned work. Then a comparison between these operators and the EDAS method 
is also established in order to further highlight the superiority of the established work.

Abbreviations
SHFSS	� Spherical hesitant fuzzy soft sets
AO	� Aggregation operators
EDAS methodology	� Evaluation based on the distance from average solution
DMPs	� Decision-making problems
MAGDM	� Multiple attribute group decision-making
EmDM	� Emergency decision-making
SHFSWA	� Spherical hesitant fuzzy soft weighted average
SHFSOWA	� Spherical hesitant fuzzy soft ordered weighted average
SHFWGA​	� Spherical hesitant fuzzy weighted geometric aggregation
SHFSOWG	� Spherical hesitant fuzzy soft ordered weighted geometric aggregation
SHFSHA	� Spherical hesitant fuzzy soft hybrid average
SHFSHG	� Spherical hesitant fuzzy soft hybrid geometric aggregation operator
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Zadeh1 presented the fuzzy sets to explain the uncertainty of evaluation information and offered a way to deal 
with the difficulties of gathering accurate data for multi-attribute decision-making confusion. The theory of 
fuzzy sets has developed over time and across many disciplines since its beginning in 1965. The membership 
grade in the fuzzy set is close to [0, 1], but in several real-world applications, we additionally deal with non-
membership grades. As a result, Atanassov2 prolonged the theory of FS to the intuitionistic fuzzy set (IFS), 
which compensates for the shortcoming of FS. Many researchers have become interested in IFS and utilized it 
to achieve their expected outcome in the real-world structure of DMPs. Even though non-membership grade 
(NMG) is engaged with the membership grade (MG) under the condition of 0 ≤ MG + NMG ≤ 1 , IFS enhances 
the context for decision-makers (DMs). The generalized intuitionistic fuzzy aggregation operators were devel-
oped by Zhao et al.3. In addition4, introduces some intuitionistic fuzzy ordered weighted average (IFOWA), 
intuitionistic fuzzy hybrid average aggregation operators (IFHA), and intuitionistic fuzzy weighted average 
(IFWA) operators. Furthermore5, establishes IFAO as well as IF hybrid arithmetic and geometric aggregation 
operators. Subsequently, Interval values were then used to distinguish between the MG and NMG, and a new 
concept named “interval-valued IFS” (IVIFS) was introduced by6 as the specialization of FS and IFS. IFS and 
IVIFS concepts applied to a variety of problems, including collective decision-making7, similarity measures8, and 
MCDM dilemmas9. Zhang et al.10 presented several content for interval-valued IFS. While in many problems, 
decision-makers used data in the form of ‘0.6 ’ and ‘0.5’ as MG and NMG and IFS fail to effectively manage this 
type of data. In order to address this situation, Yager11 enhanced the concept of IFS and initiated the Pythagorean 
fuzzy set (PyFS) under the criterion, 0 ≤ MG2 + NMG2 ≤ 1 . As a matter of fact, PyFS conveys more effective 
information, so IFS can be perceived as a subset of PyFS. Khan et al.12 initiated the Pythagorean fuzzy Dombi 
aggregation operators and their application in DMPs, even though aggregation operators are extremely useful in 
transforming the total amount of data to a single number that aids us in DMPs by choosing the best option out 
of the available ones. Furthermore13, proposes PyF interaction AO and its application in MADM. In addition, 
Liu and Wang14 invented the archimedean Bonferroni operators (ABO) for multiple-attribute decision-making. 
Despite the fact that many decision-making situations call for us to take the neutral grade into account, none of 
the theories offered above can consider anything other than MG and NMG, Cuong15 introduced picture fuzzy 
set (PFS) to overcome this limitation by the addition of another grade i.e. neutral grade (nMG). Based on PFS, 
Cuong et al.16 Introduce the conjunction, disjunction, negation, and implication essential fuzzy logic opera-
tors. Wang et al.17 also propose some concepts and operational laws, and they discuss some other PF geometric 
aggregation operators and their properties. Wei18 and Zeng et al.19 also discuss some PF aggregation operators. 
Zeng and colleagues20 characterized an improved model of textual picture fuzzy topsis strategy and its use in 
the Oracle E-Business Suite. We also have a condition in the picture fuzzy set 0 ≤ MG + nMG + NMG ≤ 1 . 
However, in some circumstances, the information offered by experts cannot be addressed by PFS. For exam-
ple, we can see that sum (0.6, 0.5, 0.3) /∈ [0, 1] when specialists offer “0.6′′ as MG, “0.5′′ as nMG, and “0.3′′ as 
NMG. Mahmood et al.21 proposed a spherical fuzzy set to overcome these difficulties, with the condition that 
0 ≤ MG2 + nMG2 + NMG2 ≤ 1 . As a result, SFS is   a more generalized case, which gives decision-makers more 
flexibility in several MCDM dilemmas. In decision support systems, Jin et al.22 discovered spherical fuzzy loga-
rithmic AO that relies on entropy. Additionally, based on the SF framework23,24, explored a number of weighted 
average, weighted geometric, and harmonic mean AO and its uses in GDM issues. Ashraf et al.25 also presented 
spherical fuzzy Dombi AO. To aggregate the information of spherical fuzzy, Ashraf et al.26 initiated the GRA 
method, which focused on a spherical linguistic fuzzy Choquet integral environment. The TOPSIS method, 
developed by Ali et al.27, depends on a complex spherical fuzzy set with such a BM operator. It should be noted 
that all of the preceding existing literature solely addresses fuzzy data and does not take the parameterization 
structure under consideration. As a result, Molodtsov28 proposed the idea of a “Soft Set” (SS), which is more 
general than the fuzzy set due to its parameterization structure. Maji et al.29 proposed the idea of the fuzzy soft 
set (FSS), with the combination of FS and SS. In addition,30–32 established the application areas of FSS theory to 
medical conditions, decision-making challenges, and BCK/BC algebra. FSS is generalized through Interval type-2 
fuzzy33, which is a more powerful apparatus for dealing with fuzzy set theory and in decision making problems34. 
Moreover, Garg as well as Arora35 presented and proposed applications for Bonferroni mean arithmetic operators 
in an IFSS environment. Furthermore,36 established the idea of IF parameterized SS theory and its utilization 
in decision-making. Because IFSS is a limited concept, Peng et al.37 established the concept of Pythagorean 
FSS (PyFSS). Tang tackle the DMPs under R set34, q-rung orthopair set and the rough q-rung orthopair set38,39. 
Husain et al.40 define the aggregation operators of q-rung orthopair FS set, which generalizes the intuitionistic 
FSS along with the Pythagorean FSS and some q-rung orthopair FS aggregation operators. Because FSS, IFSS, 
PyFSS, and qROFSS just explore MG and NMG whereas nMG was not mentioned. Kha41 merged SS and PFS, 
to initiate a holistic concept named picture fuzzy soft set (PFSS). Jan et al.42 also introduced and discussed 
multi-valued picture FSS in GDMPs. Moreover, SFS and SS are merged to establish the new concept known as 
a spherical fuzzy softset (SFSS), which is the generalization of the PFSS and is discussed in43. Furthermore44,45, 
introduced the idea of an interval-valued neutrosophic fuzzy soft set and a bipolar fuzzy neutrosophic fuzzy soft 
set, as well as its implementation in DMPs. On the other hand, another drawback of FS is that occasionally it can 
be challenging to determine the precise membership degree of evaluation information. Torra46 created the HFS 
in order to represent membership degrees using a variety of possible crisp numbers. HFS is the most common 
method of keeping DMPs ambiguous. Babitha et al.47 developed the most imported notion of HFSS. Rui Wang 
and Yanlai Li48 developed the novel idea of picture hesitant fuzzy set its DM method and also mentioned its 
application in complex MCDM in order to address the practical issues of MCDM.

In order to deal with various MADM problems, Keshavarz et al.49 initially proposed the EDAS method. In 
particular, when incompatible criteria occur in MADM problems, then the EDAS method is very effective. Some 
conventional distances are also derived for the EDAS method in a manner similar to the VIKOR method (Mir-
ghafoori et al.50) and TOPSIS method (Liang et al.51) . On the basis of the average solution, the EDAS method 
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is regarded as PDAS and NDAS (AS). The ideal alternative ought to have a major PDAS value and a minimal 
NDAS value (Keshavarz et al.52) . The EDAS method was developed by Kahraman et al.53 using IFSs. The EDAS 
method was used by Keshavarz et al.54 to improve a stochastic multi-attribute decision-making process. The EDAS 
method was established by Keshavarz et al.55 in a dynamic multi-attribute decision-making approach. Stevic 
et al.56 used one of the novel methods based on the fuzzy EDAS method’s multicriteria analysis to identify the 
best PVC carpentry manufacturer for apartment renovations. Somehow, EmDMPs are frequently a significant 
problem with picture-hesitant fuzzy sets.

So, we introduced a spherical hesitant fuzzy soft set, by taking into account the hesitant fuzzy sets along with 
the membership, neutral, and non-membership grades and with the parameterized structure. Moreover, using 
the aggregation operator in spherical hesitant fuzzy soft computing, we propose a novelistic approach to MCDM 
problems. Furthermore, we extend our investigation to the EDAS method in MADM under SHFS averaging 
operators. The important purpose of our study is to develop a unique approach that could be used more success-
fully to resolve some MADM concerns in the context of the EDAS method with SHFSS. Motivation of spherical 
hesitant fuzzy soft sets are developed to further enhance the flexibility and expressiveness of fuzzy soft sets by 
allowing the representation of uncertainty in a spherical region (MG, nMG, NMG). This approach provides a 
more robust and accurate representation of uncertain and vague information, making it useful in a wide range 
of decision-making problems, including pattern recognition, machine learning, and multi-criteria decision-
making. SHFSS address all the features that must be considered during decision-making, such as parameteriza-
tions (by soft set), hesitation and psychological effects (by hesitant effect). So, it is the most effective technique 
for advanced challanges in MADM.

Moreover, we’ve organized our article below: The fundamental concepts of FS, SS, FSS, HSS, HFSS, PFS, 
PFSS, PHFSS, SFS, SFSS, and SHFSS are discussed in “Preliminaries” section. In next “Spherical hesitant fuzzy 
soft set and their operational laws ” section, we defined the score and accuracy function. Furthermore, the 
aggregation operators based on “Spherical Hesitant fuzzy soft set” and their related theorems are thoroughly 
discussed.  “Spherical hesitant fuzzy soft average aggregation operators” section deals with the MCDM applica-
tion based on these operators. Eventually, in “Decision making model under shfs aggregation information” sec-
tion, we furnished a numerical example and gave a comparative analysis by ranking our proposed work to back 
it up. Furthermore in “Extended EDAS methodology” section EDAS method is used to cope with the MADM 
challenges in SHFS averaging operators. And a numerical illustration is used to support the effectiveness of the 
proposed method. After that, the comparative study is mentioned for the proposed work is mentioned to show 
the superiority of our work. And at the end the conclusion is given to show how established the work performs 
better than prior articles along with its limitations and the future work .

Preliminaries
Definition 2.1  1On a nonempty set R,where ϑ(a) : R → [0, 1] represent the membership grade (MG), the fuzzy 
set (FS) is furnished as

Definition 2.2  28Over the fixed universal set R,and T as the parametric set,the duo (S, T) is referred to being a 
soft set (SS) , such that M ⊆ T , the power set of R is P(R), where the map S is furnished as

Definition 2.3  29Let T be the parametric set, R is the universal set, and M ⊆ T . A pair (S, T) over R, is supposed 
to be fuzzy soft set (FSS), with the map S is furnished as S : M → Æ, as defined by

where Æ is the collection of all FSS on R. Where ϑj(ai) indicates the MG meets the condition that 0 ≤ ϑj(ai) ≤ 1.

Definition 2.4  46Over the universal set R the hesitant fuzzy set (HFS) in aspect of a function, when implemented 
to R yields a subsets of interval[0, 1],that is depicted as ;

where ai ∈ R to the set Ĥ , ϑĤ (ai) is a collection of values in interval [0, 1], is the membership degree of the 
number.

Definition 2.5  47Let ĥ(a) is the collection of all hesitant fuzzy sets in R ; a pair (Ĥ ,O) is termed as hesitant fuzzy 
soft set (HFSS) over R, with the mapping Ĥ is defined as;

Definition 2.6  17Over the universal set R, the picture fuzzy set (PFS) is given by

where ϑ(a) : R → [0, 1] is the MG, ξ(a) : R → [0, 1] is the nMG and ∂(a) : R → [0, 1] is NMG through the 
premise that 0 ≤ ϑ(a), ξ(a), ∂(a) ≤ 1.

Ź = {(a,ϑ(a)) : a ∈ R}.

S : M → P(R).

Sρj(ai) = {(ai ,ϑj(ai)) : ai ∈ R}

Ĥ = {(ai ,ϑĤ (ai))|ai ∈ R}

Ĥ : O → ĥ(a)

P = {(a, (ϑ(a), ξ(a), ∂(a))) : a ∈ R}
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Definition 2.7  48Over the universal set R the picture hesitant fuzzy set (PHFS) is a function, when implemented 
to R yields a subsets of [0, 1],that can be depicted as;

where ϑ(a) = {φ|φ ∈ ϑ(a)}, ξ(a) = {χ |χ ∈ ξ(a)}, ∂(a) = {ψ |ψ ∈ ∂(a)} is a collection of three sets of values in 
interval [0, 1], is the membership,neutral and non-membership degree of the elements. Where a ∈ R to the set 
Ň  over the condition that 0 ≤ φ+ + χ+ + ψ+ ≤ 1 , where φ+ = ∪φ∈ϑ(a) max{φ},χ+ = ∪χ∈ξ(a) max{χ} and 
ψ+ = ∪ψ∈∂(a) max{ψ}. And ň = {ϑ , ξ , ∂} represents the PHFE.

Definition 2.8  41Over the universal set R and T be a parametric set. A pair (S, T) is known as the picture fuzzy 
soft set (PFSS), with M ⊆ T and the mapping S is; S : M → Œ defined by

where Œ over R is the collection of all PFSS over R. Where ϑj(ai), ξj(ai) and ∂j(ai) reflect the MG, nMG, and 
NMG that satisfy the condition 0 ≤ ϑj(ai), ξj(ai), ∂j(ai) ≤ 1.

Definition 2.9  23A spherical fuzzy set over the universal set R is the form of 

where ϑ(a) : R → [0, 1] is the MG, ξ(a) : R → [0, 1] is the nMG and ∂(a) : R → [0, 1] is NMG through the premise 
that 0 ≤ (ϑ(a))2 + (ξ(a))2 + (∂(a))2 ≤ 1.

Definition 2.10  57Over the universal set R the spherical hesitant fuzzy set (SHFS) is a function, when imple-
mented to R yields a subsets of [0, 1] ,that can be depicted as ;

w h e re  ϑ(a) = {φ2|φ2 ∈ ϑ(a)}, ξ(a) = {χ2|χ2 ∈ ξ(a)}, ∂(a) = {ψ2|ψ2 ∈ ∂(a)} i s  a  c o l l e c t i on  o f 
three sets of several values in [0,  1], is the membership, neutral and non-membership degree of 
the elements,a ∈ R to the set Ř over the condition that 0 ≤ (φ2)+ + (χ2)+ + (ψ2)+ ≤ 1 , where 
(φ2)+ = ∪φ2∈ϑ(a) max{φ2}, (χ2)+ = ∪χ2∈ξ(a) max{χ2} and (ψ2)+ = ∪ψ2∈∂(a) max{ψ2}. And ř = {ϑ , ξ , ∂} 
represents the SHFE.

Definition 2.11  43Let a universal set R and T be a parametric set. A duo (S, T) is referred to as a spherical fuzzy 
soft set (SFSS), with M ⊆ T ,m ∈ M and the mapping S is; S : M → ϒ defined by

where ϒ over R is the collection of all SFSS. Where ϑj(ai), ξj(ai), and ∂j(ai) reflect the MG, nMG, and NMG that 
satisfy the condition 0 ≤ (ϑj(ai))

2 + (ξj(ai))
2 + (∂j(ai))

2 ≤ 1.

Spherical hesitant fuzzy soft set and their operational laws
In this section, the idea of the spherical hesitant fuzzy soft set (SHFSS) and their operations and operators are 
introduced. It is also necessary to rank the SHFSS when applying them to practical MCDM problems; thus, we 
define several fundamental operationg laws for SHFSNs, score functions, and accuracy functions to aid in the 
selection of the most effective alternative in MCDM problems.

Definition 3.1  Let a universal set R and T be a parametric set. A duo (S, T) is referred to as a spherical hesitant 
fuzzy soft set (SHFSS), with M ⊆ T ,m ∈ M and the mapping S is;S : M → ϒ defined by

w h e r e  ϒ  o v e r  R  i s  t h e  c o l l e c t i o n  o f  a l l  S H F S S .  W i t h 
ϑj(ai) = {φj|φj ∈ ϑj(ai)}, ξj(ai) = {χj|χj ∈ ξj(ai)}, ∂j(ai) = {ψj|ψj ∈ ∂j(ai))} is a collection of three hesitant 
sets of several values in [0, 1], is the membership, neutral and non-membership degree of the elements, over the 
condition 0 ≤ (φ+

j )
2 + (χ+

j )2 + (ψ+
j )2 ≤ 1 , where (φ+) = ∪φj∈ϑj(ai) max{αj}, (χ

+) = ∪χj∈ξj(ai) max{χj} and 
(ψ+) = ∪ψj∈∂j(ai) max{ψj}. And Ŝ = {ϑj(ai), ξj(ai), ∂j(ai)} represents the SHFSE. 

Definition 3.2  Let Sρrs = {ϑs(ar), ξs(ar), ∂s(ar)}, Sρrt = {ϑt(ar), ξt(ar), ∂t(ar)} be two SHFSNs and κ > 0. Then 
basic operational laws for SHFSNs are defined by 

(1)	 Scρrs = ∪φs∈ϑs ,χs∈ξs ,ψs∈∂s (ψs ,χs ,φs).

(2)	 κSρrs = ∪φs∈ϑs ,χs∈ξs ,ψs∈∂s (
√

1− (1− (φs)2)κ , (χs)
κ , (ψs)

κ ).

(3)	 Sκρrs = ∪φs∈ϑs ,χs∈ξs ,ψs∈∂s (φs)
κ , (χs)

κ ,
√

1− (1− (ψs)2)κ .

(4)	 Sρrs⊕Sρrt = ∪φs∈ϑs ,χs∈ξs ,ψs∈∂s ,φt∈ϑt ,χt∈ξt ,ψt∈∂t (
√

(φs)2 + (φt)2 − (φs)(φt), (χs)(χt), (ψs)(ψt)).

(5)	 Sρrs⊗Sρrt = ∪φs∈ϑs ,χs∈ξs ,ψs∈∂s ,φt∈ϑt ,χt∈ξt ,ψt∈∂t ((φs)(φt), (χs)(χt),
√

(ψs)2 + (ψt)2 − (ψs)2)(ψt)2).

Ň = {(a, (ϑ(a), ξ(a), ∂(a)))|a ∈ R}

Sρj(ai) = {(ai , (ϑj(ai), ξj(ai), ∂j(ai)) : ai ∈ R}

Ř = {(a, (ϑ(a), ξ(a), ∂(a)))|a ∈ R}

Sρj(m) = {(ai , (ϑj(ai), ξj(ai), ∂j(ai)) : ai ∈ R}

Sρij(m) = {(ai , (ϑj(ai), ξj(ai), ∂j(ai)) : ai ∈ R}
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Definition 3.3  let ̂ = {ϑs(ar), ξs(ar), ∂s(ar)} be a SHFSE, the numbers of elements in ϑs , ξs, ∂s are x, y, z respec-
tively.Thus, the score function is defined as

and the accuracy function is;

Spherical hesitant fuzzy soft average aggregation operators
Operators are necessary to develop a robust framework for decision-making in a spherical hesitant fuzzy soft 
environment, where uncertainty and hesitancy are inherent in the data. So, some of the averaging aggregated 
operators of SHFSS are given as:

Spherical hesitant fuzzy soft weighted average (SHFSWA) aggregation operators.  This opera-
tor is used to calculate the weighted average of a set of SHFSS, where the weights are represented by SHFSS. This 
operator is essential because it allows for the aggregation of multiple SHFSS with different degrees of uncertainty, 
which is a common scenario in decision-making problems.

Definition 4.1  Suppose Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J) having 
WVs ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)

T for Ŵ(jr) parameters (attributes), where ŕr ∈ [0, 1] with �p
r=1 ŕr = 1 and ŕr ≥ 0, then 

SHFSWA operator is the mapping defined as SHFSWA : ϒp → ϒ , where ( ϒ is the family of all SHFSNs)such 
that SHFSWA Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p).

Theorem 4.2  Let Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p), be an SHFSNs, the aggregated data by SHFSWA 
operator is also an SHFSNs, and given by

where r = 1, 2, . . . , p , if ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T denote the WV of ŕr parameters with condition ŕr ∈ [0, 1] with 

�
p
r=1 ŕr = 1 and ŕr ≥ 0.

Proof  This conclusion has to be supported by mathematical induction.
For r = 2;

By using the operational law, we have:

sc(̂ ) =

(

1+ 1
x

x
∑

s=1

φs −
1
y

y
∑

s=1

χs −
1
z

z
∑

s=1

ψs

)

2
, sc(̂ ) ∈ [0, 1].

ac(̂ ) =

(

1

x

x
∑

s=1

φs −
1

z

z
∑

s=1

ψs

)

, ac(̂ ) ∈ [0, 1].

SHFSWA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jp)) = ⊕
p
r=1ŕrŴ(jr).

SHFSWA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jp))

=⊕
p
r=1 ŕrŴ(jr).

=
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,φŴ(jp) ∈ ϑŴ(jp),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,χŴ(jp) ∈ ξŴ(jp),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,ψŴ(jp)
∈ ∂

Ŵ(jp) .

{ √

1−�
p
r=1(1− φ2

Ŵ(jr )
)ŕr ,

�
p
r=1(χŴ(jr ))

ŕr ,�
p
r=1(ψŴ(jr ))

ŕr

}

,

SHFSWA(Ŵ(j1),Ŵ(j2)) = ⊕2
k=1ŕrŴ(jr) = ŕ1Ŵ(j1)⊕ ŕ2Ŵ(j2).

ŕ1Ŵ(j1) =
⋃

φŴ(j1)∈ϑŴ(j1) ,χŴ(j1)∈ξŴ(j1) ,ψŴ(j1)
∈∂Ŵ(j1) .

{√

1− (1− φ2
Ŵ(j1)

)ŕ1 , (χŴ(j1))
ŕ1 , (ψŴ(j1))

ŕ1
}

.
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Thus, the results are true for r = 2 . Assume the results also hold for p = z.

Further, suppose that the results are true for r = z + 1, so combined the above two conditions, we have the 
following form;

ŕ2Ŵ(j2) =
�

φŴ(j2)∈ϑŴ(j2) ,χŴ(j2)∈ξŴ(j2) ,ψŴ(j2)
∈∂Ŵ(j2) .

��

1− (1− φ2
Ŵ(j2)

)ŕ2 , (χŴ(j2))
ŕ2 , (ψŴ(j2))

ŕ2
�

.

ŕ1Ŵ(j1)⊕ ŕ2Ŵ(j2) =
�

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2).







�

1− (1− φ2
Ŵ(j1)

)ŕ1 , (χŴ(j1))
ŕ1 , (ψŴ(j1))

ŕ1⊕
�

1− (1− φ2
Ŵ(j2)

)ŕ2 , (χŴ(j2))
ŕ2 , (ψŴ(j2))

ŕ2







.

ŕ1Ŵ(j1)⊕ ŕ2Ŵ(j2) =
�

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2).











�

(1− (1− φ2
Ŵ(j1)

)ŕ1)+ (1− (1− φ2
Ŵ(j2)

)ŕ2)−

(1− (1− φ2
Ŵ(j1)

)ŕ1)(1− (1− φ2
Ŵ(j2)

)ŕ2)
,

(χŴ(j1))
ŕ1(χŴ(j2))

ŕ2 , (ψŴ(j1))
ŕ1(ψŴ(j2))

ŕ2











.

ŕ1Ŵ(j1)⊕ ŕ2Ŵ(j2) =
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2).

{ √

1− (1− φ2
Ŵ(j1)

)ŕ1(1− φ2
Ŵ(j2)

)ŕ2 ,

(χŴ(j1))
ŕ1(χŴ(j2))

ŕ2 , (ψŴ(j1))
ŕ1(ψŴ(j2))

ŕ2

}

.

ŕ1Ŵ(j1)⊕ ŕ2Ŵ(j2) =
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2).

{ √

1−�2
r=1(1− φ2

Ŵ(jr )
)ŕr ,

�2
r=1(χŴ(jr ))

ŕr ,�2
r=1(ψŴ(jr ))

ŕr

}

.

SHFSWA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jz))

=⊕z
r=1 ŕrŴ(jr)

=
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,φŴ(jz ) ∈ ϑŴ(jz ),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,χŴ(jz ) ∈ ξŴ(jz ),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,ψŴ(jz )
∈ ∂

Ŵ(jz ) .

{√

1−�z
r=1(1− φ2

Ŵ(jr )
)ŕr ,�z

r=1(χŴ(jr ))
ŕr ,�z

r=1(ψŴ(jr ))
ŕr
}

SHFSWA(Ŵ(j1),Ŵ(j2), ...,Ŵ(jz),Ŵ(jz+1))

=⊕z
r=1 ŕrŴ(jr)+ ŕz+1Ŵ(jz+1)

=
�

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,

φŴ(jz ) ∈ ϑŴ(jz ),φŴ(jz+1) ∈ ϑŴ(jz+1)

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,

χŴ(jz ) ∈ ξŴ(jz ),χŴ(jz+1) ∈ ξŴ(jz+1)

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,

ψ
Ŵ(jz )

∈ ∂
Ŵ(jz )

,ψ
Ŵ(jz+1)

∈ ∂
Ŵ(jz+1)







�

1−�z
r=1(1− φ2

Ŵ(jr )
)ŕr ,�z

r=1(χŴ(jr ))
ŕr ,�z

r=1(ψŴ(jr ))
ŕr⊕

�

1− (1− φ2
Ŵ(jz+1)

)ŕz+1 , (χŴ(jŕz+1
))
ŕz+1 , (ψŴ(jŕz+1

))
ŕz+1







=
�

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,

φŴ(jz ) ∈ ϑŴ(jz ),φŴ(jz+1) ∈ ϑŴ(jz+1)

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,

χŴ(jz ) ∈ ξŴ(jz ),χŴ(jz+1) ∈ ξŴ(jz+1)

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,

ψ
Ŵ(jz )

∈ ∂
Ŵ(jz )

,ψ
Ŵ(jz+1)

∈ ∂
Ŵ(jz+1)











�

(1−�z
r=1(1− φ2

Ŵ(jr )
)ŕr )+ (1− (1− φ2

Ŵ(jz+1)
)ŕz+1)−

(1−�z
r=1(1− φ2

Ŵ(jr )
)ŕr )(1− (1− φ2

Ŵ(jz+1)
)ŕz+1 )

,

�z
r=1(χŴ(jr ))

ŕr (χŴ(jz+1))
ŕz+1 ,�z

r=1(ψŴ(jr ))
ŕr (ψŴ(jz+1))

ŕz+1










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It is obvious from the expression above that aggregated value is also SHFSN. Consequently, the outcome is valid 
for all n.

which presents the proof. 	�  �

Property 4.3  Obviously, there are some properties which are usually achieved by SHFSWA aggregation operators.

(a) Idempotency: let Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be any collection of SHFSS. If all of the 
Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )) are identical then there is:

(b) Monotonicity: let Ŵ′(jr) = (φŴ′(jr ),χŴ′(jr ),ψŴ′(jr )), and Ŵ′(jr) = (φŴ′(jr ),χŴ′(jr ),ψŴ′(jr )) where (r = 1, 2, 3, .., p) 
be any collection of SHFSS. If it satisfied that Ŵ(jr) ≤ Ŵ′(jr) for whole r ∈ ϒ then:

(c) Boundedness: let Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be any collection of SHFSS. Assuming that 
Ŵ(jr)

− = (minφŴ(jr ) , minχŴ(jr ) , maxψŴ(jr ) ) and Ŵ(jr)+ = (maxφŴ(jr ) , minχŴ(jr ) , minψŴ(jr ) ) then:

Spherical hesitant fuzzy soft ordered weighted average (SHFSOWA) operator.  Since it is evi-
dent from the analysis above that SHFSWA cannot balance the order position by scoring the SHFS values, we 
will address the idea of a SHFSOWA operator in this part in order to get around this limitation. By grading 
the SHFSNs, this operator can weigh the order position. Additionally, the features of well-known operators are 
examined.

Definition 4.4  Suppose Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J) 
with ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)

T  WV forŴ(jr) parameters, where ŕr ∈ [0, 1] with �p
r=1 ŕr = 1 and ŕr ≥ 0, where 

(σ1, σ2, ..., σp) is the variation of (1, 2, 3, ..., p) such that mσ(r−1) ≥ mσ(r) for all r = 2, 3, ..., p . SHFSOWA operator 
is the mapping defined as SHFSOWA : ϒp → ϒ , where ( ϒ is the family of all SHFSNs) such that SHFSOWA 
Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p).

Theorem 4.5  Let Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p), be an SHFSNs, the aggregated value by SHF‑
SOWA operator is also an SHFSNs, and given by

=
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,

φŴ(jz ) ∈ ϑŴ(jz ),φŴ(jz+1) ∈ ϑŴ(jz+1)

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,

χŴ(jz ) ∈ ξŴ(jz ),χŴ(jz+1) ∈ ξŴ(jz+1)

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,

ψ
Ŵ(jz )

∈ ∂
Ŵ(jz )

,ψ
Ŵ(jz+1)

∈ ∂
Ŵ(jz+1)

{ √

(1−�z
r=1(1− φ2

Ŵ(jr )
)ŕr (1− φ2

Ŵ(jz+1)
)ŕz+1 ,

�z
r=1(χŴ(jr ))

ŕr (χŴ(jz+1))
ŕz+1 ,�z

r=1(ψŴ(jr ))
ŕr (ψŴ(jz+1))

ŕz+1

}

=
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,φŴ(jz ) ∈ ϑŴ(jz ),φŴ(jz+1) ∈ ϑŴ(jz+1)

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,χŴ(jz ) ∈ ξŴ(jz ),χŴ(jz+1) ∈ ξŴ(jz+1)

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,ψŴ(jz )
∈ ∂

Ŵ(jz )
,ψ

Ŵ(jz+1)
∈ ∂

Ŵ(jz+1)

{ √

(1−�z+1
r=1(1− φ2

Ŵ(jr )
)ŕr ,

�z+1
r=1(χŴ(jr ))

ŕr ,�z+1
r=1(ψŴ(jr ))

ŕr

}

SHFSWA(Ŵ(j1), ...,Ŵ(jp)) =
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,φŴ(jp) ∈ ϑŴ(jp),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,χŴ(jp) ∈ ξŴ(jp),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,ψŴ(jp)
∈ ∂

Ŵ(jp) .

{ √

1−�
p
r=1(1− φ2

Ŵ(jr )
)ŕr ,

�
p
r=1(χŴ(jr ))

ŕr ,�
p
r=1(ψŴ(jr ))

ŕr

}

SHFSWA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jp)) = Ŵ(j)

SHFSWA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jp)) = SHFSWA(Ŵ′(j1),Ŵ
′(j2),Ŵ

′(j3), ....,Ŵ
′(jp))

minŴ(jr) ≤ SHFSWA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jp)) ≤ max Ŵ(jr)

SHFSOWA(Ŵ(jσ1),Ŵ(jσ2),Ŵ(jσ3), ....,Ŵ(jσp)) = ⊕
p
r=1ŕrŴ(jσ r).
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where r = 1, 2, . . . , p , if ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T  denote the weight vector (WV) of ŕr parameters with condi‑

tion ŕr ∈ [0, 1] with �p
r=1 ŕr = 1 and ŕr ≥ 0. Where (σ1, σ2, ..., σp) is the permutation of (1, 2, 3, ..., p) such that 

mσ(r−1) ≥ mσ(r) for all r = 2, 3, ..., p.

Proof  The proof is similar to above Theorem4.2. 	�  �

Moreover, similarity to the SHFSWA operator, the SHFSOWA operator has some important properties, such 
as idempotency, boundedness, monotonicity.

Spherical hesitant fuzzy soft hybrid average (SHFSHA) operator.  According to Definition  4.1 
and 4.4, SHFSWA operators only weight the spherical hesitant fuzzy soft number itself, whereas SHFSOWA 
operators weight the ordered ranks of the spherical hesitant fuzzy soft  number rather than the arguments them-
selves. Therefore, in both the SHFSWA and SHFSOWA operators, the weights represent  two distinct aspects. 
However, merely one of them is taken into account by either operator. In the paragraphs that follow, we’ll suggest 
using the spherical hesitant fuzzy soft hybrid average (SHFSHA) operator to tackle this issue.

Definition 4.6  Suppose Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J) 
is the mapping defined as SHFSHA : ϒp → ϒ , where ( ϒ is the family of all SHFSNs) such that SHFSHA 
Ŵ′(jσ r) = (φŴ′(jσ r ),χŴ′(jσ r ),ψŴ′(jσ r )), (r = 1, 2, 3, .., p).

Here WV ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T for Ŵ′(jr) parameters with ŕr ∈ [0, 1], �p

r=1 ŕr = 1 and ŕr ≥ 0, and Ŵ′(jσ r) is the 
r-th biggest element of spherical hesitant fuzzy soft arguments Ŵ′(jσ r)(Ŵ

′(jσ r) = (nŕr)Ŵ(jσ r), r = 1, 2, 3, ..., p) , 
ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)

T is the WV of spherical hesitant fuzzy soft arguments Ŵ(jσ r)(r = 1, 2, 3, ..., p), with ́rr ∈ [0, 1] , 
�

p
r=1 ŕr = 1 and ŕr ≥ 0, and n is the balancing coefficient.

Theorem  4.7  Suppose Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p) be collection of SHFSNs (Ŵ, J) 
is the mapping defined as SHFSHA : ϒp → ϒ , where ( ϒ is the family of all SHFSNs) such that SHFSHA 
Ŵ′(jσ r) = (φŴ′(jσ r ),χŴ′(jσ r ),ψŴ′(jσ r )), (r = 1, 2, 3, .., p).

w h e re  W V  ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T  o f  Ŵ′(jk) p aram e t e r s ,  w i t h  ŕr ∈ [0, 1] ,  �

p
r=1 ŕr = 1 an d 

ŕr ≥ 0, and Ŵ′(jσ r) is the k-th biggest element of the spherical hesitant fuzzy soft arguments 
Ŵ′(jσ r)(Ŵ

′(jσ r) = (nŕr)Ŵ(jσ r), r = 1, 2, 3, ..., p, ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T is the WV of spherical hesitant fuzzy soft 

arguments Ŵ(jσ r)(r = 1, 2, 3, ..., p), with ŕr ∈ [0, 1] , �p
r=1 ŕr = 1 and ŕr ≥ 0, and n is the balancing coefficient.

Proof  The proof is directly analogous to above Theorem-4.2. 	�  �

Moreover, similarity to the SHFSWA operator, the SHFSHA operator has some important properties, such 
as idempotency, boundedness, monotonicity.

Spherical hesitant fuzzy soft weighted geometric aggregation (SHFSWGA) operator.  This 
operator is used to calculate the geometric average of a set of SHFSS. The use of this operator is important 
because it takes into account both the degree of MG, nMG, NMG, along with the degree of hesitancy of the ele-
ments in the SHFSS. This provides a more balanced consideration of all the elements in the set, instead of just 
focusing on the most dominant ones.

Definition 4.8  Suppose Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J) having 
ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)

T is WV of Ŵ(jr) parameters, where ŕr ∈ [0, 1] with �p
r=1 ŕr = 1 and ŕr ≥ 0, then SHFSWGA 

SHFSOWA(Ŵ(jσ1),Ŵ(jσ2),Ŵ(jσ3), ....,Ŵ(jσp))

=⊕
p
r=1 ŕrŴ(jσ r)

=
⋃

φŴ(jσ1) ∈ ϑ
Ŵ(jσ1)

,φŴ(jσ2) ∈ ϑŴ(jσ2), ...,φŴ(jσp) ∈ ϑŴ(jσp),

χ
Ŵ(jσ1)

∈ ξ
Ŵ(jσ1)

,χŴ(jσ2) ∈ ξŴ(jσ2), ...,χŴ(jσp) ∈ ξŴ(jσp),

ψ
Ŵ(jσ1)

∈ ∂
Ŵ(jσ1)

,ψŴ(jσ2) ∈ ∂Ŵ(jσ2), ...,ψŴ(jσp) ∈ ∂
Ŵ(jσp)

{ √

1−�
p
r=1(1− φ2

Ŵ(jσ r )
)ŕr ,

�
p
r=1(χŴ(jσ r ))

ŕr ,�
p
r=1(ψŴ(jσ r ))

ŕr

}

SHFSHA(Ŵ′(jσ1),Ŵ
′(jσ2),Ŵ

′(jσ3), ....,Ŵ
′(jσp)) = ⊕

p
r=1ŕrŴ

′(jσ r).

SHFSHA(Ŵ′(jσ1),Ŵ
′(jσ2),Ŵ

′(jσ3), ....,Ŵ
′(jσp)) = ⊕

p
r=1ŕrŴ

′(jσ r).

=
⋃

φŴ′(jσ1) ∈ ϑ
Ŵ′(jσ1)

,φŴ′(jσ2) ∈ ϑŴ′(jσ2), ...,φŴ′(jσn) ∈ ϑŴ′(jσn),

χ
Ŵ′(jσ1)

∈ ξ
Ŵ′(jσ1)

,χŴ′(jσ2) ∈ ξŴ′(jσ2), ...,χŴ′(jσn) ∈ ξŴ′(jσn),

ψ
Ŵ′(jσ1)

∈ ∂
Ŵ′(jσ1)

,ψŴ′(jσ2) ∈ ∂Ŵ′(jσ2), ...,ψŴ′(jσn)
∈ ∂

Ŵ′(jσn)
.

{
√

1−�
p
r=1(1− φ2

Ŵ′(jσ r )
)ŕr ,

�
p
r=1(χŴ′(jσ r ))

ŕr ,�
p
r=1(ψŴ′(jσ r ))

ŕr

}
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operator is the mapping defined as SHFSWGA : ϒp → ϒ , where ( ϒ is the family of all SHFSNs) such that 
SHFSWGA Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p).

Theorem 4.9  Let Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p), be an SHFSNs, the aggregated data by SHFSWGA 
operator is also an SHFSNs, and given by

where r = 1, 2, . . . , p , if ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T denote the WV of ŕr parameters with condition ŕr ∈ [0, 1] with 

�
p
r=1 ŕr = 1 and ŕr ≥ 0.

Proof  This conclusion has to be supported by mathematical induction.
For r = 2;

By using the operational law, we have:

Thus, the results are true for r = 2 . Assume the results also hold for p = z.

SHFSWGA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jp)) =

p
∏

r=1

(Ŵ(jr))
ŕr .

SHFSWGA(Ŵ(j1),Ŵ(j2),Ŵ(j3), ....,Ŵ(jp))

=

p
∏

r=1

(Ŵ(jr))
ŕr

=
⋃

φŴ(j1) ∈ ϑŴ(j1),φŴ(j2) ∈ ϑŴ(j2), ...,φŴ(jp) ∈ ϑŴ(jp),

χŴ(j1) ∈ ξŴ(j1),χŴ(j2) ∈ ξŴ(j2), ...,χŴ(jp) ∈ ξŴ(jp),

ψŴ(j1) ∈ ∂Ŵ(j1),ψŴ(j2) ∈ ∂Ŵ(j2), ...,ψŴ(jp)
∈ ∂

Ŵ(jp) .

{

�
p
r=1(φŴ(jr ))

ŕr ,�
p
r=1(χŴ(jr ))

ŕr ,

√

1−�
p
r=1(1− ψ2

Ŵ(jr )
)ŕr

}

SHFSWGA(Ŵ(j1),Ŵ(j2)) = (Ŵ(j1))
ŕ1 ⊗ (Ŵ(j2))

ŕ2 .

(Ŵ(j1))
ŕ1 =

�

φŴ(j1)∈ϑŴ(j1) ,χŴ(j1)∈ξŴ(j1) ,ψŴ(j1)
∈∂Ŵ(j1) .

�

(φŴ(j1))
ŕ1 , (χŴ(j1))

ŕ1 ,

�

1− (1− ψ2
Ŵ(j1)

)ŕ1
�

.

(Ŵ(j2))
ŕ2 =

�

φŴ(j2)∈ϑŴ(j2) ,χŴ(j2)∈ξŴ(j2) ,ψŴ(j2)
∈∂Ŵ(j2) .

�

(φŴ(j2))
ŕ2 , (χŴ(j2))

ŕ2 ,

�

1− (1− ψ2
Ŵ(j2)

)ŕ2
�

.

(Ŵ(j1))
ŕ1 ⊗ (Ŵ(j2))

ŕ2 =
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ŕ2 ,
�

1− (1− ψ2
Ŵ(j2)

)ŕ2
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ŕ1 ⊗ (Ŵ(j2))
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ŕr ,

√

1−�z
r=1(1− ψ2

Ŵ(jr )
)ŕr
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Further, suppose that the results are true for p = z + 1 , So combined the above two conditions, we have the 
following form;

It is obvious from the expression above that aggregated value is also SHFSN. Consequently, the outcome is valid 
for all n.

which presents the proof. 	�  �

Property 4.10  Obviously, there are some properties which are usually achieved by SHFSWGA aggregation operators.

(a) Idempotency: let Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be any collection of SHFSS. If all of the 
Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )) are identical then there is:

(b) Monotonicity: let Ŵ′(jr) = (φŴ′(jr ),χŴ′(jr ),ψŴ′(jr )), and Ŵ′(jr) = (φŴ′(jr ),χŴ′(jr ),ψŴ′(jr )) where (r = 1, 2, 3, .., p) 
be any collection of SHFSS. If it satisfied that Ŵ(jr) ≤ Ŵ′(jr) for whole r ∈ ϒ then:

(c) Boundedness: let Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be any collection of SHFSS. Assuming that 
Ŵ(jr)

− = (minφŴ(jr ) , minχŴ(jr ) , maxψŴ(jr ) ) and Ŵ(jr)+ = (maxφŴ(jr ) , minχŴ(jr ) , minψŴ(jr ) ) then:

Spherical hesitant fuzzy soft ordered weighted geometric aggregation (SHFSOWGA) opera-
tor.  Overall, the SHFSOWGA operator is a useful tool in decision-making problems in the spherical hesitant 
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ŕr + (Ŵ(jz+1))
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ŕz+1 ,

�

1− (1− ψ2
Ŵ(jz+1)
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ŕz+1 ,

�

(1−�z
k=1

(1− ψŴ(jr ))
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ŕr )(1− (1− ψ2

Ŵ(jz+1)
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fuzzy soft environment because it provides a flexible and balanced way to combine the elements in the SHFSS 
while taking into account the degree of importance of each element.

Definition 4.11  Suppose Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J) with 
WV ŕ = (ŕ1, ŕ2, ŕ3, .., ŕn)

T of Ŵ(jr) parameters, where ŕr ∈ [0, 1] with �p
r=1 ŕr = 1 and ŕr ≥ 0, where (σ1, σ2, ..., σp) 

is the variation (1, 2, 3,  ..., p) such that mσ(r−1) ≥ mσ(r) for all r = 2, 3, ..., p . SHFSOWGA operator is the 
mapping defined as SHFSOWGA : ϒp → ϒ , where ( ϒ is the family of all SHFSNs) such that SHFSOWGA 
Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p).

Theorem 4.12  Let Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p), be an SHFSNs, the aggregated data by 
SHFSOWGA operator is also an SHFSNs, and given by

where r = 1, 2, . . . , p , if ́r = {ŕ1, ŕ2, . . . , ŕp} denote the weight vector (WV) of ́rr parameters with condition ́rr ∈ [0, 1] 
with �p

r=1 ŕr = 1 and ŕr ≥ 0. Where (σ1, σ2, ..., σp) is the permutation (1, 2, 3, ..., p) such that mσ(r−1) ≥ mσ(r) for 
all r = 2, 3, ..., p.

Proof  The proof is directly analogous to Theorem-4.9. 	�  �

Moreover, similarity to the SHFSWGA operator, the SHFSOWGA operator has some important properties, 
such as idempotency, boundedness, monotonicity.
Spherical hesitant fuzzy soft hybrid geometric (SHFSHG) operator.  According to Definition 4.8 
and 4.11, SHFSWG operators only weight the spherical hesitant fuzzy soft number itself, whereas SHFSOWG 
operators weight the ordered ranks of the spherical hesitant fuzzy soft  number rather than the arguments them-
selves. Therefore, in both the   SHFSWG and SHFSOWG operators, the weights depict    two distinct aspects. 
However, merely one of them is taken into account by either operator. In the paragraphs that follow, we’ll suggest 
using the spherical hesitant fuzzy soft hybrid geometric (SHFSHG) operator to tackle this issue.

Definition 4.13  Suppose Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J) 
is the mapping defined as SHFSHG : ϒp → ϒ , where ( ϒ is the family of all SHFSNs) such that SHFSHG 
Ŵ′(jσ r) = (φŴ′(jσ r ),χŴ′(jσ r ),ψŴ′(jσ r )), (r = 1, 2, 3, .., p).

Here WVŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T for Ŵ′(jσ r) parameters, with ŕr ∈ [0, 1], �p

r=1 ŕr = 1 and ŕr ≥ 0, and Ŵ′(jσ r) is the 
k-th largest element of the spherical hesitant fuzzy soft arguments Ŵ′(jσ r)(Ŵ

′(jσ r) = (nŕr)Ŵ(jσ r), r = 1, 2, 3, ..., p) , 
ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)

T is the WV of spherical hesitant fuzzy soft arguments Ŵ(jσ r)(r = 1, 2, 3, ..., p), with ́rr ∈ [0, 1], 
�

p
r=1 ŕr = 1 and ŕr ≥ 0, and n is the balancing coefficient.

Theorem  4.14  Suppose Ŵ(jσ r) = (φŴ(jσ r ),χŴ(jσ r ),ψŴ(jσ r )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J) 
is the mapping defined as SHFSHG : ϒp → ϒ , where ( ϒ is the family of all SHFSNs) such that SHFSHG 
Ŵ′(jσk) = (φŴ′(jσ r ),χŴ′(jσ r ),ψŴ′(jσ r )), (r = 1, 2, 3, .., p).

Here WVŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)
T for Ŵ′(jr) parameters, with ŕr ∈ [0, 1], �p

r=1 ŕr = 1 and ŕr ≥ 0, and Ŵ′(jσ r) is the 
r-th biggest element of the spherical hesitant fuzzy soft arguments Ŵ′(jσ r)(Ŵ

′(jσ r) = (nŕr)Ŵ(jσ r), r = 1, 2, 3, ..., p) , 
ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)

T is the WV of spherical hesitant fuzzy soft arguments Ŵ(jσ r)(r = 1, 2, 3, ..., p), with ŕr ∈ [0, 1], 
�

p
r=1 ŕr = 1 and ŕr ≥ 0, and n is the balancing coefficient.
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Proof  The proof is directly analogous to Theorem-4.9. 	�  �

Moreover, similarity to the SHFSWGA operator, the SHFSHG aggregation operator has some important 
properties, such as idempotency, boundedness, monotonicity.

Decision making model under shfs aggregation information
The flow chart of the the proposed model is shown in Fig. 1.

Here, an MCDM technique for solving MCDM issues that arise in the context of SHFSS is examined, that 
is based on SHFSWA, SHFSOWA, SHFSWGA, SHFSOWGA, SHFSHG, and SHFSHA aggregation operators. 

Step 1	� Arrange all expert assessment information for every alternative to their respective parameters to create 
the decision matrix.

Step 2	� Ordered the overall decision matrix.
Step 3	� Utilize the SHFSS decision matrix because of the grading,i.e., membership, neutral, and non-member-

ship grade.
Step 4	� Aggregate SHFSS for each parameter T− = {f1, f2, f3, ..., fp} using the proposed aggregation operators.
Step 5	� Calculate the score values for each alternative according to the following formula; 

Step-6	� Rank the outcomes for each alternative Ć = {e1, e2, e3, ..., em} and select the most effective one.
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2
, Score(Ĵ) ∈ [0, 1].

Figure 1.   Flow chart.
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Numerical illustration.  Real-world EmDM problems are frequently characterized as being difficult for 
decision-makers to solve because they are complicated, time-consuming, lack data, and have an impact on men-
tal processes. With the use of membership, neutral, and non-membership values, SHFSS is more adaptable 
in illustrating the judgment of a group of “decision-makers” in EmDMPs. SHFSS enables decision-makers to 
choose an unbiased subset of attributes based on their intuition. In order to demonstrate the value of the exist-
ing work, we will give a thorough overview of the above-mentioned method to MADM in this part, using an 
illustrated example

Case study 5.1. Supply of emergency aid for post‑flooding situation.  Natural disasters and global warming exert a 
serious threat to Pakistan. For years, society has been plagued by catastrophic events like earthquakes, typhoons, 
flooding, and drought, which frequently destroy the basics on which the existence of huge numbers of families 
is built. It has been seen that the community’s response determines whether a disaster becomes a catastrophe. 
Pakistani people face numerous difficulties and require assistance in extreme and devastating weather events, 
which are becoming more frequent, such as the historic floods of 2022. That puts people’s lives, well-being, and 
assets in danger. Therefore, the government has established a number of measures in the face of uncontainable 
natural disasters so that after the disaster hits, the disaster-stricken citizens can be swiftly saved and their lives 
and production plans can be restored. The use of SHFSS can provide a powerful and flexible tool for modeiling 
and analyzing emergency supply management information and allowing decision-makers to more effectively 
manage the complex and uncertain situations that arise in emergency scenarios. Building the emergency shelters 
is one of them, and it’s very important. According to personal observation, three criteria are typically taken into 
account when establishing emergency shelters:

Medication ( f1),
Food supplier ( f2),
Shelters ( f3).
 In particular, three kinds of  (alternatives) are taken to provide aid in emergency situations. such as;
Availability ( e1),
Convenience ( e2 ), 
Safety ( e3).

 In order to provide Emergency Aid as soon as possible, the emergency command department invited three 
decision-makers ER = {ER1,ER2,ER3} from government officials, experts in emergency decision-making, experts 
from international rescue organizations and local residents to participate in the emergency decision-making. 
These decision-makers evaluated the three alternatives according to three criteria, and have been displayed in 
Table 1. The three alternatives for emergency aid are listed in detail below.

Availability(e1)
Availability refers to the extent to which the supply of emergency aid is accessible and can be obtained in 

sufficient quantities to meet the needs of those affected by the post-flooding situation. It is the probability that an 
item will operate competently when it is used to restore emergency conditions in an ideal support environment. 
The service will be deemed unavailable if the people who have been impacted by the flood are unable to access 
the service. So, the availability of emergency aid to flood-infected people is most important. In the context of 
emergency aid, availability can be affected by various factors, such as the location and severity of the flooding, 
the availability of transportation and communication infrastructure, and the capacity of aid providers.

Convenience(e2)
The efficiency of being accessible, simple to use, beneficial, or helpful is known as convenience. Conveni-

ence, when compared to the availability of emergency aid due to one’s ease of comfort and suitability becomes 
effective and also remains during post-flooding periods, which are commonly used for emergency aid. In the 
context of emergency aid, convenience can be affected by factors such as the accessibility of aid delivery points, 
the speed of aid delivery, and the suitability of aid for the needs of the recipients. We could save people due to 
the convenience of emergency aid to the post-flooding areas at the right time.

Safety (e3)
The safest zone for the supply of emergency aid is one of the important factors. It refers to the protection 

of both aid providers and recipients from harm or danger while delivering or receiving emergency aid. It is a 
condition in which, consequences and situations that can cause damage to physical, psychological, or assets 
are managed to protect people’s health, property, and well-being. In the context of emergency aid, safety can be 
affected by various factors, such as the nature and quantity of the aid being delivered, the safety of transporta-
tion and communication infrastructure, and the safety of the recipients and aid providers in the affected areas. 

Table 1.   Spherical hesitant fuzzy soft decision matrix.

f1 f2 f3

e1 (0.1)(0.8, 0.3)(0.4, 0.5) (0.7, 0.35)(0.4)(0.4, 0.1) (0.4, 0.3)(0.5, 0.25)(0.3)

e2 (0.6, 0.3)(0.6)(0.5, 0.45) (0.5)(0.6, 0.21)(0.35) (0.25, 0.45)(0.4, 0.15)(0.6, 0.1)

e3 (0.5, 0.45)(0.8, 0.4)(0.2) (0.65)(0.5, 0.2)(0.3, 0.4) (0.35, 0.2)(0.3)(0.3, 0.1)
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Safety measures are important to ensure the wellbeing of both aid providers and recipients, as well as the success 
of the aid delivery process.

Table 1 depicts the spherical hesitant fuzzy soft decision matrix as Ŵ(jr)3×3 = (φŴ(jr ),χŴ(jr ),ψŴ(jr ))3×3 . And 
in this problem, by using the score function, we transformed the Spherical Hesitant fuzzy soft decision matrix 
to an ordered matrix, presented in Table 2. Let the attribute weight vectors be ŕ = (0.3, 0.3, 0.4)T and for the 
hybrid matrix we have ŕ = (0.2, 0.4, 0.4)T . Using the SHFSWA, SHFSOWA, SHFSWGA, SHFSOWGA, SHFSHA, 
SHFSHG operators, sequentially. The ranking positions for the alternatives Ć = {e1, e2, e3, ..., em} in the decision 
matrix are listed in Table 2.

now, we apply SHFSWA Operator to find out the aggregated decision values, the outcomes are shown in 
Table 3a–d.

Now, we apply SHFSWGA Operator to find out the aggregated decision values, the outcomes are shown in 
Table 4a–d.

Now, we apply SHFSOWA Operator to find out the aggregated decision values, the outcomes are shown in 
Table 5a–d.

Now, we apply SHFSOWGA Operator to find out the aggregated decision values, the outcomes are shown 
in Table 6a–d.

Now, we find the weighted matrix shown in Table 7 to utilized in hybrid aggregation operators.
Now, we apply SHFSHA Operator to find out the aggregated decision values, the outcomes are shown in 

Table 8a–d.
Now, we apply SHFSHG Operator to find out the aggregated decision values, the outcomes are shown in 

Table 9a–d.
The comparison between the proposed operators is given below.
The graphical representation of alternative ranking is shown in Fig. 2:
Table 10 makes it clear that the overall rating values of the alternatives differ when different operators are used, 

but the ranking orders of the alternatives are not changed. As a result, the safest alternative is e3 .So, the decision 
makers choose the third alternative with medication, food and safety shelters as emergency aid.

Table 2.   Spherical hesitant fuzzy soft ordered decision matrix.

f1 f2 f3

e1 (0.7, 0.35)(0.4)(0.4, 0.1) (0.4, 0.3)(0.5, 0.25)(0.3) (0.1)(0.8, 0.3)(0.4, 0.5)

e2 (0.5)(0.6, 0.21)(0.35) (0.25, 0.45)(0.4, 0.15)(0.6, 0.1) (0.6, 0.3)(0.6)(0.5, 0.45)

e3 (0.65)(0.5, 0.2)(0.3, 0.4) (0.35, 0.2)(0.3)(0.3, 0.1) (0.5, 0.45)(0.8, 0.4)(0.2)

Table 3.   The values obtained by SHFSWA Operator for (a): e1 (b): e2 (c): e3 (d): The Score values obtained by 
SHFSWA Operator.

Weight vector Membership Neutral Non-membership

a

{0.3, 0.3, 0.4}T 0.49014836 0.538434644 0.356520492

{0.3, 0.3, 0.4}T 0.46424853 0.408057155 0.235215805

{0.3, 0.3, 0.4}T 0.32545343 0.401182865 0.381204045

{0.3, 0.3, 0.4}T 0.27718389 0.304039757 0.251500877

b

{0.3, 0.3, 0.4}T 0.46699314 0.5101698 0.483250058

{0.3, 0.3, 0.4}T 0.361940518 0.3446095 0.23599968

{0.3, 0.3, 0.4}T 0.516784648 0.3723361 0.468214294

{0.3, 0.3, 0.4}T 0.430627463 0.2515056 0.228656824c

c

{0.3, 0.3, 0.4}T 0.511483204 0.469317231 0.265640248

{0.3, 0.3, 0.4}T 0.484347944 0.356520492 0.171176986

{0.3, 0.3, 0.4}T 0.497881544 0.381204045 0.289584624

{0.3, 0.3, 0.4}T 0.46942674 0.289584624 0.186606598

Alternatives Score values

e1 0.3351098

e2 0.3602005

e3 0.4441881

Ranking order e3 > e2 > e1
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Table 4.   The values obtained by SHFSWGA Operator for (a): e1 (b): e2 (c): e3 (d): The Score values obtained by 
SHFSWGA Operator.

Weight vector Membership Neutral Non-membership

a

{0.3, 0.3, 0.4}T 0.312142862 0.538434644 0.36423959

{0.3, 0.3, 0.4}T 0.278213317 0.408057155 0.298073576

{0.3, 0.3, 0.4}T 0.253538788 0.401182865 0.402073166

{0.3, 0.3, 0.4}T 0.225979433 0.304039757 0.345405666

b

{0.3, 0.3, 0.4}T 0.400232526 0.5101698 0.512011791

{0.3, 0.3, 0.4}T 0.325089828 0.344609506 0.34855449

{0.3, 0.3, 0.4}T 0.506315686 0.372336113 0.498434648

{0.3, 0.3, 0.4}T 0.411256129 0.251505604 0.324277365

c

{0.3, 0.3, 0.4}T 0.469020933 0.469317231 0.274371646

{0.3, 0.3, 0.4}T 0.37495315 0.356520492 0.208762367

{0.3, 0.3, 0.4}T 0.454427891 0.381204045 0.311801941

{0.3, 0.3, 0.4}T 0.363286918 0.289584624 0.257438284

Alternatives Score values

e1 0.251046

e2 0.310124

e3 0.389086

Ranking order e3 > e2 > e1

Table 5.   The values obtained by SHFSOWA Operator for (a): e1 (b): e2 (c): e3 (d): The Score values obtained by 
SHFSOWA Operator.

Weight vector Membership Neutral Non-membership

a

{0.3, 0.3, 0.4}T 0.477136572 0.564345405 0.366925902

{0.3, 0.3, 0.4}T 0.457043512 0.381204045 0.401182865

{0.3, 0.3, 0.4}T 0.301841987 0.458390908 0.242080815

{0.3, 0.3, 0.4}T 0.262715428 0.309633899 0.264681982

b

{0.3, 0.3, 0.4}T 0.497362653 0.531280496 0.474519201

{0.3, 0.3, 0.4}T 0.41787512 0.395852373 0.265769671

{0.3, 0.3, 0.4}T 0.365491845 0.387743286 0.474519201

{0.3, 0.3, 0.4}T 0.531992307 0.288904074 0.265769671

c

{0.3, 0.3, 0.4}T 0.522606406 0.517682367 0.2550849

{0.3, 0.3, 0.4}T 0.505016454 0.39232987 0.183462951

{0.3, 0.3, 0.4}T 0.503245928 0.393261444 0.278077834

{0.3, 0.3, 0.4}T 0.484444766 0.298036443 0.2

Alternatives Score values

e1 0.3137865

e2 0.3410455

e3 0.388486

Ranking order e3 > e2 > e1
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Thus, the proposed MADM technique, which depends on suggested operators, offers an effective alternative 
to be utilized in decision-support systems.

Extended EDAS methodology
Suppose Ŵ(jr) = (φŴ(jr ),χŴ(jr ),ψŴ(jr )), (r = 1, 2, 3, .., p) be collecction of SHFSNs (Ŵ, J), Ć = {e1, e2, e3, ..., em} 
be a set of alternative and F = {f1, f2, f3, ..., fp}, as attributes with WVs ŕ = (ŕ1, ŕ2, ŕ3, .., ŕp)

T for Ŵ(jr) parameters 
(attributes), where ŕr ∈ [0, 1] with �p

r=1 ŕr = 1 and ŕr ≥ 0. The EDAS algorithm for MADM is developed in the 
SHFS environment based on the conventional EDAS algorithm. The following are key features: 

Step 1	� Establish the SHFS decision matrix based on the decision maker for each alternative Ći against their 
attribute Fr ; 

Step 2	� Normalized the aggregated matrix X. As, the data is benefit type so no need to normalize it.
Step 3	� Determine the value of AvS which is given as 

X =
[

Ŵ(jir)
]

m×p
=

[

φŴ(jir ),χŴ(jir ),ψŴ(jir )

]

m×p
(i = 1, 2, 3, ..,m; r = 1, 2, 3, .., p)

Table 6.   The values obtained by SHFSOWGA Operator for (a): e1 (b): e2 (c): e3 (d): The Score values obtained 
by SHFSOWGA Operator.

Weight vector  Membership Neutral Non-membership

a

{0.3, 0.3, 0.4}T 0.271736145 0.564345405 0.373610906

{0.3, 0.3, 0.4}T 0.249267575 0.381204045 0.421566295

{0.3, 0.3, 0.4}T 0.220718335 0.458390908 0.31001912

{0.3, 0.3, 0.4}T 0.202468185 0.309633899 0.369014354

b

{0.3, 0.3, 0.4}T 0.436851171 0.531280496 0.500360072

{0.3, 0.3, 0.4}T 0.394914661 0.395852373 0.35255741

{0.3, 0.3, 0.4}T 0.331071278 0.387743286 0.500360072

{0.3, 0.3, 0.4}T 0.52109302 0.288904074 0.35255741

c

{0.3, 0.3, 0.4}T 0.48605165 0.517682367 0.265179829

{0.3, 0.3, 0.4}T 0.465993035 0.39232987 0.215685559

{0.3, 0.3, 0.4}T 0.410932989 0.393261444 0.303938585

{0.3, 0.3, 0.4}T 0.393974408 0.298036443 0.262951102

Alternatives Score values

e1 0.219551

e2 0.296789

e3 0.388486

Ranking order e3 > e2 > e1

Table 7.   Hybrid Spherical Hesitant Fuzzy Soft Decision matrix.

f1 f2 f3

e1 (0.4, 0.3)(0.5, 0.25)(0.3) (0.7, 0.35)(0.4)(0.4, 0.1) (0.1)(0.8, 0.3)(0.4, 0.5)

e2 (0.25, 0.45)(0.4, 0.15)(0.6, 0.1) (0.5)(0.6, 0.21)(0.35) (0.6, 0.3)(0.6)(0.5, 0.45)

e3 (0.35, 0.2)(0.3)(0.3, 0.1) (0.65)(0.5, 0.2)(0.3, 0.4) (0.5, 0.45)(0.8, 0.4)(0.2)
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Table 8.   The values obtained by SHFSHA Operator for (a): e1 (b): e2 (c): e3 (d): The Score values obtained by 
SHFSHA Operator.

Weight vector Membership Neutral Non-membership

a

{0.2, 0.4, 0.4}T 0.515026882 0.551891865 0.377635005

{0.2, 0.4, 0.4}T 0.295178446 0.480449774 0.412891792

{0.2, 0.4, 0.4}T 0.50338435 0.372791927 0.216894354

{0.2, 0.4, 0.4}T 0.26907063 0.324534222 0.237144061

b

{0.2, 0.4, 0.4}T 0.513787969 0.553264747 0.449619843

{0.2, 0.4, 0.4}T 0.53610188 0.45471497 0.314206539

{0.2, 0.4, 0.4}T 0.390773189 0.363546708 0.431064713

{0.2, 0.4, 0.4}T 0.423878087c 0.298790283 0.301239712

c

{0.2, 0.4, 0.4}T 0.550364037 0.544813985 0.2550849

{0.2, 0.4, 0.4}T 0.534383168 0.412891792 0.204767251

{0.2, 0.4, 0.4}T 0.538757428 0.377635005 0.286193816

{0.2, 0.4, 0.4}T 0.522120688 0.286193816 0.229739671

Alternatives Score values

e1 0.326053413

e2 0.337261701

e3 0.443538136

Ranking order e3 > e2 > e1

Table 9.   The values obtained by SHFSHG Operator for (a): e1 (b): e2 (c): e3 (d): The Score values obtained by 
SHFSHG Operator.

Weight vector  Membership Neutral Non-membership

a

{0.2, 0.4, 0.4}T 0.287376476 0.551891865 0.382680825

{0.2, 0.4, 0.4}T 0.217790642 0.372791927 0.429271053

{0.2, 0.4, 0.4}T 0.271308542 0.480449774 0.297428117

{0.2, 0.4, 0.4}T 0.205613426 0.324534222 0.358973807

b

{0.2, 0.4, 0.4}T 0.468205492 0.553264747 0.475734799

{0.2, 0.4, 0.4}T 0.526612307 0.45471497 0.394702661

{0.2, 0.4, 0.4}T 0.35483341 0.363546708 0.455064951

{0.2, 0.4, 0.4}T 0.399097499 0.298790283 0.367146705

c

{0.2, 0.4, 0.4}T 0.517090969 0.544813985 0.265179829

{0.2, 0.4, 0.4}T 0.495751409 0.412891792 0.233496382

{0.2, 0.4, 0.4}T 0.462337738 0.377635005 0.315617669

{0.2, 0.4, 0.4}T 0.44325776 0.286193816 0.29036629

Alternatives Score values

e1 0.223008437

e2 0.298222861

e3 0.399030388

Ranking order e3 > e2 > e1
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Step 4	� Based on computed AvS, determine PDAS and NDAS by utilizing the below formula: 

Step 5	� Further calculate the positive weight distance (SP i  ) and negative weight distance (SN i  ) 

Step 6	� Normalized the SPi and SNi by using the below formula: 

AvS =[AvSr]1×p =

�

1

m

m
�

i=1

Ŵ(jir)

�

1×p

=























�

φŴ(j1r ) ∈ ϑŴ(j1r ),φŴ(j2r ) ∈ ϑŴ(j2r ), ...,φŴ(jmr ) ∈ ϑŴ(jmr ),

χŴ(j1r ) ∈ ξŴ(j1r ),χŴ(j2r ) ∈ ξŴ(j2r ), ...,χŴ(jmr ) ∈ ξŴ(jmr ),

ψŴ(j1r ) ∈ ∂Ŵ(j1r ),ψŴ(j2r ) ∈ ∂Ŵ(j2r ), ...,ψŴ(jmr )
∈ ∂

Ŵ(jmr ) .

� �
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)1/m,
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i=1(χŴ(jir ))

1/m,�m
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1/m
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


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
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




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1×p

PDASir = [PDASir]m×p

=
max (0, [S(AvSir)− S(AvSr)])

S(AvSr)
,

NDASir = [PDASir]m×p

=
max (0, [S(AvSr)− S(AvSir)])

S(AvSr)
.

SPi =

p
∑

r=1

wrPDASir , SNi =

p
∑

r=1

wrNDASir .

Table 10.   Overall evaluation of the given operators.

Proposed operators Scoring order

SHFSWA e3 > e2 > e1

SHFSWGA​ e3 > e2 > e1

SHFSOWA e3 > e2 > e1

SHFSOWGA​ e3 > e2 > e1

SHFSHA e3 > e2 > e1

SHFSHG e3 > e2 > e1

Figure 2.   Ranking of alternative.
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Step 7	� Compute the appraisal score AS: 

Step 8	� Sort the values in a particular way based on the value of ASi to achieve the superior rank.

The flow chart of the EDAS methodology is shown in Fig. 3.

Illustrative example based on EDAS method.  With the same data as previously mentioned in Table 1, 
we present a real-world MCDM example to demonstrate the effectiveness and supremacy of the analyzed 
approach. Normalized collective data of experts is given in Table 11 as follows.

Now the score value for the normalized collective data of experts is given in Table 12.
The results of average solution is given in Table 13:

NSPi =
SPi

max (SPi)
, NSNi = 1−

SNi

max (SNi)

ASi =
1

2
(NSPi + NSNi)

Figure 3.   EDAS methodology flow chart.

Table 11.   Normalized collective data of experts.

f1 f2 f3

e1 (0.1)(0.8, 0.3)(0.4, 0.5) (0.7, 0.35)(0.4)(0.4, 0.1) (0.4, 0.3)(0.5, 0.25)(0.3)

e2 (0.6, 0.3)(0.6)(0.5, 0.45) (0.5)(0.6, 0.21)(0.35) (0.25, 0.45)(0.4, 0.15)(0.6, 0.1)

e3 (0.5, 0.45)(0.8, 0.4)(0.2) (0.65)(0.5, 0.2)(0.3, 0.4) (0.35, 0.2)(0.3)(0.3, 0.1)
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Table 12.   The Score values obtained by weighted Operator.

Attributes Score values

f1 0.244035842

f2 0.435787282

f3 0.392302065

Ranking Order f2 > f3 > f1

Table 13.   The value of average solution (AvS).

f1 f2 f3

e1 0.05 0.4375 0.3375

e2 0.1875 0.3725 0.3625

e3 0.3375 0.475 0.3875

Table 14.   PDAS matrix and NDAS matrix.

f1 f2 f3

PDAS matrix

 e1 0 0.00393017 0

 e2 0 0 0

e3 0.382993566 0.089981327 0

NDAS matrix

 e1 0.795112064 0 0.139693542

 e2 0.231670241 0.14522517 0.075967138

 e3 0 0 0.012240734

Table 15.   The results of SPi and SNi.

SP1 = 0.001179051 SN1 = 0.294411036

SP2 = 0 SN2 = 0.143455478

SP3 = 0.141892468 SN3 = 0.004896293

Table 16.   The values of NSPi and NSNi.

NSP1 = 0.008309468 NSN1 = 0

NSP2 = 0 NSN2 = 0.512737429

NSP3 = 1 NSN3 = 0.983369192
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The PDAS and NDAS value matrix is shown in Table 14.
The results of SPi & SNi and NSPi & NSNi shown in Tables 15 and 16 respectively.
Final ranking results are provided in Table 17.
The graphical representation of EDAS method is shown in Fig. 4.

Comparative analysis
The proposed approaches is better than previously developed decision making techniques. Becaue in it we take 
into account the hesitant fuzzy sets along with the membership, neutral, and non-membership grades and with 
the parameterized structure. Firstly, SHFSS provides a more nuanced representation of the decision-making 
problem by incorporating spherical fuzzy sets. Spherical fuzzy sets allow for more flexibility in modeling the 
uncertainties and ambiguities of real-world decision-making problems. This can result in more accurate and 
effective decision-making outcomes. Secondly, SHFSS allows for the integration of both fuzzy sets and soft sets, 
which can be particularly useful when dealing with decision-making problems that involve both quantitative 
and qualitative information. The combination of these two approaches can help to balance the strengths and 
weaknesses of each, leading to more effective decision-making outcomes. Thirdly, the use of hesitant membership 
functions in SHFSS can help to capture the hesitant attitudes of decision-makers. This can be particularly useful 
when dealing with decision-making problems that involve multiple decision-makers with differing opinions or 
preferences. By incorporating hesitant membership functions, SHFSS can help to balance and integrate these 
different perspectives, leading to more equitable and effective decision-making outcomes. Finally, SHFSS has 
been shown to be effective in a wide range of applications. This versatility suggests that SHFSS may be a valuable 
tool in many different decision-making contexts. 

Sets MG nMG NMG Reliability Range

Fuzzy set1 Yes No No No 0 ≤ MG ≤ 1

IFS2 Yes No Yes No 0 ≤ MG + NMG ≤ 1

PFS15 Yes Yes Yes No 0 ≤ MG + nMG + NMG ≤ 1

SFS23 Yes Yes Yes No 0 ≤ MG2 + nMG2 + NMG2 ≤ 1

SHFSS [Poposed] Yes Yes Yes Yes 0 ≤ MG2(φj)+ nMG2(ξj)+ NMG2(∂j) ≤ 1

Conclusion
While it is difficult to make definitive claims about the superiority of SHFSS over other decision-making tech-
niques, the approach’s ability to incorporate spherical fuzzy sets, integrate both fuzzy sets and soft sets, capture 
hesitant attitudes, and its wide range of applications suggest that it may be a valuable tool for decision-makers 
looking to tackle complex, uncertain problems. So, this study offers the latest numerical modelling of effective 
management through fuzzy decision support systems. For this purpose, we proposed a hybrid structure of 
aggregation operators, called spherical hesitant fuzzy soft aggregation operators, to aggregate SHFS data. Fol-
lowing that, we present an algorithm for dealing with SHFS MADM problems. The the numerical illustration 
along with aggregation operators and EDAS method was provided to validate the established strategy and shows 
its applicability and efficiency. Therefore, compared to other models currently in use, this new model is more 
accurate, realistic, and useful. In order to solve the problem of decision-making, this paper aims to establish a 
customizable soft dicision matrix. According to the study’s findings, the proposed approach is more convenient 
and consistent with other existing selection processes. We are hopeful that this modified concept will be helpful 
in dealing with several problems related to uncertainty and will yield more convincing outcomes.

Table 17.   Appraisal score and Ranking.

IASi 0.004154734 0.256368715 0.991684596

Ranking Order of EDAS method f3 > f2 > f1

Figure 4.   Ranking Result by EDAS Method.
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Limitations of the proposed work.  The theory of the aggregation operator and the EDAS approach 
based on the SHFSS are highly beneficial and dominant in assessing tricky and imprecise information in real-life 
issues, but they do not operate successfully in specific scenarios or instances due to their structure and require-
ments. When we came across information in the form of yes, abstain, no, and refusal with an expanded domain, 
the theories we had developed under the SHFSS information were ignored and could not be processed. In this 
regard, the sum of square of their data does not belong to the closed interval 0,1. So, here the fundamental crite-
ria violated and we say that these conceptions are also limited.

Future work.  In the future, we will be focusing on developing new operators that improve the accuracy 
and efficiency of SHFS decision-making methods. This theory can be extended to complex hesitant fuzzy soft 
sets for gernelized fuzzy set and for Aczel-Alsina aggragation operators. Another challenge in group decision-
making with SHFSS is the difficulty of eliciting individual opinions in a consistent and reliable way. The process 
of assigning hesitancy degrees and determining the spherical shape of the set can be subjective and depend-
ent on individual preferences, which can introduce bias and inconsistency in the decision-making process. To 
address these challenges, there is a need for further research and standardization in the methods used for group 
decision-making with SHFSS. This could include the development of standardized aggregation methods and the 
establishment of best practices for eliciting individual opinions in a consistent and reliable way.

Additionally, some innovative approaches like LINMAP, TAOV for decision-making artificial intelligence and 
neural networks in the multi-parameter framework of SHFSS would be defined. The theory of yager aggregation 
operators can be adapted for SHFSS and MADM. Further we needed to create the theory of T-spherical hesitant 
fuzzy sets and complex T-spherical hesitant fuzzy sets.

Ethics approval.  This article does not contain any studies with human participants or animals performed 
by any of the authors.

Data availability
All data generated or analyzed during this study are included in this article.
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