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Simultaneous selection of multiple 
important single nucleotide 
polymorphisms in familial genome 
wide association studies data
Subhabrata Majumdar 1,2*, Saonli Basu 1, Matt McGue 1 & Snigdhansu Chatterjee 1

We propose a resampling-based fast variable selection technique for detecting relevant single 
nucleotide polymorphisms (SNP) in a multi-marker mixed effect model. Due to computational 
complexity, current practice primarily involves testing the effect of one SNP at a time, commonly 
termed as ‘single SNP association analysis’. Joint modeling of genetic variants within a gene or 
pathway may have better power to detect associated genetic variants, especially the ones with weak 
effects. In this paper, we propose a computationally efficient model selection approach—based on the 
e-values framework—for single SNP detection in families while utilizing information on multiple SNPs 
simultaneously. To overcome computational bottleneck of traditional model selection methods, our 
method trains one single model, and utilizes a fast and scalable bootstrap procedure. We illustrate 
through numerical studies that our proposed method is more effective in detecting SNPs associated 
with a trait than either single-marker analysis using family data or model selection methods that 
ignore the familial dependency structure. Further, we perform gene-level analysis in Minnesota Center 
for Twin and Family Research (MCTFR) dataset using our method to detect several SNPs using this that 
have been implicated to be associated with alcohol consumption.

Genome Wide Association Studies (GWAS) have identified a large number of genetic variants associated with 
complex  diseases1,2. The advent of economical high-throughput genotyping technology enables researchers to 
scan the genome with millions of Single Nucleotide Polymorphism (SNP)-s, and improvements in computational 
efficiency in analysis techniques has facilitated parsing through this huge amount of data to detect significant 
 associations3. However, detecting small effects of individual SNPs requires large sample  size4. For quantitative 
behavioral traits such as alcohol consumption, drug abuse, anorexia and depression, variation in genetic effects 
due to environmental heterogeneity brings in additional noise, further amplifying the issue. This is one of the 
motivations of performing GWAS on families instead of unrelated individuals, through which the environmental 
variation can be  reduced5–7. However, association analysis of multiple SNPs while using dependent data with a 
familial structure and large sample sizes can be computationally very challenging. Thus single SNP association 
analysis is the standard tool for detecting SNPs, and most family studies tend to have smaller sample size. The 
MCTFR  Study6 with genome-wide data on identical twins, non-identical twins, biological offspring, adoptees 
serve as the motivation for our methodology development in this paper.

A downside of family-based single-SNP methods—such as  GRAMMAR8 and the association test of Chen 
and  Abecasis9—is that they do not take into account shared environment effects within families. They assume 
that phenotypic similarity among individuals in a family is entirely due to their genetic similarity and not due 
to the effect of shared environment. As a result, they tend to lose power when analyzing data where shared 
environmental effects explain a substantial proportion of the total phenotypic variation  (see10,11 for examples). 
The RFGLS method proposed by Li et al.12 does take into account genetic and environmental sources of familial 
similarity and provides fast inference through a rapid approximation of SNP-specific coefficients from a mixed 
effect model. However it is only able to handle single SNPs at a time.

Single-SNP methods are less effective in detecting SNPs with weak  signals4. This is limiting in situations where 
multiple SNPs are jointly associated with the  phenotype13–15. Several methods of multi-SNP analysis have been 
proposed as alternatives. The kernel based association  tests15–18 are prominent among such techniques. However, 
all such methods test for whether a group of SNPs is associated with the phenotype of interest as a whole, and 
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do not prioritize within that group to detect the individual SNPs primarily associated with the trait. One way 
to solve this problem is to perform model selection. The methods of Frommelet et al.19 and Zhang et al.20 take 
this approach, and perform SNP selection from a multi-SNP model on GWAS data from unrelated individuals. 
However, they rely on fitting models corresponding to multiple predictor sets, hence are computationally very 
intensive to implement in a linear mixed effect framework for modeling familial data.

In this paper we propose a fast and scalable model selection technique that fits a single model to a familial 
dataset, and aims to identify genetic variants with weak signals that are associated with the outcome through 
joint modelling of multiple variants. We consider only main effects of the variants, but this can be extended to 
include higher-order interactions. We achieve this by extending the framework of e-values21, which we discuss 
in “Feature selection with e-values”. There we present the definition of an e-value, discuss some of its properties, 
and describe how we generalize the e-values for our scenario. Broadly, for any estimation method that provides 
consistent estimates (at a certain rate relative to the sample size) of the vector of parameters, e-values quantify 
the proximity of the sampling distribution for a restricted parameter estimate to that of the full model estimate in 
a regression-like setup. A variable selection algorithm using the e-values has the three simple and generic steps. 
First, fit the full model, i.e. where all predictor effects are being estimated from the data, and use resampling to 
estimate its e-value. Second, set an element of the full model coefficient estimate to 0 and get an e-value for that 
predictor using resampling distribution of previously estimated parameters- repeat this for all predictors. Then 
finally, select predictors that have e-values below a pre-determined threshold.

The above algorithm offers multiple important benefits in the SNP selection scenario. Unlike other model 
selection methods, only the full model needs to be computed here. It thus offers the user more flexibility in 
utilizing a suitable method of estimation for the full model. Our method allows for fitting multi-SNP models, 
thereby accommodating cases of modelling multiple correlated SNPs or closely located multiple causal SNPs 
simultaneously. Finally, we use the Generalized Bootstrap (GBS)22 as our chosen resampling technique. Instead 
of fitting a separate model for each bootstrap sample, GBS computes bootstrap estimates using Monte-Carlo 
samples from the resampling distribution as weights, and reusing model objects obtained from the full model. 
Consequently, the resampling step becomes very fast and parallelizable.

In past literature, Vanderweele and  Ding23 and Vovk and  Wang24 used the term ‘e-value’ in the contexts of 
sensitivity analysis and multiple testing, respectively. In comparison, the e-values we  use21 evaluate the relevance 
of a variable with reference to a statistical model. Going beyond the existing proposal of e-values tied to specific 
objectives and models, as well as the well-known p-values used for hypothesis testing, this e-value is assumption-
lean, covers more generic statistical problems—such as including dependent data models—and is expandable to 
numerous applications, including group feature selection, hypothesis testing, and multiple testing.

Materials and methods
The MCTFR data. The familial GWAS dataset collected and studied by Minnesota Center for Twin and 
Family Research (MCTFR)6,10,12 consists of samples from three longitudinal studies conducted by the MCTFR: 
(1) the Minnesota Twin Family Study (MTFS)25 that covers twins and their parents, (2) the Sibling Interaction 
and Behavior Study (SIBS)26 that includes adopted and biological sibling pairs and their rearing parents, and 
(3) the enrichment  study27 that extended the MTFS by oversampling 11 year old twins who are highly likely 
to develop substance abuse. While 9827 individuals completed the phenotypic assessments for participation in 
the study, after several steps of  screening6 the genotype data from 7605 Caucasian individuals clustered in 2151 
nuclear families were included in our analysis. This consisted of 1109 families where the children are identical 
twins, 577 families with non-identical twins, 210 families with two adopted children, 162 families with two non-
twin siblings, and 93 families where one child is adopted while the other is the biological child of the parents.

DNA samples collected from the subjects were analyzed using Illumina’s Human660W-Quad Array, and after 
standard quality control  steps6, 527,829 SNPs were retained. Covariates for each sample included age, sex, birth 
year, generation (parent or offspring), as well as the two-way interactions generation x age, generation x sex, 
and generation x birth year. Five quantitative phenotypes measuring substance use disorders were studied in 
this GWAS: (1) Nicotine dependence, (2) Alcohol consumption, (3) Alcohol dependence, (4) Illegal drug usage, 
and (5) Behavioral disinhibition. The response variables corresponding to these phenotypes are derived from 
questionnaires using a hierarchical approach based on factor  analysis28.

A detailed description of the data is available in Miller et al.6. Several studies reported SNPs associated with 
phenotypes collected in MCTFR  study10,12,29. Li et al.12 used RFGLS to detect association between height and 
genetic variants through single-SNP analysis,  while10 used the same method to study SNPs influencing the devel-
opment of all five indicators of behavioral disinhibition mentioned above.  Irons30 focused on the effect of several 
factors affecting alcohol use in the study population, namely the effects of polymorphisms in the ALDH2 gene 
and the GABA system genes, as well as the effect of early exposure to alcohols as adolescents to adult outcomes. 
Finally Coombes et al.29 used a bootstrap-based combination test and a sequential score test to evaluate gene-
environment interactions for alcohol consumption.

Consents and approvals. Data were collected through the Minnesota Center for Twin and Family 
Research (MCTFR). All University of Minnesota and National Institute of Health (NIH) guidelines for human 
subjects research were followed in the collection and processing of the data. The protocol was approved by the 
Institutional Review Board (IRB) at the University of Minnesota (protocol # 0303M45703). Participants aged 
18 years and older completed informed consent, while consent was obtained from at least one parent for those 
participants younger than 18 and the minor participant also assented to participate.
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Statistical model. We use a Linear Mixed Model (LMM) with three variance components accounting for 
several potential sources of variation to model effect of SNPs behind a quantitative phenotype. This is known 
as ACE model in the  literature31. While the-state-of-the-art focuses on detection of a single variant at a time, we 
will incorporate all SNPs genotyped within a gene (or group of genes in some cases) as set of fixed effects in a 
single model.

Following standard protocol for family-based  GWAS9,10,12, we assume a data setting of nuclear pedigrees, i.e. 
that the data consists of observations from individuals of multiple genetically unrelated families, with individuals 
within a family potentially sharing genetic material. Suppose there are m such families in total, with the ith pedi-
gree containing ni individuals , and the total number of individuals is n =

∑m
i=1 ni . Denote by yi = (yi1, . . . , yini )

T 
the quantitative trait values for individuals in that pedigree, while the matrix Gi ∈ R

ni×pg contains their genotypes 
for a number of SNPs. Let Ci ∈ R

ni×p denote the data on p covariates for individuals in the pedigree i. Given 
these, we consider the following model.

with α the intercept term, βg and βc fixed coefficient terms corresponding to the multiple SNPs and covariates, 
respectively, and ǫi ∼ Nni (0,Vi) the random error term. To account for the within-family dependency structure, 
we break up the random error variance into three independent components:

The three components of Vi in (2) model different sources of random variations that can affect the quantitative 
trait values for individuals in the ith pedigree. The first component above is a within-family random effect term 
to account for shared polygenic effects. The proportion of of genetic material shared between pairs of individu-
als in a family is represented by elements of the matrix �i . Its (s, t)th element represents two times the kinship 
coefficient, which is the probability that two alleles, one randomly chosen from individual s in pedigree i and 
the other from individual t, are ‘identical by descent’, i.e. come from same common  ancestor31. Following basic 
probability, the kinship coefficient of a parent-child pair is 1/4, a full sibling pair or non-identical (or dizygous 
= DZ) twins is 1/4, and for identical (or monozygous = MZ) twins is 1/2 in a nuclear pedigree. Following this, 
we can construct the �i matrices for different types of families:

for families with parents (indices 1 and 2) and MZ twins, DZ twins, or two adopted children (indices 3 and 4), 
respectively.

The second variance component σ 2
c 11

T in (2) accounts for shared environmental effect within each pedigree. 
Traits of each individual in the pedigree are affected by the same amount—a single random draw from N(0, σ 2

c )

—of random variation. The third term in (2) quantifies other sources of variation unique to each individual.

Feature selection with e-values. We extend the recently-proposed framework of e-values21 to select 
important SNPs in the above gene-level, multi-SNP statistical model. In a general modelling situation where 
one needs to estimate a set of parameters θ ∈ R

d from data with sample size n, a statistical model corresponds 
to a subset of the full parameter space. In other words, the estimable index set of θ , say S ⊆ {1, . . . , d} specifies 
a model. The other indices are set at constant values—typically in model selection literature the constants are set 
at 0. Note that we are attempting to select important SNPs as described in “Statistical model”, thus in our setting 
θ ≡ βg , d ≡ pg.

Following the recipe in Majumdar and  Chatterjee21, we obtain coefficient estimates corresponding to model 
S by simply replacing elements of the ‘full model’ estimate θ̂—i.e. the the coefficient estimate with all possible 
parameters included—at indices not in S:

Sampling distribution is defined as the distribution of a parameter estimate, based on the random data samples 
used to calculate this estimate. We compare sampling distributions of the above model with the full model, i.e. 
[θ̂S ] with [θ̂ ] (denoting the distribution of a random variable by [·] ). For this comparison, we define an evaluation 
map function E : Rd × R̃

d → [0,∞) that measures the relative position of θ̂S with respect to [θ̂ ] . Here R̃d is the 
set of probability measures on Rd . For any x ∈ R

d and [X] ∈ R̃
d with a positive definite covariance matrix VX , 

we consider the following evaluations functions in this paper:

Here diag(VX) denotes the vector composed of the diagonal entries in VX , and ⊙ represents elementwise prod-
uct, so that (diag(VX))1/2 is the vector of coordinate-wise standard deviation, and (diag(VX))−1/2 ⊙ (x − EX) 

(1)Yi = α + Giβg + Ciβc + ǫi ,

(2)Vi = σ 2
a�i + σ 2

c 11
T + σ 2

e Ini .

�MZ =







1 0 1/2 1/2
0 1 1/2 1/2
1/2 1/2 1 1
1/2 1/2 1 1






,�DZ =







1 0 1/2 1/2
0 1 1/2 1/2
1/2 1/2 1 1/2
1/2 1/2 1/2 1






,�Adopted = I4.

θ̂S =
{

θ̂j for j ∈ S ,
0 for j /∈ S .

(3)E1(x, [X]) =
[

1+
∥

∥(diag(VX))−1/2 ⊙ (x − EX)
∥

∥

2
]−1

,

(4)E2(x, [X]) = exp
[

−
∥

∥(diag(VX))−1/2 ⊙ (x − EX)
∥

∥

]

.
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is a normalized version of x . Data  depths32,33 also constitute a broad class of functions that can be used as evalu-
ation maps—as done by Majumdar and  Chatterjee21. In general, any continuous function that is location and 
scale invariant, and has a few basic convergence properties is a good choice for the evaluation map function (see 
conditions E1–E4 in the supplementary material).

Formulation. Note that the evaluation map function is defined conditional on a fixed value of θ̂S . Since θ̂S 
itself has a distribution, so does the evaluation map. We define the e-value as any functional of the evaluation 
map distribution ES ≡ [E(θ̂S , [θ̂ ])] that can act as a measure of comparison between the sampling distributions 
of θ̂S and θ̂ . For example, Majumdar and  Chatterjee21 took the mean functional of ES (say µ(ES ) ) as e-value, 
and showed that it can be used as a model selection criterion. To this end, non-zero indices (say S0 ) of the true 
parameter vector θ0 can be recovered through a fast algorithm that has these generic steps:

As n → ∞ , the above algorithm provides consistent model selection, i.e. P(Ŝ0 = S0) → 1 . In practice we 
only have one dataset, so it is not possible to access the true sampling distribution of θ̂ and θ̂S to do the above. 
To this end, we use a fast bootstrap algorithm, called Generalized Bootstrap (GBS)22, to obtain approximations 
of the sampling distributions [θ̂S ], [θ̂ ] , the evaluation map distributions, and the e-values. GBS is dependent of a 
tuning parameter τn that represents the standard deviation of the synthetic noise introduced by the bootstrap pro-
cedure. Intermediate values of τn , such that τn/n → ∞ , result in model selection consistency as described above.

Quantile e‑values. When true signals are weak, the above method of variable selection leads to very conserva-
tive estimates of non-zero coefficient indices, i.e. a large number of false positives in a sample setting. This 
happens because the true values leave-one-covariate-out e-values for variables that correspond to small but 
non-zero coefficients in θ0 (hence weak signal) fall too close to the full model e-value. Consequently, when these 
e-values are estimated from randomly sampled data, simply by random chance their values can be slightly less 
than the full model e-value estimate.

Figure 1 demonstrates this phenomenon in our setup, where we would like to estimate non-zero elements 
of the fixed effect coefficient vector βg in the model (1), i.e. βg ≡ θ . Here we analyze data on 250 families with 
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Figure 1.  Density plots of bootstrap approximations for E∗ and E−j for all j in simulation setup, with 
s = 0.2, 0.3, 0.6, 1.
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monozygotic twins, each individual being genotyped for 50 SNPs. Four of these 50 SNPs are causal: each having 
a heritability of h/6% with respect to the total error variation present. The four panels show density plots of E−j 
for j = 1, . . . , p , as well as E∗ : estimated based on resampling schemes with four different values of the standard 
deviation parameter s ≡ sn = τn/

√
n . Focusing on where the central regions of the evaluation map distributions 

are, we notice that for smaller values of s there is quite a bit of overlap along the bootstrap estimates of E−j for 
causal vs. non-causal SNPs. On the other hand, for large values of s all the density plots become essentially the 
same as the full model.

However, notice that the evaluation map distributions for non-zero vs. zero indices have different tail behav-
iors at smaller values of s. In the supplementary material S1 we show that the means and tail quantiles for E−j and 
E∗ asymptotically converge to different limits (Theorems A.1 and A.2), and these limits are well-approximated 
with a GBS scheme having small standard deviation s (Theorem A.3). A potential reason for the different tail 
behaviors we see above is that the convergence at tail quantiles happens at a faster rate than convergence at the 
means.

Consequently, instead of comparing means of the distributions, comparing a suitable tail quantile across the 
distributions is more likely to provide a better separation of non-zero vs. zero indices. For this reason we use 
tail quantiles as e-values.

When the qth quantile (denoted by cq , q ∈ (0, 1) ) is taken as the e-value instead of the mean, we set a lower 
detection threshold than the same functional on the full model, i.e. choose all j such that

to be included in the model. The optimal choice of q and t depends on factors such as specifications of the sta-
tistical model, sample size, and degree of sparsity of parameters in the data generating process. We demonstrate 
this point through our experiments in “Experiments”. For q, we take the conservative route by only flagging a 
SNP as ‘detected’ if Eq. (5) holds for all q ∈ {0.5, 0.6, 0.7, 0.8, 0.9} . This approach leads to a tradeoff between the 
true positive and true negative SNP detections rates for different values of t. We demonstrate this fact through 
synthetic data experiments (“Synthetic data”), and choose the best t that minimizes prediction error on a holdout 
sample in the MCTFR data analysis (“Analysis of the MCTFR data”).

Experiments
We now evaluate the performance of the above formulation of quantile e-values in through on synthetic data, 
as well as the MCTFR Twin Studies dataset.

Synthetic data. Consider the model in (1) with no environmental covariates and familes with MZ twins. 
We take a total of pg = 50 SNPs, and generate the SNP matrices Gi in correlated blocks of 6, 4 ,6, 4 and 30 to 
simulate correlation among SNPs in the genome. We set the correlation between two SNPs inside a block at 0.7, 
and consider the blocks to be uncorrelated. For each parent we generate two independent vectors of length 50 
with the above correlation structure, and entries within each block being 0 or 1 following Bernoulli distributions 
with probabilities 0.2, 0.4, 0.4, 0.25 and 0.25 (Minor Allele Frequency or MAF) for SNPs in the 5 blocks, respec-
tively. The genotype of a person is then determined by taking the sum of these two vectors: thus entries in Gi can 
take the values 0, 1 or 2. Finally we set the common genotype of the twins by randomly choosing one allele vector 
from each of the parents and taking their sum.

We repeat the above process for m = 250 families. In GWAS generally each associated SNP explains only a 
small proportion of the overall variability of the trait. To reflect this in our simulation setup, we assume that the 
first entries in each of the first four blocks above are causal, and each of them explains h/(σ 2

a + σ 2
c + σ 2

e )% of the 
overall variability. The term h is known as the heritability of the corresponding SNP. The value of the non-zero 
coefficient in k-th block: k = 1, . . . , 4 , say βk is calculated using the formula:

We fix the following values for the error variance components: σ 2
a = 4, σ 2

c = 1, σ 2
e = 1 , and generate pedigree-

wise response vectors y1, . . . , y250 using the above setup. To consider different SNP effect sizes, we repeat the 
above setup for h ∈ {10, 7, 5, 3, 2, 1, 0} , generating 1000 datasets for each value of h.

Competing methods We compare our e-value based approach using the evaluation maps E1 and E2 in (3) 
with two groups of methods:

(1) Model selection on linear model: Here we ignore the dependency structure within families by training linear 
models on the simulated data and selecting SNPs with non-zero effects by backward deletion using a modification 
of the BIC called mBIC2. This has been showed to give better results than single-SNP analysis in a GWAS with 
unrelated  individuals19 and provides approximate False Discovery Rate (FDR)  control34.

(2) Single‑marker mixed model: We train single-SNP versions of (1) using a fast approximation of the General-
ized Least Squares procedure (named Rapid Feasible Generalized Least Squares or  RFGLS12), obtain marginal 
p-values from corresponding t-tests and use two methods to select significant SNPs: the Benjamini-Hochberg 
(BH) procedure, as well as the Local FDR  method35 (LFDR).

For mBIC2 and BH, we choose a conservative FDR level of 0.05 guided by choices in existing  work36,37. 
Higher FDR values lead to marginal increase in true positive rate but sharp decreases in true negative rate (see 
definitions of these metrics below). LFDR tends to be much more conservative than global FDR procedures, 
so we repeated its simulations for a range of FDR values in {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} . Table 1 shows the 

(5)cq(E−j) < tcq(E∗), 0 < t < 1,

(6)βk =
√

h

100(σ 2
a + σ 2

c + σ 2
e ).2MAFk(1−MAFk)

.
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performance metrics at FDR = 0.4, the highest value where the true negative rate is at least as much as the lowest 
true negative across all settings of e-values as described below.

With the e-value being the qth quantile of the evaluation map distribution, we set the detection thresh-
old value at the tth multiple of q for some 0 < t < 1 . This means all indices j such that the qth quantile of 
the bootstrap approximation of E−j is less than the tqth quantile of the bootstrap approximation of E∗ get 
selected as the set of active predictors. To enforce stricter control on the selected set of SNPs we repeat this for 
q ∈ {0.5, 0.6, 0.7, 0.8, 0.9} , and take the SNPs that get selected for all values of q as the final set of selected SNPs. 
Guided by empirical experiments, we chose values of t for E1 and E2 that clearly demonstrate the tradeoff of TP/
TN (or RTP/RTN) rates for the e-values.

Since the above procedure depends on the bootstrap standard deviation parameter s, we repeat the process 
for s ∈ {0.3, 0.15, . . . , 0.95, 2} , and take as the final estimated set of SNPs the SNP set Ŝt(s) that minimizes fixed 
effect prediction error (PE) on an independently generated test dataset {(ytest,i ,Gtest,i), i = 1, . . . , 250} from the 
same setup above:

Metrics We use the following metrics to evaluate each method we implement: (1) True Positive (TP), which is 
the proportion of causal SNPs detected; (2) True Negative (TN), which is the proportion of non-causal SNPs 
undetected; (3) Relaxed True Positive (RTP), which is the: proportion of detecting any SNP in each of the 4 
blocks with causal SNPs, i.e. for the selected index set by some method m, say Ŝm,

PEt(s) =
250
∑

i=1

4
∑

j=1

(

ytest,ij − gTtest,ijβ̂Ŝt (s)

)2
;

Ŝt = argmin
s

PEt(s)

Table 1.  (Top) Average true positive (TP)/l(TN) rates for mBIC2, RFGLS+BH and the e-values method with 
E1 and E2 as evaluation maps and different values of t over 1000 replications, and (Bottom) average relaxed true 
positive (RTP) and relaxed true negative (RTN) rates.

Method h = 10 h = 7 h = 5 h = 3 h = 2 h = 1 h = 0

mBIC2 0.79/0.99 0.59/0.99 0.41/0.99 0.2/0.99 0.11/0.99 0.05/0.99 -/0.99

RFGLS+BH 0.95/0.92 0.82/0.95 0.62/0.97 0.29/0.98 0.14/0.99 0.04/1 -/1

RFGLS+LFDR 0.54/0.99 0.46/0.99 0.39/0.99 0.29/0.99 0.23/1 0.15/1 -/0.96

E1

t = exp(−1) 0.95/0.98 0.87/0.97 0.74/0.97 0.47/0.97 0.28/0.97 0.12/0.98 -/0.99

t = exp(−2) 0.94/0.98 0.85/0.98 0.69/0.98 0.43/0.98 0.25/0.98 0.09/0.99 -/0.99

t = exp(−3) 0.94/0.99 0.82/0.98 0.65/0.98 0.37/0.99 0.2/0.99 0.07/0.99 -/1

t = exp(−4) 0.92/0.99 0.79/0.99 0.61/0.99 0.32/0.99 0.17/0.99 0.06/1 -/1

t = exp(−5) 0.9/0.99 0.75/0.99 0.55/0.99 0.26/1 0.13/1 0.04/1 -/1

E2

t = 0.8 0.97/0.98 0.9/0.97 0.79/0.96 0.54/0.96 0.34/0.97 0.15/0.98 -/0.99

t = 0.74 0.96/0.98 0.88/0.97 0.75/0.97 0.48/0.97 0.29/0.98 0.12/0.98 -/0.99

t = 0.68 0.95/0.99 0.87/0.98 0.72/0.98 0.45/0.98 0.26/0.98 0.1/0.99 -/0.99

t = 0.62 0.95/0.99 0.84/0.98 0.68/0.98 0.4/0.99 0.22/0.99 0.09/0.99 -/0.99

t = 0.56 0.94/0.99 0.82/0.99 0.65/0.99 0.36/0.99 0.19/0.99 0.07/1 -/1

t = 0.5 0.92/0.99 0.79/0.99 0.6/0.99 0.31/0.99 0.16/1 0.05/1 -/1

Method h = 10 h = 7 h = 5 h = 3 h = 2 h = 1 h = 0

mBIC2 0.84/0.99 0.66/0.99 0.48/0.99 0.26/0.99 0.16/0.99 0.08/0.99 –/0.98

RFGLS+BH 0.96/0.99 0.83/0.99 0.64/0.99 0.32/0.99 0.16/1 0.05/1 –/1

RFGLS+LFDR 0.55/0.99 0.47/0.99 0.42/0.99 0.37/0.99 0.35/1 0.31/1 –/0.97

E1

t = exp(−1) 0.95/0.98 0.87/0.97 0.75/0.97 0.5/0.97 0.32/0.98 0.15/0.98 –/0.98

t = exp(−2) 0.94/0.99 0.85/0.98 0.71/0.98 0.45/0.98 0.28/0.98 0.12/0.99 –/0.98

t = exp(−3) 0.94/0.99 0.83/0.99 0.67/0.99 0.39/0.99 0.22/0.99 0.09/0.99 –/0.99

t = exp(−4) 0.92/0.99 0.8/0.99 0.62/0.99 0.33/0.99 0.18/0.99 0.07/1 –/1

t = exp(−5) 0.9/0.99 0.75/0.99 0.56/0.99 0.27/1 0.14/1 0.05/1 –/1

E2

t = 0.8 0.97/0.98 0.91/0.97 0.8/0.96 0.57/0.96 0.38/0.97 0.2/0.98 –/0.97

t = 0.74 0.96/0.98 0.89/0.98 0.76/0.97 0.51/0.97 0.33/0.98 0.15/0.98 –/0.98

t = 0.68 0.95/0.99 0.87/0.98 0.73/0.98 0.48/0.98 0.29/0.98 0.12/0.99 –/0.98

t = 0.62 0.95/0.99 0.85/0.99 0.69/0.98 0.42/0.99 0.24/0.99 0.11/0.99 –/0.99

t = 0.56 0.94/0.99 0.83/0.99 0.66/0.99 0.38/0.99 0.2/0.99 0.08/0.99 –/0.99

t = 0.5 0.92/0.99 0.79/0.99 0.61/0.99 0.32/0.99 0.17/1 0.06/1 –/1
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and finally (4) Relaxed True Negative (RTN), which is the proportion of SNPs in block 5 undetected. We con-
sider the third and fourth metrics to cover situations in which the causal SNP is not detected itself, but highly 
correlated SNPs with the causal SNP are. This is common in  GWAS19. We average the above proportions over 
1000 replications, and repeat the process for two different ranges of t for E1 and E2.

Results We present the simulation results in Table 1. For all heritability values, applying mBIC2 on linear 
models performs poorly compared to applying RFGLS and then correcting for multiple testing. This is expected 
because the linear model ignores within-family error components.

Our method works better than the two competing methods for detecting true signals across different values 
of h: the average TP rate going down slowly than other methods across the majority of choices for t. All the 
competing methods (mBIC2, RFGLS+BH, RFGLS+LFDR) have very high true negative detection rates, which 
is matched by our method for higher values of q. Since all reduced model distributions reside on the left of the 
full model distribution, we expect the variable selection process to turn more conservative at lower values of t. 
This effect is more noticeable for lower q, indicating that the right tails of evaluation map distributions are more 
useful for this purpose. Finally for h = 0 , we report only TN and RTN values since no signals should ideally be 
detected. Note also the fact that we report the performance metrics for E1,E2 considering a very conservative 
selection process: we only mark a SNP j as ‘detected’ if cq(E−j) < tcq(E∗) for all q ∈ {0.5, 0.6, 0.7, 0.8, 0.9} . We 
experimentally observed that relaxing this condition leads to higher strict TP rates but lower strict TN.

RTP performances for all methods are better than the corresponding TP/TN performances. However, for 
mBIC2 this seems to be due to detecting SNPs in the first four blocks by chance since for h = 0 its RTN is less 
than TN. Also E2 seems to perform slightly better than E1 , in the sense that it yields a higher TP (or RTP) while 
having the same TN (or RTN) rates.

Among competing methods, it is interesting to notice that LFDR performs better than the other two for small 
signal values ( h ≤ 3 ), but worse at higher h. This speaks to the strengths of LFDR in low-signal situations. On 
the other hand, LFDR is calculated using density estimates of the null and non-null statistic distributions. Since 
there are only 50 SNPs in our simulation setting (and even less in the real data setting), the resulting instability 
is a potential reason for its low performance at high values of h.

Analysis of the MCTFR data. We now apply the above methods on SNPs from the MCTFR dataset. We 
assume a nuclear pedigree structure, and for simplicity only analyze pedigrees with MZ and DZ twins. After set-
ting aside samples with missing response variables, we end up with 1019 such 4-member families. We look at the 
effect of genetic factors behind the response variable pertaining to the amount of alcohol consumption, which is 
highly heritable in this dataset according to previous  studies10. We analyze SNPs inside some of the most-studied 
genes with respect to alcohol abuse: GABRA2, ADH1A, ADH1B, ADH1C, ADH4-ADH7, SLC6A3, SLC6A4, 
OPRM1, CYP2E1, DRD2, ALDH2, and  COMT38 through separate gene-level models. None of the ADH genes 
contained a sufficient number of SNPs to justify analysis individually, so we pooled SNPs across all 7 ADH genes 
for analysis. We include sex, birth year, age and generation (parent or offspring) of individuals as covariates to 
control for their potential effect.

For model selection we use E2 as the evaluation function because of its slighty better performance in the 
simulations. For each gene-level model, We train the LMM in (1) on 75% of randomly selected families, perform 
our e-values procedure for s = 0.2, 0.4, . . . , 2.8, 3, t = 0.1, 0.15, . . . , 0.75, 0.8 ; and select the set of SNPs that mini-
mizes fixed effect prediction error on the data from the other 25% of families over this grid of (s, t). Note that 
we consider a wider range of t than in the simulations. This is because of the fact that instead of demonstrating 
the tradeoff of true positive and true negative rates, our objective here is to actually choose a set of SNPs. For the 
competing methods, we set FDR levels at 0.05 for mBIC2 and RFGLS+BH, while choose the level that minimizes 
fixed effect prediction error on the same holdout data as above for RFGLS+LFDR.

RTP(Ŝm) =
1

4

4
∑

i=1

I(Block i ∩ Ŝm �= ∅),

Table 2.  Table of analyzed genes and number of detected SNPs in them by the three methods.

Gene Total no. of SNPs

No. of SNPs detected by

e-value RFGLS+BH RFGLS+LFDR mBIC2

GABRA2 11 5 0 1 0

ADH 44 3 1 1 0

OPRM1 47 25 1 0 0

CYP2E1 9 5 0 0 0

ALDH2 6 5 0 1 1

COMT 15 14 0 1 0

SLC6A3 18 4 0 1 0

SLC6A4 5 0 0 1 0

DRD2 17 0 0 0 1
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As seen in Table 2, our e-value based technique detects a much higher number of SNPs than the two compet-
ing methods. Our method selects all but one SNP in the genes ALDH2 and COMT. These are small genes of size 
50kb and 30kb, respectively, thus SNPs within them have more chance of being in high Linkage Disequilibrium 
(LD). On the other hand, it does not select any SNPs in SLC6A4 and DRD2. Variants of these genes are known 
to interact with each other and are jointly associated with multiple behavioral  disorders39,40.

A number of SNPs we detect (or SNPs situated close to them) have known associations with alcohol-related 
behavioral disorders. We summarize this in Table 3. Prominent among them are rs1808851 and rs279856 in the 
GABRA2 gene, which are at perfect LD with rs279858 in the larger, 7188-individual version of our twin studies 
 dataset30. This SNP is the marker in GABRA2 that is most frequently associated in the literature with alcohol 
 abuse41, but was not genotyped in our sample. A single SNP RFGLS analysis of the same twin studies data that 
used Bonferroni correction on marginal p-values missed the SNPs we  detect30: highlighting the advantage of 
our approach. We give a gene-wise discussion of associated SNPs, as well as information on all SNPs, in the 
supplementary material S1.

We plot the 90th quantile e-value estimates in Figs. 2, 3 and 4. We obtained gene locations, as well as the 
locations of coding regions of genes, i.e. exons, inside 6 of these 9 genes from annotation data extracted from 
the UCSC Genome Browser  database45. Exon locations were not available for OPRM1, CYP2E1 and DRD2. In 
general, SNPs tend to get selected in groups with neighboring SNPs, which suggests high LD. Also most of the 
selected SNPs either overlap or in close proximity to the exons, which underline their functional relevance.

Discussion and conclusion
To expand the above approach to a genome-wide scale, we need to incorporate strategies for dealing with the 
hierarchical structure of pathways and genes: there are only a few genes associated with a quantitative phenotype, 
which can be further attributed to a small proportion of SNPs inside each gene. To apply the e-values method 
here, it is plausible to start with an initial screening step to eliminate evidently non-relevant genes. Methods like 
the grouped Sure Independent  Screening46 and min-P  test47 can be useful here. Following this, in a multi-gene 
predictor set, there are several possible strategies to select important genes and important SNPs in them. Firstly, 
one can use a two-stage e-value based procedure. The first stage is same as the method described in this paper, i.e. 
selecting important SNPs from each gene using multi-SNP models trained on SNPs in that gene. In the second 
stage, a model will be trained using the aggregated set of SNPs obtained in the first step, and a group selection 
procedure will be run on this model using e-values. This means dropping groups of predictors (instead of single 
predictors) from the full model, checking the reduced model e-values, and selecting a SNP group only if drop-
ping it causes the e-value to go below a certain cutoff. Secondly, one can start by selecting important genes using 
an aggregation method of SNP-trait associations (e.g. Lamparter et al.48) and then run the e-value based SNP 
selection on the set of SNPs within these genes. Thirdly, one can also take the aggregated set of SNPs obtained 
from running the e-values procedure on gene-level models, then use a fast screening method (e.g. RFGLS) to 
select a subset of those SNPs.

We plan to study merits and demerits of these strategies and the computational issues associated with them 
in detail through synthetic studies as well as in the GWAS data from MCTFR. Finally, the current evaluation 
map based formulation requires the existence of an asymptotic distribution for the full model estimate. We plan 
to explore alternative formulation of evaluation maps under weaker conditions to bypass this, thus being able to 
tackle high-dimensional ( n < p ) situations.

It is important to remember that in a GWAS setting looking for causal factors of polygenic, quantitative traits 
is a complex problem. Small effect sizes and high amounts of LD—combined with the influence of environmen-
tal covariates—can make finding a set of SNPs behind that trait a noisy process. Typically the random effect 
error-term is earmarked to account for and quantify such heterogeneities at family-level, but how accurate this 
quantification is depends on the specific problem context. For this reason, in single-SNP models adjusting the 
p-values for FDR is important before selecting the final set of SNPs. While our proposed method is based on 
multi-SNP models, it may still need corrections to calibrate the potential of false discoveries. Finally, robustify-
ing our proposed against data-level issues such as non-nuclear families, lack of individual-level data for some 

Table 3.  Table of detected SNPs with known references.

Gene Detected SNPs with known associations Reference for associated SNP

GABRA2 rs1808851, rs279856: close to rs279858 Cui et al.41

ADH genes rs17027523: 20kb upstream of rs1229984 Multiple studies (https:// www. snped ia. com/ index. php/ Rs122 9984)

OPRM1 rs12662873: 1 kb upstream of rs1799971 Multiple studies (https:// www. snped ia. com/ index. php/ Rs179 9971)

CYP2E1 rs9419624: 600b downstream of rs4646976; rs9419702: 10kb upstream of 
rs4838767 Lind et al.42

ALDH2 rs16941437: 10kb upstream of rs671 Multiple studies (https:// www. snped ia. com/ index. php/ Rs671)

COMT rs4680, rs165774 Voisey et al.43

SLC6A3 rs464049 Huang et al.44

https://www.snpedia.com/index.php/Rs1229984
https://www.snpedia.com/index.php/Rs1799971
https://www.snpedia.com/index.php/Rs671
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Figure 2.  Plot of e-values for genes analyzed: (a) GABRA2, (b) ADH1–ADH7, (c) OPRM1. For ease of 
visualization, 1− e-values are plotted in the y-axis.
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Figure 3.  Plot of e-values for genes analyzed: (d) CYP2E1, (e) ALDH2, (f) COMT.
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individuals warrant additional research. To this end, there is potential of adapting existing methods, such as Niu 
et al.49, to the paradigm of e-values.

Data availability
The genotype and phenotype data for the MCTFR sample used in this study are available through the Database 
of Genotypes and Phenotypes (dbGaP, phs000620.v1.p1). but restrictions apply to the availability of these data, 
were used under license for the current study, and so are not publicly available. Data are however available from 
corresponding author on responsible request.
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