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Semantic modeling of cell 
damage prediction: a machine 
learning approach at human‑level 
performance in dermatology
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Machine learning is transforming the field of histopathology. Especially in classification related tasks, 
there have been many successful applications of deep learning already. Yet, in tasks that rely on 
regression and many niche applications, the domain lacks cohesive procedures that are adapted to the 
learning processes of neural networks. In this work, we investigate cell damage in whole slide images 
of the epidermis. A common way for pathologists to annotate a score, characterizing the degree 
of damage for these samples, is the ratio between healthy and unhealthy nuclei. The annotation 
procedure of these scores, however, is expensive and prone to be noisy among pathologists. We 
propose a new measure of damage, that is the total area of damage, relative to the total area of the 
epidermis. In this work, we present results of regression and segmentation models, predicting both 
scores on a curated and public dataset. We have acquired the dataset in collaborative efforts with 
medical professionals. Our study resulted in a comprehensive evaluation of the proposed damage 
metrics in the epidermis, with recommendations, emphasizing practical relevance for real world 
applications.

Skin cancer is one of the most frequent types of cancer and the success of a curative treatment depends strongly 
on the stage and a timely detection. The detection of skin cancer lesions is a diagnostic task that is performed 
by dermatologists and other medical professionals in medical institutions using different tools. The standard 
procedure is the examination by a dermatologist, using a dermatoscope, which can achieve high detection rates 
but is, however, subjective and strongly depends on the experience of the dermatologist. Depending on the 
suspected type of cancer common non-invasive procedures using laser-based microscopes can lead to accurate 
high detection rates with increased objectivity. Still, the most accurate (and costly) procedure involves a biopsy 
followed by a histological analysis. This procedure is indeed very time-consuming as the histopathologist has 
to analyse the histological slice on a cell basis. Histopathologists detect cells using patterns and morphology 
of  cells1. Results of immunohistochemical stains are most commonly estimated in percent without counting a 
large number of cells (often 10 cells in a representative area). Therefore, Computer Aided Diagnostic (CAD) 
tools are becoming more and more useful in assisting medical professionals to improve the overall efficiency. 
Furthermore, technological advancements in Artificial Intelligence (AI), in particular in Deep Learning (DL), 
show great potential in improving image-based medical diagnosis even  further2–4. In a study by Esteva et al. the 
authors have trained an end-to-end deep neural network that is able to classify skin cancer at a performance 
level that is comparable to  dermatologists5. Subsequently, there have been many other studies and systematic 
reviews that analyse the potential and challenges of using AI in skin cancer detection on dermatoscopic images 
as well as histopathological  images6–9.

The emergence and assessment of skin cancer can often be exposed by analysing the epidermis which is the 
outermost layer of the skin and therefore susceptible to skin cancer related influences such as sun exposure. The 
epidermis is build up by different types of cells such as Squamous cells, Basal cells, Melanocytes, and Keratino-
cytes that could potentially develop into cancer cells. As such, a highly accurate segmentation of the epidermal 
layer is often an important prerequisite for an automated analysis of whole slide images (WSI). This segmentation 
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problem is part of ongoing research and is relevant for multiple imaging modalities such as histopathological 
 images10 or Optical Coherence Tomography (OCT)11. In this work, we focus on the carcinogenic DNA damages 
caused by ultraviolet (UV) radiation on excised abdominal human skin, excised porcine skin and in vitro skin 
models with different melanin indices. Absorption of UV radiation produces two predominant types of DNA 
damage, cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP)12,13. 
CPD are the predominant UV-induced DNA lesions and are approximately five-fold more prevalent than 6-4PP. 
Both damages can be indicated by immunohistochemical staining. This is important for the comparison DNA 
damage induced by Far-UVC irradiation to that caused by daily sunlight  exposure14. Since the damage is not 
always homogeneous, the evaluation of a representative small area is not sufficient.

For the automation of this process we propose a data-driven approach, where we use machine learning meth-
ods for segmenting a whole slide image into three classes: (1) epidermis (2) damaged cells in the epidermis and 
(3) other cells and background. In Fig. 1a we give an example of a scanned skin section, where the epidermis 
(green) and the damaged cells (red) are annotated. In order to train models which are competitive with a human 
pathologist, we collected a dataset consisting of a wide variety of skin samples and labels. For this we obtained 
two kinds of labels: (1) a scalar with respect to the ratio of damaged cells ( Snuclei ) and (2) pixel-wise annotations 
( Y ) that infer a scalar score ( Sarea ), obtained by a pathologist for a subset only (pixel-wise annotations are more 
expensive to obtain). The correlation of these scores is subjected to some noise, as they have been annotated by 
different pathologists. Sample noise occurs in samples with heterogeneous damage. For these critical samples, 
experts tend to conclude at different ratio of damaged to non-damaged cells, inducing noisy annotations of 
Snuclei . This noise can be lessened when annotations from many pathologists are obtained and either averaged or 

Figure 1.  Depicted are an explanatory example of a histological slide with the red staining indicating CPD 
DNA-damaged nuclei of the keratinocytes in (a) and scatter plots of human-annotated relative cell-counts 
Snuclei and relative damaged area Sarea see (c). Underlaid is the kernel density estimation of the score value pairs. 
Yellow implies low density, red implies high density. (b) shows the correlation of two pathologists on 18 samples 
with heterogeneous damage. (c) shows the correlation of Sarea and Snuclei ground truth values. Underlaid is the 
kernel density estimation of the score value pairs.. For the analysis of human-level performance we compared 
the agreement of three scenarios: among (1) two human pathologists (2) the first pathologist and our regression 
model, (3) the second pathologist and our regression model. The results are visualized with respect to the mean 
of absolute errors (d), and standard deviation of absolute errors (e).
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a majority vote is performed to obtain final annotations. However, this process is very costly as many pathologists 
have to be consulted, in order to obtain reliable scores. We propose the Sarea score, which tends to yield less noise 
and correlates with Snuclei (see Fig. 1c). To assess human-level performance and associated sample noise, two 
pathologists individually labeled Snuclei of 18 heterogeneous samples. On these critical samples a mean absolute 
error (MAE) of 0.17 with a standard deviation of 0.22 was measured. In comparison, across all 202 segmented 
samples the Sarea score measures an MAE of 0.08 with a standard deviation of 0.11 and if we constrain the evalu-
ation to critical samples where 0.1 ≤ Snuclei ≤ 0.9 we measure an MAE of 0.15 and a standard deviation of 0.12. 
Correlations of Snuclei with Sarea and the pathologists among another are visualized in Fig. 1b and c. We observe 
that Sarea generalizes well on Snuclei , with a lower MAE than that of pathologists among another on critical sam-
ples. Though the annotation of semantic segments can be a little more time consuming than counting nuclei, 
the resulting labels appear to be more reliable and may justify the process.

Results

In Table 1 we report the results of our experiments as described in Material and Methods where we consider 
three different labels: (a) Snuclei (relative cell counts) (b) Sarea (relative areas derived from Y ) and (c) the ground 
truth segmentation Y of both (epidermis and damaged cells). For (a) and (b) we consider the mean absolute 
error (MAE) as an appropriate metric for regression tasks. We report the intersection over union (IoU) and 
pixel-wise accuracy (Acc) for the segmentation (c). We propose and evaluate three models: (1) plain regression 
model on the whole image regressing Snuclei . (2) (Epidermis) masked regression model regressing Snuclei and (3) 
segmentation model predicting Y.

Quantitative evaluation. Our evaluation features two kinds of regression models. One receiving the 
entire image (Regression) as input and one receiving a masked image (Masked Regression), where only the 
epidermis is visible as input. All masks have been received by a separately trained U-Net, that only segments the 
entire epidermis. We hypothesized that only the image-area where cell damage should be detected is relevant 
and that performance may be boosted if all other information is filtered out. However, global feature extrac-
tion may carry information of the staining, relative color saturation and other tissue-related characteristics of 
a sample. This information may also effect the decision procedure, even if it is not directly related to the score 
Snuclei . We chose the pre-trained VGG 16 as the backbone model for the regression task. No clear benefits were 
observed when using more complex models, which may be due to the limited amount of data (we will elaborate 
more in the discussion). Overall, no gain in performance was observed when only the epidermis was input via 
the masked regression model (compare MAE [Snuclei] of 0.075 for regression and 0.081 for masked regression 
with no significant difference). This contradicts our hypothesis, as we observed a slight improvement when using 
the simple regression model, rather than the regression model with masked input. As the masked images have 
been validated with respect to semantic correctness, this suggests that the regression model does not need any 
additional pre-processing of the image and is able to infer a slightly superior approximation of Snuclei from the 
entire image. It is possible that the regression model even benefits from seeing tissue surrounding the epider-
mis, however, such supposition is hard to confirm, as the decision process of the regression model is handled 
intrinsically. Another interesting observation is that the regression model performs similarly well on both scores 
Snuclei and Sarea . Though Snuclei and Sarea correlate, they do not perfectly match. One would expect a larger offset 
between these scores, if the regression model calculates the score similarly to a pathologist. It is possible that the 
regression model does not count cells to estimate Snuclei , like pathologists do. Unlike the segmentation model 
and pathologists, the regression model outputs the score directly, where as pathologists and the segmentation 
model perform an intermediate step, counting entities such as cells or pixels before weighting them with a total 
of entities.

The Sarea score could be estimated with a regression model, but due to its inherent relation to segmentation, 
we choose to approximate Sarea with a segmentation model, where we compute the ratio of damaged areas and 
areas containing the epidermis based on the predicted segmentation. The Segmentation model performs much 
better on Sarea with an MAE of 0.052, than the regression model on Snuclei with an MAE of 0.075 and 0.081 
respectively. When applying the estimated area scores of the segmentation model to Snuclei , we observe a larger 
offset between respective MAE, with an MAE of 0.091 for Snuclei . Still this offset is within a deviation respective 
to the MAE of 0.08 between these scores and to be expected, as we mentioned before the scores correlate but are 
not the same. We can observe that the best results are achieved when a model is not trained to learn predictions 
of scalar values, but rather taught semantic foundations, such as semantic segments, of individual terms (e.g. 
Aepi and Admg ) that model intermediate steps in the formulation of scalar output. That is if such prior knowledge 

Table 1.  Results reported as mean and standard deviation of (10 fold) cross-validation with metrics specific 
for regression (mean absolute error MAE) and segmentation (Intersection over Union IoU and pixel-wise 
accuracy).1 computed on all samples ( n = 802 ). 2 computed on samples with annotations ( n = 202 ). * used the 
area scores directly for comparing to nuclei score and vice versa. Significant values are in [bold].

Model MAE [Snuclei]1 ↓ MAE [Sarea]2 ↓ IoU [Y] ↑ Acc [Y] ↑

Regression 0.075± 0.003 0.078± 0.003* − −

Masked Regression 0.081± 0.003 0.080± 0.005* − −

Segmentation 0.091 ± 0.002* 0.044  ± 0.069 0.785 ± 0.003 0.976 ± 0.001
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of the formulation of the scores is present, as is for Sarea and Snuclei . Regression models trained directly on Sarea 
yielded a mean and standard deviation of MAE of 0.078± 0.003 and 0.080± 0.005 , for regular and masked 
regression respectively. Comparing to Snuclei yields mean and standard deviation of MAE of 0.091± 0.002 . Thus 
we conclude that we do not compromise performance when predicting Sarea via an intermediate step over Aepi 
and Admg . As a further remark on the difference in performance, when relating the scores Sarea and Snuclei , we 
found that when ridding the data of samples where annotations of these scores seem uncorrelated the MAE of 
these scores drops significantly. We suspect that in the absence of noise, the correlation of the scores is higher 
than the proposed dataset suggests on surface level.

The segmentation approach delivers interpretable results by design which is the major advantage compared 
to the regression model where additional tools are needed to obtain semantic information. We experimented 
with three U-Net variations. We investigated the width of the U-Net model, required to yield good results on 
limited data. Smaller models can tend to generalize more and over-fit less on smaller datasets, but lack in com-
plexity. To asses a good configuration of the U-Net, we have evaluated three variants: U-Net/16, U-Net/32 and 
U-Net/64 with respective base feature dimensions of 16, 32 and 64. All variants have been trained five times on 
each fold, results are listed in Table 2. We observe little improvement when exceeding a base feature size of 32 
for most folds. The IoU scores of the models are close in general, however a lightweight U-Net/16 and U-Net/32 
performs slightly worse than U-Net/64 on most folds, which suggests that its lack in complexity compromises 
prediction. We decide to use the U-Net/64 variant for the segmentation model, as it performed best with respect 
to IoU across folds and does not appear to be overfitting on the data.

Practical relevance. When it comes to the application of a model in practice, many more measures of 
quality are desired, than just quantitative results of the MAE and IoU. Most of all robustness and interpretability 
are of essence for the practical relevance of a model. As discussed, on heterogeneous samples even pathologists 
tend to disagree on exact scores, see Fig. 1b. Therefore it is hard to assess the overall goodness of a model, when 
solely relying on the quantitative evaluation of scores. Especially for samples that may have been sampled differ-
ently, e.g. obtained by another lab or scanner, these quantitative results may not be representative for the models 
performance, due to the small amount of training data. A faithful application of such a model therefore has to 
accommodate some indefinite feedback, as to how and why it predicted a certain score. Given such additional 
information, the models predictive performance and sanity on unseen data can be validated on the fly by a 
pathologist on a subset of the unseen data.

The proposed regression models yield good quantitative results within the confides of similarly sampled 
data, but lack interpretability out-of-the box. That is to say explainability methods such as e.g.  LRP15,16 have to 
be applied to infer some knowledge on relevant image area. Such explainability measures can indicate general 
areas of interest, but are not guaranteed to perfectly display relevant areas in great detail and can be misleading. 
While these methods help to identify general features or visual concepts, using them as means to explain how a 
regression model inferred the terms Ndmg and Nall of the score Snuclei , where Ndmg and Nall denotes the number 
of damaged and all nuclei in the epidermis respectively, would be unreasonable. It is unclear if the regression 
model counts the nuclei at all. In particular, we investigated explanations for a random subset of samples and 
observed that the models contextualizes information from the environment of the epidermis in order the adjust 
predictions based on different amount and quality of staining. This observation is also supported by the fact, 
that masked regression does not benefit from excluding everything except epidermis.

The segmentation model provides a pixel-wise explanation of Aepi and Admg , where Admg is the number of 
pixels depicting damaged tissue and Aepi the number of pixels depicting the epidermis. Not only can the surface 
area of semantic segments be inferred, but exact image locations can be visualized directly, allowing for direct 
feedback to the pathologist, without compromising predictive performance. Moreover, Sarea as a score itself 
tends to be less noisy, as can be observed form the standard deviation of predictions listed in Table 1. After a 
sample-level investigation of predictions, we found that a bad IoU score does not necessarily indicate a failed 
prediction. In Fig. 2b we observe that sample noise, though seldom, does occur for segmentation annotations 
as well. For these cases the model achieves a more accurate prediction than the noisy annotations themselves, 
hence inducing a noisy measurement of the IoU. In Fig. 2c we showcase a sample where the model gives an 
almost perfect prediction, with the exception of a small area, where healthy epidermis is predicted right next to 
the damaged segment. The ground truth annotation consists of damaged area only. This induces the IoU of this 
sample to drop significantly, as one class is predicted completely false and all classes are weighted equally. In 
this case, the macro-averaged IoU is more drastic than it needs to be to ensure a good score Sarea . However, bad 
segmentation can coincide with accurate predictions of Sarea . This case is visualized in Fig. 2a. The model fails to 
detect the epidermis, though to the lack of damage, the resulting score remains accurate. The sample in Fig. 2a, 
unlike most samples in the dataset, shows very low contrasts. The segmentation model appears to struggle with 
such low contrast samples, possibly related to these samples being underrepresented in training.

Finally, the robustness on out of distribution data, such as images sampled from another lab or scanner is 
hard to assess. To this day, state of the art models struggle to predict on out of distribution data, when trained or 
fine-tuned on relatively small  datasets17. Hence, for applications where only small datasets are available human 
assessment of sanity and correctness is of essence, when applying a model to out of distribution data. The seg-
mentation model allows for such assessment. By looking at the semantic segmentation of pixels contributing to 
the terms Admg and Aall , a pathologist can quickly judge whether the model yields sane predictions on unseen 
data. Due to the importance of robustness and interpretability we recommend using the segmentation model 
and Sarea in practical application.

Practical applications include the evaluation of the protection of sunscreens, where DNA damages caused by 
UV light are counted in the epidermis. The challenge here are the inhomogeneously distributed damages, due to 
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inhomogeneous distribution of sunscreen. The area model can evaluate the WSI, which is less biased compared 
to a human histopathologist who examines only a local region of interest in the WSI. Other application is the risk 
assessment of disinfection and inactivation of multi-resistant pathogens with UVC-radiation both on porcine 
 skin18 and on human  skin14. In order to inactivate multi-resistant pathogens like methicillin-resistant Staphylo-
coccus aureus (MRSA) a UVC dose has to be chosen that inevitably leads to DNA damages in the epidermis and 
our model can support the histopathologist with the analysis of the DNA damages. For future work, the goal is 
to generalize the model to other stainings in the epidermis to extend the area of application.

Discussion
In this work, we evaluate different approaches to estimate cell damage within the epidermis. We propose a new 
score Sarea , based on segmentation labels of semantic segments that are contributing to cell damage in the epi-
dermis. While we used related work in the field of deep learning for histopathology as a source for inspiration of 
applicable model  architectures6–9, our scope in this work is to emphasize the need for different metrics and scores 
for reliable judgement of cell damage, rather than competing with related work on publicly available datasets. 
For this reason, we selected models which achieve satisfactory and robust results without excessive tuning of 
hyper-parameters. Since we deal with very high dimensional data, we need architectures with sufficient amount 
of complexity in order to minimize errors. This lead us to the selected models in this work, namely VGG16 with 
pretrained weights from ImageNet (omitting pretrained weights yields comparable results but at the cost of more 
epochs for convergence) for regression and vanilla U-Net for segmentation. For regression we observed that 
less complex and shallow model (like MobileNet or AlexNet) were not as capable as the VGG16, mostly due to 
too small receptive fields as compared to high dimensional input data. When fine-tuning other state of the art 
models, such as Inception, ResNet or transformer variants on the proposed dataset, we observed no significant 
gain in performance which would justify the additional amount of computational resources on such a small 
dataset. Moreover, to prevent overfitting, we replaced the classification head of VGG16 with less complex layers 
and dropout layers in between yielding reduced complexity.

The same observation holds for our vanilla U-Net for segmentation, where we reported three variants with 
increasing complexity yielding only marginal gains in performance, if at all. For this reason, we believe that our 
model selection hit a sweet spot of performance and complexity for the demonstration of different metrics and 
scoring methods.

Data were acquired in a collaborative development with medical professionals. Upon investigation of differ-
ences between annotations of different pathologists, we found that pathologists can vary a lot in their predictions 
on heterogeneous samples. Regarding possible external threats to validity, we already reduced selection bias by 
covering a broad range of different sources, amounts of cell damage and donors. Furthermore, we see potential 
in further decreasing this bias by considering an even more diverse set of training data by using different micro-
scopes and sensors, which would induce a broader range of resolution and noise. The results obtained by our 

Figure 2.  Qualitative examples from the segmentation model highlighting different aspects: (a) in case of low 
contrast, the performance drops considerably. (b) shows robustness to missing annotations (considered as label 
noise). Figure (c) shows a case where the metric (macro-average IoU) drops considerably (although qualitatively 
almost perfect) due to small predictions for absent classes (in this case for healthy epidermis (green) although 
completely damaged (red)).
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methods are competitive and in many cases better than clinical expectations with an MAE lower than 0.1. In 
fact, on a validation set which was labelled by two pathologists independently, we observed that the confidence 
intervals of our models’ error as compared to either pathologist is comparable or even below to those intervals 
among both pathologists. For this, we performed multiple statistical tests on one thousand bootstrapping samples 
for each scenario, were for each bootstrapping sample, we computed the mean absolute errors (visualized in 
Fig. 1d) and the standard deviation of absolute errors (visualized in Fig. 1e). We evaluated three scenarios: (1) 
among human pathologists (2) among the first pathologist (on whom the labels for training are based on) and our 
regression model and (3) among the second pathologist and our regression model. The first case shows a mean 
absolute error (MAE) of ∼ 0.23 with a standard deviation of ∼ 0.24 (see introduction and Fig. 1b). The second 
and third scenarios showing significantly lower means and standard deviations when considering the labels of 
both pathologists as ground truth respectively. Considering these observations and the accompanying increase 
in quality through segmentation, the performance of our models is comparable to that of human pathologists 
and thus suitable for real-world applications. Studies on interobserver variability among pathologists for different 
histological stains have reported varying levels of  agreement19,20, indicating the need for standardized software 
tools in interpreting histological stains.

By exploiting the potential of semantic segmentation, we obtain a model with outputs that are directly inter-
pretable with respect to Sarea , without compromising predictive performance when compared to regression 
models.

As both, the regression and the segmentation model yield good quantitative results, we deem them as appli-
cable to many tasks concerning cell damage in the epidermis. For clinical applications, where one relies on high 
accuracy and sanity of the output, we strongly recommend using the Sarea score of the segmentation model. The 
interpretability of this models output semantic segments allows for an understanding of whether the model 
performs well on unseen data or, if not, on what samples it lacks robustness.

as a final remark, having a pathologist annotate samples, whether it be Snuclei or Sarea is a costly process. One 
way to reduce such cost is an iterative process, similar to strategies used in active learning, where, from a pool of 
unlabeled data, samples with the most uncertainty are queried. Additionally, if similar domain-specific datasets 
with semantic segmentation are made public, transfer-learning could greatly improve the models performance 
as well.

In future works one could investigate the effects of various ensembles, as well as heavily augmented training 
data on this small dataset. The purpose of this work is a simple, straight forward baseline of what is to expect 
when dealing with different approaches to estimate cell-damage, namely counting nuclei ( Snuclei ) and measuring 
the ratio of damaged areas to healthy areas in the epidermis ( Sarea).

Materials and methods
Data acquisition and labels. Relative cell count is defined by Snuclei =

Ndmg

Nall
 , where Ndmg is the number of 

damaged cells and Nall is the total number of cells visible in the epidermis in a given image. Since the informa-
tion about one image is condensed into a single number, we consider this label as weak label as the human costs 
are relatively low (more precisely: human effort was wasted because a pathologist counted the two types of cells, 
but only reported the ratio). The score Snuclei was annotated for all 804 samples and is therefore our main target 
which we want to regress and evaluate.

The score Snuclei is motivated by nuclei being visible, singular cell-components. Therefore, Snuclei strongly 
correlates with the relative amount of damaged cells in the slide. However, pathologists rely on a staining to 
identify damaged nuclei and for heterogeneous slides with varying damage, this may induce noisy labels, as 
opinions on cell damage may vary in regions where the staining fades and samples with heterogeneous damage 
in general. The correlation of pathologist scores in Fig. 1b emphasizes this problem on the proposed dataset. In 
an effort to obtain less noisy labels, segmentation maps of deeply stained regions within the epidermis were 
labelled. Thus a new score Sarea can be obtained from the ratio of damaged regions to healthy regions within the 
epidermis. For a subset of 202 samples we created pixel-wise annotations for both, the epidermis and damaged 
cells. Based on this segmentation map we derived Sarea =

Admg

Aepi
 , where Admg is the area (number of pixels) with 

damaged cells and Aepi is the area (number of pixels) containing the epidermis. While Sarea is again considered 
as weak labels, the segmentation map itself is considered as strong label, since the human costs are higher but 
this type of label allows for more fine-grained evaluation and provides more feedback to the user.

The retrospective analysis was performed on histological images recorded from previously obtained skin 
samples with varying amount of DNA damage as explained  elsewhere14. The acquisition of the dataset was car-
ried out by expert pathologists with extensive domain-knowledge. All annotations concerning the Snuclei score 
were carried out by the same pathologist, all annotations concerning segmentations and the resulting Sarea score 
were annotated under supervision of another pathologist. The dataset consists of 804 samples in total, of which 
487 (60%) are from human skin, 269 (34%) from human skin model and 48 (6%) from ex-vivo porcine skin. 
415 (52%) are stained with CPD, 317 (38%) with 64PP, 36 (5%) with Model African American (MAA) and 36 
(5%) with Model Asian Caucasian (MAC). For 202 (25%) of the samples we have annotation for epidermis and 
high damage areas. All experimental protocols were approved by the ethics committee of the Charité – Univer-
sitätsmedizin Berlin (EA1/324/19) and were performed according to the declaration of Helsinki as revised in 
2013. Informed written consent was given by all subjects. In Fig. 1a we show one example where we highlighted 
the epidermis and areas with high damage. All images are taken at the same resolution of 0.645 µm

pixel and size 
( 1040× 1384 pixels corresponding to ∼ 670× 892 µm ∼ 0.624mm2).

To validate the sanity of Snuclei annotations, an additional pathologist labelled 18 critical samples with hetero-
geneous damage, resulting in an MAE of 0.23 between both. A respective scatter plot is depicted in Fig. 1b. The 
relation of the two scores Snuclei, Sarea is depicted in Fig. 1c. Though only a small subset of nuclei were labelled by 
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the additional pathologist, we observe strong deviation in heterogeneous samples. The score Sarea , does correlate 
with Snuclei and though the distribution appears to be slightly skewed from the diagonal, we observe little drastic 
outliers. Hence we conclude Sarea to be the more robust measurement of damage.

Porcine ear skin is included in the data set because it is widely used in medical research as a suitable model 
for human  skin21,22. Porcine ear skin and especially the epidermis exhibits many similarities like sparse body 
hair and epidermal thickness, structure and chemical properties compared to human  skin23. The application of 
assessment of DNA damages in the epidermis was shown in porcine  skin18, as well as human  skin14.

Animal ethics. Porcine ears were obtained from a local butcher. The donor pigs were six months old at the 
date of slaughter. The preparation of the porcine ears as well as the experiments took place at the day of slaughter. 
The experiments were authorized by the Commission of Consumer Protection and Agriculture, District Dahme-
Spreewald, Germany. Porcine ears without any visible injuries were selected for further examinations.

Experiments and metrics. To obtain sound quantitative results, we carried out a 10-fold cross evaluation. 
We configured stratified folds with the emphasis on the staining, tissue type and the presence of segmentation 
annotation for respective samples.

Though our evaluation is centered around the predictive performance with respect to the scores Snuclei and 
Sarea , we are also concerned with the accuracy of the image areas Admg and Aepi on a spatial level. To ensure the 
correctness of Admg and Aepi is to ensure the correctness, sanity and interpretability of Sarea , given a segmentation 
model for Admg and Aepi . Therefore, in addition to the mean-average-error (MAE) for Snuclei and Sarea , we decided 
to also report the IoU as a metric for the correctness of Admg and Aepi for the segmentation model. The IoU was 
measured by the Jaccard index for three classes: non-epidermis area, healthy epidermis and damaged epidermis.

Data augmentation. We applied (1) random axis flips (horizontal and vertical) (2) random brightness 
adjustments sampled uniform between 0.75 and 1.25 and (3) random patch sampling for U-Nets with varying 
patch-sizes. During experimental analysis, we observed that all models performed reasonably within those lim-
its and even slightly beyond. Although there are plenty of additional methods available for data  augmentation17, 
we decided to focus on the most basic methods in order to keep the pipeline straight forward and efficient. In 
future studies we might include heavy augmentation in order to study effect occurring due to distribution shifts 
introduced by different staining, microscopes and tissue sources. However, given the small dataset at hand, the 
proposed simplistic augmentations yielded good results.

Models. Both scores Snuclei and Sarea can be approximated with a regression model. Due to the annotations of 
the semantic segments, which are the individual terms contributing to the ratio Sarea , we choose to exploit these 
annotations via a segmentation model, while relying on regression models for the Snuclei score. To disentangle 
the effects of tissue surrounding the epidermis for prediction we additionally evaluated a masked regression 
approach, where the regression model only receives image information concerning the epidermis. In Fig. 3 we 
provide an overview of our proposed methods involving different pipelines arriving at outputs keeping them 
comparable.

Figure 3.  Overview of our proposed pipelines and methods for comparing different approaches exploiting 
different kind of labels. In order to guarantee comparability we also propose conversions between the different 
kind of outputs. While the Regression Model and Segmentation Model both operate directly on the image, the 
Masked Regression Model utilizes epidermis segmentation maps provided by a separately trained U-Net in 
advance.
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Regression and masked regression. For the standard regression models (plain and masked) we consider one 
whole image for inference. Since the original image of size 1040× 1384 exceeds current capabilities of neural 
networks and memory of GPU’s, we downsampled the images by factor of 4 to 260× 346 . Tests with higher 
resolution images were conducted, but no gain in performance was noticed. On the contrary, the performance 
dropped, possible tied to the ratio of filter sizes and respective receptive fields to the input becoming very small 
with increasing input size. To avoid unnecessary complexity, we used lower resolution input and achieved com-
petitive results.

The backbone of our regression models is a standard VGG16  model24, which was pre-trained on  imagenet25 
followed by a concatenation of global max and mean pooling (1024=512+512) and one additional ReLU layer 
(with 128 filters) followed by one output Sigmoid neuron. Though many complex models have conquered the 
state of the art in computer vision in recent  years26–28, these approaches rely on large amounts of data to pre-train 
and fine-tune on. We opted for the well established VGG architecture, as it’s straight forward convolutions help 
the model to generalize on small datasets.

In addition to the regression on regular input images, we also investigated the effects of masking the image, 
eliminating image information that is assumed to be immaterial. After investigating the performance of the 
regular regression model, we noticed that the relevances (in terms of LRP  maps15) were not located only in the 
epidermis (which is what we expect) but also in the periphery of the epidermis (inside and outside of the tissue). 
For this reason we trained a model similar to the regular regression model, but trained with masked epidermis 
images to enforce the model considering only pixels in the epidermis. To do so, we need information about the 
location of the epidermis in order to mask the image appropriately. Having a human mask the epidermis would 
defeat the purpose of the masked regression, hence a segmentation model was used to mask the images. We fol-
low a basic U-Net29 architecture with four layer-blocks (32, 64, 128, 256 filters) for each the encoder and decoder 
(number of filters in reverse), where each layer consists of two convolutional layers two batchnorm layers and 
a maximum pooling operation, with residual connections to the decoders’ respective layer. We optimized the 
model using Adamax (with learning rate 0.001) minimizing binary crossentropy per pixel. We trained for 150 
epochs, where in each epoch we sampled 50 batches, each consisting of 32 samples (i.e. 1600 patches per epoch). 
As training data we used 256× 256 patches from 2× down sampled images (corresponding to 330× 330 µm).

Segmentation model. 
Though the score Sarea could be estimated by a regression model in a similar manner as Snuclei , we deliberately 
choose to estimate the individual terms Admg and Aepi of Snuclei , rather than directly the score. To estimate the 
semantic segmentation maps of high damage areas within the epidermis, as well as the epidermis itself, we 
resorted to a U-Net as the backbone of our segmentation model. Segmentation models such as the U-Net29 usu-
ally assume input within a certain range of resolutions. The images of the proposed dataset have a resolution of 
1024× 1344 . To estimate segmentation maps on these images, a sliding window approach is used, predicting 
for each window frame and finally inferring from the collection of predictions. However, with respect to large 
input images, the U-Nets receptive field is limited if filter sizes are not increased. We decided to keep the filter 
size constant and adjusted the input size via down-sampling. Images were downsampled by a factor of two. We 
used a U-Net that pools three times, for input image-patches at a scale of 256× 256 . Three model variants 
U-Net/16, U-Net/32 and U-Net/64 were investigated and evaluated. We observed that the U-Net/64, that has a 
base feature dimension of 64 performed best, though increasing the base feature dimension does not yield great 
performance enhancements beyond U-Net/32. Results are listed in Table 2.

All U-Net variants were trained for 50 epochs with 100 steps per epoch and a batch size of 32. We used AdaMax 
with categorical cross entropy, a learning rate of 0.001 and hyperparameters β1 = 0.9,β2 = 0.999, ǫ = 10−7 . The 
training was kept consistent to ensure a fair comparison of variants. Batch sizes larger than 32 did not yield 
better results, possibly due to the size of the dataset. To virtually increase the variance of the training data, we 

Table 2.  MAE of the Sarea score and IoU scores of U-Net variants across all folds. Significant values are in 
[bold].

Fold

U-Net/16 U-Net/32 U-Net/64

MAE [Sarea] ↓ IoU ↑ MAE [Sarea] ↓ IoU ↑ MAE [Sarea] ↓ IoU ↑

1 0.031 ± 0.013 0.788 ± 0.020 0.021 ± 0.006 0.815 ± 0.016 0.026 ± 0.005 0.809 ± 0.028

2 0.051 ± 0.003 0.743 ± 0.015 0.048 ± 0.008 0.774 ± 0.007 0.054 ± 0.017 0.773 ± 0.008

3 0.065 ± 0.021 0.809 ± 0.011 0.073 ± 0.016 0.816 ± 0.008 0.063 ± 0.037 0.802 ± 0.015

4 0.055 ± 0.009 0.759 ± 0.015 0.052 ± 0.007 0.756 ± 0.018 0.046 ± 0.008 0.762 ± 0.014

5 0.038 ± 0.004 0.775 ± 0.008 0.057 ± 0.015 0.764 ± 0.025 0.041 ± 0.004 0.786 ± 0.015

6 0.037 ± 0.009 0.797 ± 0.021 0.040 ± 0.009 0.800 ± 0.028 0.037 ± 0.007 0.811 ± 0.021

7 0.045 ± 0.005 0.724 ± 0.014 0.048 ± 0.006 0.736 ± 0.018 0.046 ± 0.009 0.766 ± 0.016

8 0.018 ± 0.017 0.795 ± 0.033 0.019 ± 0.007 0.789 ± 0.017 0.020 ± 0.009 0.807 ± 0.018

9 0.058 ± 0.009 0.726 ± 0.002 0.046 ± 0.005 0.743 ± 0.013 0.049 ± 0.005 0.748 ± 0.020

10 0.017 ± 0.006 0.825 ± 0.016 0.019 ± 0.007 0.843 ± 0.024 0.014 ± 0.005  0.866 ± 0.043

All 0.045 ± 0.006 0.764 ± 0.004 0.047 ± 0.005 0.776 ± 0.004 0.044 ± 0.004 0.785 ± 0.003
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augmented the training data, using random brightness adjustments within [75%, 125%] , random vertical and 
horizontal flips, as well as random rotations within [−15◦, 15◦].

Data availability
This work was partly funded by the German Federal Ministry for Education and Research as Patho234 (ref. 
031LO207). The datasets generated and/or analyzed during the current study are available in the zenodo reposi-
tory https:// doi. org/ 10. 5281/ zenodo. 72823 26. All samples were anonymized and processed in accordance with 
the institutional guidelines and cannot be traced back to an individual person. All code related to this work is 
available upon request from the corresponding author.
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