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Deep learning application 
for the classification of Alzheimer’s 
disease using 18F‑flortaucipir 
(AV‑1451) tau positron emission 
tomography
Sang Won Park 1,2, Na Young Yeo 1,3, Yeshin Kim 1,4, Gihwan Byeon 4,5 & Jae‑Won Jang 1,2,3,4*

The positron emission tomography (PET) with 18F‑flortaucipir can distinguish individuals with mild 
cognitive impairment (MCI) and Alzheimer’s disease (AD) from cognitively unimpaired (CU) individuals. 
This study aimed to evaluate the utility of 18F‑flortaucipir‑PET images and multimodal data integration 
in the differentiation of CU from MCI or AD through DL. We used cross‑sectional data (18F‑flortaucipir‑
PET images, demographic and neuropsychological score) from the ADNI. All data for subjects (138 CU, 
75 MCI, 63 AD) were acquired at baseline. The 2D convolutional neural network (CNN)‑long short‑term 
memory (LSTM) and 3D CNN were conducted. Multimodal learning was conducted by adding the 
clinical data with imaging data. Transfer learning was performed for classification between CU and 
MCI. The AUC for AD classification from CU was 0.964 and 0.947 in 2D CNN‑LSTM and multimodal 
learning. The AUC of 3D CNN showed 0.947, and 0.976 in multimodal learning. The AUC for MCI 
classification from CU had 0.840 and 0.923 in 2D CNN‑LSTM and multimodal learning. The AUC of 
3D CNN showed 0.845, and 0.850 in multimodal learning. The 18F‑flortaucipir PET is effective for the 
classification of AD stage. Furthermore, the effect of combination images with clinical data increased 
the performance of AD classification.

Alzheimer’s dementia (AD) is the most common type of dementia among older  adults1,2. In general, the progres-
sion of AD can be divided into three stages: cognitively unimpaired (CU), mild cognitive impairment (MCI), 
and AD. Although AD is characterized by the pathological hallmarks of β amyloid (Aβ) deposition and tau 
neurofibrillary tangles (NFTs), tau burden is known to be more strongly associated with cognitive dysfunction 
than Aβ  accumulation3,4. Accordingly, imaging of Aβ deposition, pathologic tau, and neurodegeneration forms 
a research framework [AT(N)]. Imaging of AD biomarkers is accomplished using amyloid positron emission 
tomography (PET) for Aβ, tau-PET for NFTs, and 18F-fluoro-deoxyglucose (FDG) PET or magnetic resonance 
imaging (MRI) for  neurodegeneration5. These imaging techniques can be utilized to classify and stage  AD6,7. For 
example, MRI and FDG-PET can reflect neurodegeneration, and amyloid PET can provide pathological evidence 
of Aβ  agglomeration8–10. However, MRI and FDG-PET cannot specifically reflect the molecular pathological 
hallmarks of AD such as Aβ or tau burden. In addition, amyloid PET could be accumulated 20 years before the 
diagnosis of AD. It means that it is difficult to visualize the progression of Aβ accumulation because it is satu-
rated at the time of  disease5. On the contrary, tau-PET scans can directly reflect the pathological changes of AD 
and have a high correlation with cognitive function and disease  progression11. In addition, cerebral structural 
changes also reveal a close relationship with pathological tau  deposition7,12. The strength of tau-PET images is 
their ability to reveal tau accumulation patterns and specific deposit sites in focal regions of the brain similar to 
that shown by tau histology performed through Braak  staging7,13.

In response to the vast increase in the amount of medical imaging data, deep learning (DL) of medical images 
have been used for disease classification. Although many studies have used DL for classification of AD, they have 
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mainly focused on MRI, amyloid PET, or co-registration of both types of  images14–16. In addition, many previ-
ous studies on DL application focused on models using AD images limited to specific parts of the brain related 
to cognitive  function17–19. Application of a convolutional neural network (CNN) to tau-PET scans is a novel 
approach, as the spatial characteristics and interpretation of this modality are quite different than amyloid PET, 
FDG-PET, or MRI. In particular, the PET signal highlights the specific region of tau molecular manifestation 
in the brain and is considered more informative than other imaging techniques. This can have implications for 
CNNs, which require processing of complex inputs as well as visualization of informative features.

In this study, we implemented a DL framework for the classification of AD stage using 18F-flortaucipir PET. 
Transfer learning (TL) for high classification performance was performed using the weight derived from CU 
versus AD classification for CU versus MCI classification. By identifying the phenotype of tau deposition through 
two-dimensional (2D) and three-dimensional (3D) 18F-flortaucipir-PET molecular imaging based on DL, the 
clinical usefulness of 18F-flortaucipir-PET is proposed.

Results
Subject characteristics. The characteristics of all subjects investigated in this study are presented in 
Table 1. The mean age was 71.4 years, with 70.0 years in the CU, 72.0 years in the MCI, and 73.7 years in the 
AD groups. One hundred thirty-six (49.3%) were female and 140 (50.7%) were male, with 47 (62.7%) and 40 
(63.5%) males present in the MCI and AD groups, respectively. As a result of the normality test, all covariates 
had p > 0.05. The differences among the three groups for all variables showed p < 0.05 as a result of one-way 
ANOVA. The total Aβ positive was 141, with 43 of CU (22 of florbetapir and 21 of florbetaben), 46 of MCI (18 of 
florbetapir and 28 of florbetaben), and 52 of AD (23 of florbetapir and 29 of florbetaben).

Classification performance between CU and AD. The CU and AD classification results are shown in 
Table 2. Most of the result metrics in the 2D CNN-LSTM and 3D CNN models showed that the multimodal 
performance was slightly more significant compared to the image classification. For the 2D multimodal results, 
the receiver operating characteristic (ROC) area under the curve (AUC) was 0.947, accuracy 88.5%, precision 
86.7%, recall 92.9%, F1 score 89.7% and specificity 84.6%. The 3D multimodal results were higher than those of 
image classification in all performance indicators, with AUC of 0.976, accuracy 92.3%, precision 92.9%, recall 
92.9%, F1 score 92.9% and specificity 92.3% suggesting better performance than the 2D model.

Table 1.  Subject characteristics. The superscript * means that the variable has statistical significance(p < 0.05) 
and ** means that the variable has significance(p < 0.001) among the three groups by one-way ANOVA. 
Values are presented as mean ± SD unless otherwise stated. CU cognitive unimpaired, MCI mild cognitive 
impairment, AD Alzheimer’s disease, MMSE Mini-Mental State Examination.

Total (N = 276) CU (N = 138) MCI (N = 75) AD (N = 63)

Age* 71.4 ± 7.1 70.0 ± 5.8 72.0 ± 7.8 73.7 ± 8.2

Sex**

 Female 136 (49.3%) 85 (61.6%) 28 (38.4%) 23 (38.5%)

 Male 140 (50.7%) 53 (38.4%) 45 (61.6%) 40 (61.5%)

Education (years)* 16.4 ± 2.3 16.9 ± 2.2 16.5 ± 2.2 15.4 ± 2.5

MMSE score** 27.2 ± 3.1 29.0 ± 1.1 27.3 ± 2.4 22.9 ± 2.7

Amyloid (−/ +) 135/141 95/43 29/46 11/52
18F-Florbetapir (−/ +) 53/63 42/22 7/18 4/23
18F-Florbetaben (−/ +) 82/78 53/21 22/28 7/29

Table 2.  Results of classification by deep learning using 18F-flortaucipir-PET. The multimodal images consist 
of features extracted from PET images through CNN models and clinical variables such as age, sex, education, 
and MMSE. AUC  area under the receiver operating characteristic curve, CU cognitively unimpaired, MCI mild 
cognitive impairment, AD Alzheimer’s disease, PET positron emission tomography.

Classification Dimension Type AUC Accuracy Precision Recall F1 score Specificity

2D
Image 0.964 0.885 0.857 0.923 0.889 0.846

Multimodal 0.947 0.889 0.867 0.929 0.897 0.846

3D
Image 0.947 0.885 0.917 0.846 0.880 0.923

Multimodal 0.976 0.923 0.929 0.929 0.929 0.917

CU-MCI

2D
Image 0.840 0.800 0.750 0.857 0.800 0.750

Multimodal 0.923 0.833 0.786 0.846 0.815 0.824

3D
Image 0.845 0.833 0.824 0.875 0.848 0.786

Multimodal 0.850 0.828 0.867 0.813 0.839 0.846
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Classification performance in between CU and MCI. The CU and MCI classification results are shown 
in Table 2. The multimodal performance was slightly higher than image classification result metrics of 2D CNN-
LSTM and 3D CNN. The 2D multimodal results were the same or higher than those of image classification, 
with AUC of 0.923, accuracy 83.3%, precision 78.6%, recall 84.6%, F1 score 81.5% and specificity 82.4%. The 3D 
multimodal results show AUC of 0.850, and accuracy 82.8%, precision 86.7%, recall 81.3%, F1 score 83.9% and 
specificity 84.6%, which were higher than those of image classification in all performance indicators (Fig. 1).

Identification of informative features for AD classification. GRAD-CAM findings confirmed that 
2D and 3D CNN learned through feature extraction from most areas in the image (Fig. 2). Figure 2A is the result 
of 3D CNN, and Fig. 2B is the result of 2D CNN-LSTM. The identification of informative features in the Grad-
Cam results, the distinctive area extracted from the brain was an area associated with cognitive functions such 
as the hippocampus and the lateral and middle temporal regions. In addition, through 3D sagittal phase in AD 
group, it was able to observe some cingulate regions were included. As a result of 2D CNN-LSTM, the regions 
that appeared through GRAD-CAM via a single axial phase shows a lot of dependent parts of uptake region.

Figure 1.  The receiver operating characteristic curve of classification results between (A) CU and AD (B) CU 
and MCI. AD Alzheimer’s disease, CU cognitively unimpaired, MCI mild cognitive impairment.

Figure 2.  The results presented by GRAD-CAM for (A) 3D CNN and (B) 2D CNN-LSTM. Color bar means 
that "blue-red" color schema as the min–max mapping of the values.
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Discussion
In this study, DL was used to grading and differentiate syndromal cognitive stage between CU and AD, CU 
and MCI. In the MCI and AD groups used in this study, it was confirmed that there were some subjects who 
showed amyloid and flortaucipir positive or amyloid and flortaucipir negative at the same time. This suggests 
that this study was performed the syndromal cognitive stage grading of MCI and AD through flortaucipir PET. 
The classification among CU, MCI, and AD performed in this study is a syndromic cognitive stage grading, and 
AI modeling based on DL were performed with the goal of grading between CU and MCI, and between CU 
and AD. In addition, by applying the Tau PET image -based DL technique, the possibility of clinical syndromal 
grading was presented through CU VS MCI and CU VS AD comparison. It means that it is significance as a 
preliminary study to create a numeric staging  model5. The results of 2D CNN-LSTM and 3D CNN proved the 
high performance of the classification ability of these imaging biomarkers. Moreover, multimodal data integra-
tion was performed by adding the demographic and neuropsychological variables into the CNN models as a 
method to use quantitative data which could be acquired at screening or baseline for disease classification. In 
2D CNN-LSTM image classification for distinguishing between CU and AD has an AUC of 0.964 and accuracy 
of 88.5%. In addition, the results of 3D CNN image classification showed the AUC of 0.947 and accuracy of 
88.5%. In multimodal classification, the results of 2D CNN-LSTM and 3D CNN showed the AUC of 0.947 and 
0.976, respectively. For distinguishing between CU and MCI in image classification task has an AUC of 0.840 
and accuracy of 80.0%. In addition, the results of 3D CNN image classification showed the AUC of 0.845 and 
accuracy of 83.3%. In multimodal classification, the results of 2D CNN-LSTM and 3D CNN showed the AUC 
of 0.923 and 0.850, respectively.

This study has several novel features. First, the classifiers generated in this study demonstrated that accumu-
lated tau tangles may have an important role in AD pathogenesis based on the characteristics of their distribution. 
Previous studies using an ADNI database-driven approach have determined that the principal regions of tau 
pathology mainly overlap with the Braak stage III regions of interest (ROIs) (i.e., the amygdala, para-hippocampal 
gyrus, and spindle)6,17,20. It is generally known that stage III/IV ROIs could be observed in patients with CU as 
well as those with AD, whereas stage I/II is common in patients with CU and stage V/VI is common in those 
with  AD21. In other words, it is difficult to classify tau deposition measurements as representative of cognitive 
decline including MCI and AD compared to CU through the ROIs of stage III/IV. We performed a systematic 
review of the existing literature to summarize the most common CU versus AD classification techniques that 
include comparison of CU versus MCI (Table 3)17,18,22–27. Notably, the classification between CU and MCI in this 
study showed better performance than other previously published methods. Significant accuracy was achieved 
for distinguishing both classifications based on regions with accumulated tau, which were set in the DL models. 
In addition, we generated regions with important identified features by GRAD-CAM in the DL process. The left 
and right amygdala, and left entorhinal, left para-hippocampal, inferior temporal, and right middle-temporal 
regions were identified as the main tau deposition regions. This suggests that tau deposition in the regions 
revealed by DL frameworks is similar to the regions of neurodegenerative and cognitive decline identified by 
Braak staging. Moreover, by including the entorhinal and inferior-temporal regions, which are known to be 
affected in early AD, among the Braak stage I/II regions and suggesting their importance, the classifiers generated 
in this study reflect the tau accumulation characteristics of AD and reinforce the suggestion of previous stud-
ies regarding their important role in early  pathogenesis28,29. The results of our study also correspond well with 
the tau pattern and related regions as reported in previous studies 30–32. Second, we conducted TL by applying 

Table 3.  The systematic review and comparison of classification by DL using PET. PET positron emission 
tomography, CNN convolutional neural network, AUC  area under curve, CU cognitive un-impairment, MCI 
mild cognitive impairment, AD Alzheimer’s disease, DNN deep neural network. a FDG-PET. b Amyloid PET. 
c18 F-flortaucipir-PET. d Accuracy (%).

Modality Model

Participant counts
Classification results 
(AUC)

CU MCI AD CU-AD CU-MCI

Choi and Jin (2018) PETb 3D CNN 182 171 139 96.0 84.2

Li et al. (2015) PETb 3D CNN 198 403 (167 of LMCI) 198 88.7 69.5

Wen et al. (2021) PETb
3D CNN

835 490
82.1d

2D CNN 79.2d

Lu et al. (2018) PETa DNN 378 626 (217 of LMCI) 238 84.5 85.9

Liu et al. (2018) PETa
3D CNN

100 146 93
93.5 82.1

2D CNN 91.8 78.8

Zou et al. (2021) PETc
3D CNN

319 127
85.8d

2D CNN 88.4d

Jo T et al. (2020) PETc 3D CNN 66 168 (71 of LMCI) 66 90.4d

This study PETc

3D CNN

138 73 65

94.7 84.5

Multimodal 97.6 85.0

2D CNN 96.4 84.0

Multimodal 94.7 92.3
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the weights of the classifier between CU and AD for maximized performance of classification between CU and 
MCI. The result for classification CU and MCI in this study was able to provide better performance than other 
previously published methods (Table 3). In particular, by presenting the results of CU and MCI classification 
with higher performance than other studies, we present the possibility of syndromal cognitive staging in early 
stages, which has recently attracted attention. In addition, it was confirmed that the DL based classification 
performance (2D; AUC of 0.840 and 0.923, 3D; AUC of 0.845 and 0.850) is superior to existing conventional 
ML model performance (Tau SUVR; AUC of 0.720, Tau SUVR with clinical variables; AUC of 0.800) of support 
vector machine (SVM) based classification and effective for classifying grade staging between CU and MCI 
which are relatively difficult to distinguish (Table 2). In the classification between CU and AD through ML, the 
difference in continuous numeric variables such as MMSE and Tau SUVR is stark, and it can be shown that the 
effect is better than that of DL (Supplementary Table S1). However, for the classification of CU vs MCI, which 
is relatively difficult to distinguish in terms of clinical symptoms, the DL-based classification performance was 
superior to staging. This suggests the possibility of clinically useful use through future research development. 
Although there might be some differences in the model structure and method of feature extraction, our results 
suggest that good performance of the classification between CU and MCI is presented through the application of 
weights of classification between CU and AD within the same data set. Third, the classifiers of this study could be 
applied to measurements that are easily obtained in clinical practice. In this study, we trained the 2D model using 
consecutive 2D slices by stacking two consecutive LSTM. Of a total of 144 slices, the model in this study used 
72 consecutive even-numbered slices. In many clinical applications, brain PET scans for AD require fewer slices 
than the number of slices used in this study with 2-mm or 3-mm axial 2D slice thickness. The results of this study 
indicate that there is a possibility to learn all data at once without omitting the specific axial image information 
of each individual patient. In addition, multimodal layering was performed by concatenation of demographic 
and neuropsychological variables with the flattened layer of features extracted through CNN before entering 
the LSTM. The combined clinical variables used in this study were age, sex, education, and MMSE score, which 
are easily obtainable indicators at the screening stage for AD clinical trials or in hospital visits of outpatients. 
Through the results of our multimodal models, we demonstrated that the combination of clinical information 
with images could help to improve model performance slightly more than that of image DL.

However, there were some limitations in this study. First, we conducted 2D CNN-LSTM modeling utilized 
only consecutive even-numbered 72 slices in the axial direction among total of 144 consecutive slices of 3D PET 
data. The selected contiguous 72 slices were acquired after resampling the data from initial ADNI (96 slices per 
patient, 1.2 × 1.2 × 1.2 mm) to a voxel size of 1 × 1 × 1 mm. The method using consecutive even-numbered 72 slices 
was chosen as a way to overcome hardware limitations while maximally covering the entire brain volume area. 
As a result, we could present higher performance than other existing studies. However, these methods cannot be 
explained to completely cover the entire volume area, and some brain information is expected to be lost. If the 
hardware limitation is overcome in the future, the study could be conducted using total of 144 slices in the same 
process. Second, the small number of subjects was a problem. The data available in this study was less than that 
required for general DL because the ADNI 3 protocol was limited to 63 participants with AD. In DL training, 
if more samples are generally applied to the models, the better the results. Due to the small number of subjects, 
we allocated 20% of the training set for each cross-validation data set for validation. In addition, in the case of 
MCI subjects used in this study, as a late MCI, there was a limit for specific classification of syndromal cognitive 
staging with AD. In the future, when additional data is obtained using the model implemented in this study, it is 
possible to accurately grading for AD staging. In addition, the TL is used for applying a small data set through 
pre-trained models constructed from large data sets to obtain results with fine tuning. However, in this study, 
it was not possible to acquire many subjects; thus, the frozen layers method with feature extraction and cross-
validation was performed to solve this problem and improve the reliability of the CU versus MCI classification 
model. Third, we use imperfect clinical diagnosis as the gold standard for modeling. As shown in Table 4, the 

Table 4.  Classification of ADNI to distinguish CU, MCI and dementia.  This table was adapted and modified 
from the procedure manuals for ADNI3 available at http:// adni. loni. usc. edu/ metho ds/ docum ents/. ADNI 
Alzheimer’s Disease Neuroimaging Initiative, CU cognitively unimpaired, MCI mild cognitive impairment, 
AD Alzheimer’s disease, MMSE Mini-Mental State Examination, CDR The Clinical Dementia Rating Scale, 
NINCDS/ADRDA National Institute of Neurological and Communication Disorders and Stroke/Alzheimer’s 
Disease and Related Disorders Association.

CU MCI AD

Subjective memory complaint None Yes Yes

MMSE score  ≥ 24  ≥ 24
Between 20 and 24 (exceptions for 24 and 
25 for participants with less than 8 years of 
education)

CDR CDR = 0
Memory box score must be 0

CDR = 0.5
Memory box score of at least 0.5 CDR = 0.5 or 1.0

Logical memory score
 ≥ 9 for 16 or more years of education
 ≥ 5 for 8–15 years of education
 ≥ 3 for 0–7 years of education

 ≤ 8 for 16 or more years of education
 ≤ 4 for 8–15 years of education
 ≤ 2 for 0–7 years of education

 ≤ 8 for 16 or more years of education
 ≤ 4 for 8–15 years of education
 ≤ 2 for 0–7 years of education

General cognition and functional status
Cognitively normal based on the absence of 
significant impairment in cognitive func-
tions or activities of daily living

General cognition and functional perfor-
mance sufficiently preserved such that a 
diagnosis of dementia cannot be made

NINCDS/ADRDA criteria for probable AD

http://adni.loni.usc.edu/methods/documents/
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clinical diagnosis presented in ADNI that we used is based on relatively objective criteria as a result of considering 
MMSE, CDR, logical memory test, and general cognition and function. In addition, it is being quality controlled 
by the ADNI clinical core, suggesting that many efforts are being made to compensate for  incompleteness33. 
However, we need to conduct research using objective golden standards such as brain pathology or quantitative 
measures of biomarkers through study in the future. Lastly, the identification of extracted informational features 
for AD classification through GRAD-CAM shows a mixture of on-target binding and off-target binding. In par-
ticular, right off target binding is shown in the sagittal phase as a result of 3D CNN. This is seen as a limitation 
of flortaucirpir ligand, and effective research improvement can be presented through the second-generation tau 
ligand in the future. In addition, segmentation such as cortex, central structures and superior cerelleum before 
processing could be an alternative solution. In this study, we suggested that 18F-flortaucipir PET images could 
be a scalable biomarker by applying a DL framework for classification of AD stage. Our results show that the DL 
models using images in combination with clinical variables can effectively classify AD stages.

Methods
Subjects. A total of 271 subjects (138 CU, 75 MCI, and 63 AD) in the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI3) for whom 18F-flortaucipir PET scans were performed at baseline were recruited. Age, sex, 
education, Mini-Mental State Examination (MMSE) score, 18F-flortaucipir-PET images, and diagnostic results 
were acquired (Fig. 3). All subjects were divided using criteria provided as clinical syndrome diagnoses within 
the ADNI cohort (Supplementary Table S2, S3). All subjects in the CU group had clinical dementia rating (CDR) 
scores of 0 or 0.5, which allowed them to be distinguished from participants with MCI and AD. The patients with 
MCI did not meet the dementia criteria and were evaluated based on an objective memory impairment deter-
mination. All participants with MCI had MMSE scores of 24 or higher up to 30 and CDR scores of 0.5, a CDR 
memory score of 0.5 or higher. In addition, d a score that indicated impairment on the delayed recall of Story 
A of the Wechsler Memory Scale-Revised (≥ 16 years of education: < 11; 8–15 years of education: ≤ 9; 0–7 years 
of education: ≤ 6) was  applied34. All patients that met the criteria for AD had CDR scores of 0.5 of 1 and a score 
that indicated impairment on the delayed recall of Story A of the Wechsler Memory Scale-Revised (≥ 16 years 
of education: ≤ 8; 8–15 years of education: ≤ 4; 0–7 years of education: ≤ 2). A final total of 271 subjects from the 
ADNI3 cohort were selected for this study (Table 4).

The study procedures were approved for all participating centers (https:// adni. loni. usc. edu/ wp- conte nt/ uploa 
ds/ how_ to_ apply/ ADNI_ Ackno wledg ement_ List. pdf), and written informed consent was obtained from all 
participants or their authorized representatives. A committee on human research at each participating institu-
tion approved the study protocol, and all participants or legal guardian(s)/legally authorized representatives gave 
their informed consent. In addition, all experiments were performed in accordance with the relevant guidelines 
and regulations outlined in the IRB.

Data acquisition and preprocessing. 18F-flortaucipir 3D dynamic PET scan images were acquired for 
all individuals. All PET images were acquired by a 30-min scan, 75–105 min after intravenous (IV) injection of 
18F radio isotope (RI) with 370 mBq (10.0 mCi) ± 10% radioactivity, considering the weight of each patient, and 
flortaucipir ligand. For this study, pre-processed PET images (AV1451 Coreg, Average, Standardized Image, and 
Voxel Size) provided and described were acquired from the ADNI3 cohort. As all images were preprocessed 
such as anterior–posterior axis fitting to the anterior commissure-posterior commissure line. Scans were nor-

Subjects with 18 F-flortaucipir PET

(n=278, CU=138, MCI=75, AD=65)

Subjects with 18 F-flortaucipir and Aβ PET

(n=276, CU=138, MCI=75, AD=63)

Excluded (n=2) :

• Not present Aβ PET in AD group 

Train dataset (n=220) Test dataset (n=56)

Figure 3.  Subjects flowchart through this study for the training and test datasets. Within the training data 
set, 20% was used as validation data and cross-validation was performed 5 times. Within the ADNI3 data set, 
’AV1451 Coreg, Average, Standardized Image and Voxel Size’ PET images were used, and each group (CU, 
MCI, AD) was classified based on clinical syndrome staging by registered in ADNI cohort. Aβ β-amyloid, 
PET positron emission tomography.

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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malized to Montreal Neurologic Institute (MNI) space using parameters generated from segmentation of the 
T1-weighted MRI scan in Statistical Parametric Mapping v12 (SPM12).

Intensity normalization was performed using a cerebellar gray matter as a reference region and standard 
uptake value ratio (SUVR) could be acquired for RI uptake calculation for each region in the  brain35–37. More 
details of 18F-flortaucipir-PET preprocessing can be found in other related  studies22,35,38. After acquisition images 
we converted the voxel size to 1 × 1 × 1 mm by resampling and resizing and acquired 3D PET images to use input 
data for the development of the DL framework. For 2D CNN long short-term memory (LSTM) DL framework 
development, we extracted 72 even-numbered sequential axial slice images from a total of 144 3D images per 
individual subject. The 3D CNN DL framework was performed using total image. All data such as demo-
graphic and clinical information, image voxel size was processed for min–max normalization for a multimodal 
framework.

The data for both frameworks were split as 80% of the total data for the training set and 20% of the total data 
for the test set. The validation set was 20% of the training set. Five-fold cross-validation was applied to derive 
stable performance (Fig. 3). The data ratio was maintained during five cross-validations, as one subset was 
selected for testing and the remaining four sets for validation.

Define of Aβ PET status. We downloaded the 18F-florbetapir and 18F-florbetaben analysis data from 
the ADNI. Moreover, we classified each participant as Aβ-positive PET scan on observing a global standard-
ized uptake value ratio (SUVR) > 1.11 for the 18F-florbetapir 39. For 18F-florbetaben, tracer uptake was assessed 
according to the regional cortical tracer uptake system in four brain regions (frontal cortex, posterior cingulate 
cortex/precuneus, parietal cortex, and lateral temporal cortex) and the cut-off value was 1.140.

Classification for deep learning. TL was performed using the weight of both 2D CNN-LSTM and 3D 
CNN models built in classification between CU and AD to increase the classification between CU and MCI clas-
sification performance. In both 2D and 3D models, feature extraction methods similar to classification between 
CU and AD models was used by conducting a freezing technique to fix the feature extraction architecture for 
classification between CU and MCI by TL. From the first convolutional layer to the last layer (before the fully 
connected layer), which performs feature extraction within the image, it was frozen for TL, and DL was per-
formed through a classifier composed of dense layers. The learning rate was changed to 0.00001, considering 
that it is more difficult to distinguish between CU and MCI. For each classification between CU and AD, CU and 
MCI, binary cross-entropy loss function was applied.

2D CNN‑LSTM. The 2D CNN model was prepared in conjunction with the LSTM (Fig.  4). Two LSTM 
algorithms were consecutively stacked after the 2D CNN to minimize the loss of brain information contained 
in the 72 axial images from the upper to the lower part of the head. All axial images were sequentially processed 
by LSTM configuration models after feature extraction from each slide through 2D CNN. Each slice index i and 
extracted features f were converted to the form of (i, f), and the model was constructed by stacking two LSTM 
layers consecutively. In the first layer of LSTM, the features of each slice are output in the form of (i, f) → (i, 
LSTM(output)). While maintaining the sequential slices information, the variable of f(Features) reduced by the 
size of the first LSTM output is input to the second LSTM layer, and finally output in the form of (i, LSTM(last 
output)). That is, the features corresponding to the entire slice information were sequentially extracted, and 
the model was constructed through two consecutive LSTM layers. To avoid excessive epochs that could lead to 
overfitting, early stopping was applied if the model did not show any improvement loss for ten iterations. The 
hyper-parameters for classification between CU and AD, adaptive moment estimation (Adam), a first-order 
gradient-based probability optimization algorithm with learning rate = 0.0001, decay rate = 0.96, and batch size 
of 1, was used (Fig. 5). The feature maps (8,16,32,64) were extracted from four hidden layers; kernel_size = 2, 
same padding, and Maxpool2D were applied to each layer to use the activation function of rectified linear unit 
(ReLU). Dropout (0.3) was applied to the third and fourth layers. Two LSTM (200,64) layers were applied, and 
dropout (0.25) was applied after the first layer.

3D CNN. The 3D CNN model was constructed more depth than 2D CNN-LSTM since the 3D images have 
volume including with height and width information (Fig. 4). To avoid overfitting, early stopping was applied 
if the model did not show any improvement loss for 15 iterations. Hyper-parameters for classification between 
CU and AD, such as optimization function, learning rate, decay rate, and batch size, were the same as for the 
2D model. The feature maps (8,16,32,64,128) were extracted from four hidden layers; kernel_size = 3 and Max-
pool3D were applied to each layer to use the activation function ReLU (Fig. 5). Features that had passed through 
the flattened layer were input into the three dense layers, and dropout (0.2) was subsequently applied.

Informative feature identification for AD classification. Gradient-weighted class activation map-
ping (GRAD-CAM) was used to identify informative features extracted through CNN models. The feature map 
could be visualized with the average pixel value up to final layers. We identified regions in the brain as the ReLU 
activation function was applied to visualize important parts in the model during the analysis process.

Evaluation performance. For the evaluation of the model performance, four metrics (accuracy, recall, 
precision, and F1 score) were used. Since this study focused on the accurate classification between CU and AD, 
CU and MCI, the metric of true positive was mainly established for overall performance evaluation of the clas-
sification model. The equations is Eqs. (1)–(4).
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Figure 4.  Deep learning framework for (A) 2D CNN-LSTM and (B) 3D CNN. AD Alzheimer’s disease, CU 
cognitively unimpaired, MCI mild cognitive impairment, MMSE Mini-Mental State Examination, LSTM long 
shot term memory.

Figure 5.  The process for layer stacking of deep learning model (A) 2D CNN-LSTM, (B) 3D CNN.
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Statistical analysis. After performing the Shapiro–Wilk normality test on the variables from each group 
(CU, MCI, and AD), examination of significance differences among groups was conducted by one-way analy-
sis of variance (ANOVA) and the chi-squared ( χ2) test for continuous and categorical variables, respectively. 
After conducting Levene’s test for checking the equality of variances, ANOVA was performed to test difference 
in the means among three groups. If the assumption of equal variance was not satisfied, Welch’s ANOVA was 
performed to test the mean difference among groups. In addition, post-hoc analysis was performed using the 
Games-Howell test if the assumption of equal variance was established, and the Scheffe test if the assumption 
was not satisfied. Statistical significance was set at p < 0.05 and p < 0.001. All statistical analysis was performed 
in R (version 4.1.0).

Tools. Tensorflow 2.8.0 and Keras 2.8.0 were used to construct DL frameworks and performed by scratch on 
Python 3.7.0 for all processing.

Ethics approval and consent to participate. The study was approved by the institutional review boards 
of Kangwon National University Hospital (approval No. KNUH-2022-06-011) all participating institutions, and 
written informed consent was obtained from all participants or their authorized representatives.

Data availability
All ADNI data used in this study is available through the ADNI website (https:// adni. loni. usc. edu/ data- sampl 
es/ access- data/). The datasets used and/or analyzed during the current study available from the corresponding 
author on reasonable request.
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