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Prediction and experimental 
evidence of different growth 
phases of the Podospora anserina 
hyphal network
Clara Ledoux , Florence Chapeland‑Leclerc , Gwenaël Ruprich‑Robert , Cécilia Bobée , 
Christophe Lalanne , Éric Herbert * & Pascal David 

Under ideal conditions, the growth of the mycelial network of a filamentous fungus is monotonous, 
showing an ever increasing complexity with time. The components of the network growth are very 
simple and based on two mechanisms: the elongation of each hypha, and their multiplication by 
successive branching. These two mechanisms are sufficient to produce a complex network, and could 
be localized only at the tips of hyphae. However, branching can be of two types, apical or lateral, 
depending on its location on the hyphae, therefore imposing the redistribution of the necessary 
material in the whole mycelium. From an evolutionary point of view, maintaining different branching 
processes, with additional energy needs for structure and metabolism, is intriguing. We propose in 
this work to discuss the advantages of each branching type using a new observable for the network 
growth, allowing us to compare growth configurations. For this purpose, we build on experimental 
observations of the Podospora anserina mycelium growth, enabling us to feed and constrain a lattice-
free modeling of this network based on a binary tree. First, we report the set of statistics related to 
the branches of P. anserina that we have implemented into the model. Then, we build the density 
observable, allowing us to discuss the succession of growth phases. We predict that density over 
time is not monotonic, but shows a decay growth phase, clearly separated from an other one by a 
stationary phase. The time of appearance of this stable region appears to be driven solely by the 
growth rate. Finally, we show that density is an appropriate observable to differentiate growth stress.

The achievement of filamentous fungi in colonizing terrestrial ecosystems can be largely attributed to their flex-
ible morphology, and more specifically to their ability to form an interconnected hyphal network, the mycelium. 
The growth of this structure is based upon some fundamental cellular processes, such as hyphal tip growth, 
septation, hyphal orientation, branching and fusion, also known as anastomosis1. Hyphal branching has been 
well described and appears to both increase the surface area of the colony, which enhances nutrient assimilation, 
as well as mediate hyphal fusion events that are important for the exchange of nutrients and signals within the 
mycelium2. Therefore, the architecture of the fungal network is clearly not fixed, but must continually adapt to 
local nutritional or environmental cues, damage or fungivore attacks. Such a network is constituted of apical 
branches (or leading hyphae), which are the first to invade new territory and are generally engaged in nutrient 
acquisition and sensing of the local environment, whereas behind the colony edge, subapical cells generate new 
hyphae by lateral branching3. An earlier description of such fungal network states that hyphal tips at the biomass 
edge are those associated with exploration, while hyphae behind the growth front are most associated with the 
exploitation of resources4.

All living systems are a priori motivated by the access to resources and reproduction, and constrained by 
its internal metabolism and the environment’s properties. Evolution proceeds from the selection of random 
mutations in the genotype that will retroact on the phenotype of the organism. This is the genotype-phenotype 
relationship as described in5–7 for different biological systems. This process seems to give rise to simple systems 
in the sense of Kolmogorov8, and this can be understood as a bias towards simplicity. Based on the algorithmic 
description of Kolmogorov’s complexity9, i.e. the size of the smallest program required to generate information, 
it is found that a short program is more likely to appear more frequently. Relying on this principle, it was recently 
suggested that simplicity and symmetry could emerge spontaneously from the evolutionary process10. The growth 
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of a branching network can be most simply obtained by placing an active body at each tip, the Spitzenkörper 
(SPK) in the case of ascomycete filamentous fungi. This structure is believed to regulate the delivery of cell 
wall-building vesicles to the apical cell surface, thereby allowing the elongating of hyphae, as well as the genera-
tion of a new tip, i.e. a branching event11–13. However, the branching process is not observed only at the apexes, 
where apical branching occurs, but also in the subapical regions distant from the tip, virtually anywhere on the 
network. The latter is named lateral branching. This imposes the redistribution of the growth machinery and the 
resources within the mycelium, which mechanically increases the network complexity. The question that arises 
concerns the interest of relying on both branching types for the growth of the fungal network, so that they have 
been selected and kept.

Podospora anserina14 is a coprophilous filamentous ascomycete, a large group of saprotrophic fungi, that 
mostly grows on herbivorous animal dungs and plays an essential role within this complex biotope in decompos-
ing and recycling nutrients from animal feces. P. anserina has long been used as an efficient laboratory model to 
study various biological phenomena, especially because it rapidly grows on standard culture medium, it accom-
plishes its complete life cycle in only one week, leading to the production of ascospores, and it is easily usable in 
molecular genetics, cellular biology and cytology.

As already discussed in15, the growth of hyphal network expansion and structure of P. anserina were charac-
terized under controlled conditions. Temporal series of centimetric image size of the network dynamics, starting 
from germinating ascospores, were produced with a typical micrometric resolution. The image reconstruction 
steps were completely automated and allowed easy post-processing and quantitative analysis of the growth 
dynamics. By relying on the two main processes that drive the growth pattern of a fungal network, i.e. apical 
growth and hyphal branching, we have proposed16 a two-dimensional simulation based on a binary-tree model, 
allowing us to extract the main characteristics of a generic thallus growth. In particular, we showed that in a 
homogeneous environment, the fungal growth can be optimized for both exploration and exploitation of its 
surroundings with a specific angular distribution of apical branching. This numerical experience is obviously far 
from the in vivo growth of a saprophytic fungus such as P. anserina. However, it constitutes an excellent starting 
point to describe the thallus growth using mathematical concepts and language. Indeed, the objective of our 
mathematical modelling is to reduce a complex biological system into a simpler model, which is able to partly 
reproduce, or even better predict, the real system. A recurrent question is then to find the optimal degree of 
simplification for such a model, which should be neither too simple to avoid straying from realistic predictions, 
nor too complex to solve using numerical methods17.

The structure of this article is as follows. In the “Results” section, we first recall the methodology used to 
produce the model of the growing mycelium, then we describe the statistics extracted from observations that 
were incorporated into the simulation. These concern the lateral and apical branches, the curvature and the 
symmetry of the growth. Finally, we describe the density observable and derive predictions. In the “Discussion” 
section, we compare with direct observations made on the thallus growth in two configurations, the first on a 
standard culture medium, and the second on a low-nutrient medium.

Results
Modelling the thallus growth.  Direct observation of the growth of the fungal network shows a monoto-
nous, ever increasing complexity. This is particularly obvious via observables such as the number of branches, or 
the total length of the mycelium. This remains true, even when the culture medium is modified, with for example 
a quantity of nutrient depleted16. In the latter case, we found that the growth rate is affected but not the growth 
itself, i.e. only the value of the exponential growth parameter is affected. However, these observables are global 
aggregates and do not capture finer effects such as a change in the spatial distribution of matter. In this section 
we introduce a new observable, the density of the network, that combines both the amount of matter and its 
distribution.

In a previous article16, we discussed the foundations of a model built to describe the growth dynamics of the 
P. anserina branching network. In order to ease the reading of the work presented in the following, we recall 
here its main characteristics.

The observed network is composed of interconnected branches, called hyphae, whose ends are the apexes. 
Growth in hyphal length is achieved by adding material to the apex. The connections correspond to branches that 
may appear at the apex—called apical branching—or along a hypha—called lateral branching. We recall that for 
an apical branching, the operating hypha is the one which defines the widest angle with respect to the projection 
of the mother hypha, and the exploratory hypha is the branch defining the smallest angle16. The simulation of the 
network growth is based on the reproduction of these basic elements. The apical branching can only show one 
additional apex. We therefore rely on a binary tree, to which lateral branching events are allowed.

In the nomenclature used, V1 are the tips (or apexes) of the branches, V3 are the vertices corresponding to 
the connections between three branches, V1ℓ are the apexes of the lateral branches and V3ℓ are the nodes of these 
branches. In addition to these biologically defined objects, we can distinguish the crossings (overlaps) of hyphae 
from real vertices. These geometric intersections, called V3i in the following, should not be confused with anas-
tomosis (hyphae mergings). This distinction is necessary to compare with observations from the experimental 
conditions. During growth, the mycelium expands over a surface, but is not constrained in its upper part. Thus, 
overlaps can occur when two hyphae get close and cross each other, which makes the frequency of overlaps 
between hyphae important. In addition, the acquisition method, based on a light intensity contrast between the 
hyphae and the background, does not allow to discriminate an overlap from an anastomose event.

On the contrary, the simulation allows the distinction between V3 and V3l from geometric vertices. This makes 
it possible to correct the magnitudes relating to the vertices V3 and V3l that were observed experimentally. We 
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check the relevance of the simulation by comparing the ratio of the vertices labeled 1-body ( V1 and V1ℓ ) to the 
other vertices of the image, and this as a function of time, for both the experimental data and the simulation.

In the simulation, a set of random variables is used to fix the values of the growth of each apex and the branch 
angles. We give in16 the details of the probability laws used, as well as their parameters which were obtained by 
the analysis of the experimental data for some of them.

Experimental observations implemented in simulation.  In this section, we describe the observations imple-
mented in the model following our previous work. In particular, we relied on statistical descriptions of the 
branches to discuss their spatial and temporal distribution.

Apical branching dynamics.  In order to implement the apical branching statistics, we estimated the distribu-
tion of the distance L between two successive apical branches ( V3 ). The distribution and corresponding cumula-
tive law are shown in Fig. 1A for experimental data.

Branching statistical behavior is separated into two distinct phases: a first phase of latency, also known as 
apical dominance and a second phase, which is well recovered by a memoryless law. The region of apical domi-
nance, i.e. the length for which growth of the apex of the parent hypha dominates over the appearance of new 
apical branches, is estimated here to L0 = 180 ± 30µ m and the value of the rate of the exponential distribution 
to α = (10.4± 3.9)× 10−3

µm−1 (Fig. 1A,B). This phenomenon, which is well characterized in the literature 
(for a review, see18,19) but whose mechanisms are still poorly understood, implies that hypha extension is peri-
odically predominant over the formation of new polarity axes in the vicinity of the apex. It should be noted that 
the apical branching is not located exactly at the apex but slightly behind it. This behaviour is named subapical 
branching in the literature20,21. In this work the expressions apical branching and subapical branching refer to the 
same process. The distance Lapi corresponding to the length between the branch and the apex was also measured. 
The corresponding mean and standard deviation of the distribution (not shown) were found to be 41± 11µ m 
and are shown with the blue line in Fig. 1B.

Lateral branching dynamics.  The dynamics of lateral branching was found to be more subtle. First we discuss 
the correlation with the distance to the apex. We show in Fig.  1B the distribution of lengths Llat between a 
lateral branching and the corresponding apex, in function of the length of the hypha Lhypha . Lhypha is the dis-
tance between the apex of the main hypha (on which the branching occurs) and a fixed point arbitrarily placed 
along this hypha. There is no apparent correlation between the lengths Llat and Lhypha . However, a region clearly 
emerges from the data, where the probability of observing a lateral branching is extremely low. We separated the 
population into two subparts, with one composed of 95% of the samples, as indicated by the black dashed line 
on Fig.  1B. We can therefore safely conclude that the lateral branches appear at a minimum distance of 480µ m 
from the apex. This length corresponds to the apical dominance behaviour observed for apical branching, but 
with an associated length about three times higher. Interestingly, the difference in apical dominance lengths is a 
clear parameter for distinction between the two types of branches. It is therefore trivial for an operator to distin-

Figure 1.   (A) Cumulative law of the distribution (in inset, bins 10 µ m) of N = 109 lengths between two 
consecutive apical vertices V3 . The transition from black to red markers is defined by the maximum slope, found 
at 230± 5µ m from the apex. The solid red line is an exponential fit of the data shown in red with 1− 2−α(L−L0) . 
The data were manually shifted by L0 = 180 µ m. Using a diagonal covariance matrix, the exponential fit 
parameters were found to α = (10.4± 3.9)× 10−3

µm−1 , R2 = 0.99 . We made use of R squared R2 = 1− SSr
SSt

 , 
with SSr the residual sum of squares and SSt the total sum of squares to discuss the quality of the fit. The red area 
corresponds to one standard deviation. (B) Lengths Llat between the apex and a lateral vertex V3ℓ , measured 
when the branch appears in function of Lhypha , the length of the hypha when the branch appears. The dark 
blue solid line corresponds to Llat = Lhypha . 95% (resp. 90%) of the data points are above the black dashed 
line at 480 µ m (resp. black dotted line at 530 µm). The red dashed line corresponds to the apical dominance 
( L0 = 180 µm), as defined in A. The blue dashed line and area correspond to the mean and standard deviation 
of the distribution (not shown) of Lapi = 41± 11µ m, defined as the length between the apex and the apical 
branch at the time of branching (see text for details).
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guish between apical and lateral branches, providing that the temporal resolution of the collection of images of 
the network is sufficiently high. On the other hand, this distinction becomes more delicate with a single image 
available, particularly because the branching at the apex is subapical, as already discussed.

In the subapical region outside of the length of apical dominance, the appearance of lateral branches follow its 
own dynamic. We report in Fig. 2 the distance �L between two successive (in time) lateral branches, separated 
by a duration �t . The temporal distribution can be adjusted using a memoryless exponential distribution (not 
shown), with rate parameter (41± 19)× 10−3 min−1 , R2 = 0.94 . Note i) that here and in the following, we have 
used the base-2 exponential function, unless otherwise stated ; and ii) that the laws are linearized to achieve 
the fit using the logarithm function. Here, R2 is an indicator of the quality of the fit, the covariance matrix is 
assumed to be diagonal, as well as the logarithm of the law. In the spatial domain, we note the existence of two 
populations. The observed distribution is compatible with two decorrelated dynamics, that was fitted based on a 
combination of an exponential distribution and a continuous uniform distribution, by following the procedure 
described thereafter. We first fit the data using an exponential distribution Ŵ1 2

−γ1 �L and used the fit parameter 
γ1 = (2.3± 0.3)× 10−3 µm−1 ( R2 = 0.80 ) to proceed with a second fit, which is the mixture of the two distribu-
tions, i.e. Ŵ1 2

−γ1 �L + r . We obtained Ŵ1 ≈ 28.2± 2.3 and r ≈ 1± 0.5 ( R2 = 0.84 ). By comparing the number of 
branches predicted by the uniform law on the considered length to the number of samples, N, we are then allowed 
to conclude that 22± 11 % of the lateral branches population is driven by the continuous uniform distribution.

Therefore, lateral branching events seem to be driven by two simultaneous behaviors. On the one hand, the 
probability of branching in the vicinity of an existing side branch is greater than in other regions of the hypha. 
This probability is found to exponentially decrease with �L . On the other hand, the probability of the emergence 
of a lateral hypha is uniformly distributed. Both populations are numerically of the same order of magnitude. 
Branches with a uniformly distributed probability distribution can trigger bursts of branches that are far away 
from the existing ones. These isolated branches give indications on which part of the thallus is growing. It is 
therefore interesting to determine their probability p per unit of length and time. As can be seen in the Fig. 2, this 
probability is not uniformly distributed over time. Most of the events take place for duration less than 90 min, 
indicating an aging effect. Thus, we propose an approximate value based on r and the duration of this activity 
window p ≈ (6± 3)× 10−3

µm−1 90 min−1 . In other words, the probability 1/2 to observe an isolated branch 
in less than 90 min is obtained for a length of approximately 80 µ m .

Finally we found that the scenario of lateral branching dynamics is (i) subject to a region of apical dominance 
and that (ii) two probability laws are needed to describe the distance between two successive branching events, 

Figure 2.   The main figure shows the spatial �L and temporal �t distance between two successive lateral 
branching, taken in chronological order, for N = 156 branching events, from experiment on M2 culture 
medium (M21 , see text for details). The solid black lines represent the kernel density estimate associated with the 
�L and �t distributions..
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highlighting two different mechanisms. Indeed, two successive branches can appear at a long distance from 
each other, suggesting a nucleation process depending on local random fluctuations of resources and cell wall 
building material19,22,23. The successive branches can also appear close to each other, which is the most likely 
configuration. This behavior may be the signature of an interaction with the environment: resources absorbed 
by an apex increase the concentration of cellular materials necessary to branch in the immediate vicinity of the 
apex. The branches then appear by burst in the vicinity of a first lateral hypha, that emerges without predictable 
location. In order to implement this complex behavior into the model, the nucleation of any lateral branches is 
determined by the local curvature of the branch during its growth, as discussed in the following and as described 
in Fig. 3A,B. Beyond a critical value, the position of the step is memorized and a probability law manages the 
emergence of a branch at each generation.

Spontaneous curvature.  The observation of the trajectory of all the apexes clearly shows, apart from any 
branching process, that the growth is not rectilinear. In this paragraph, we give an estimate of the spontaneous 
curvature compared to the rectilinear trajectory, called tortuosity in the following. For that purpose, we define “a 
step of growth”, smaller than the distance between two apical branches. The orientation is determined by a prob-
ability law, parameterized according to the previous step. The probability law reads A (θ − θ0)

a (θ + θ0)
b where 

θ0 defines the angular range, a > 0 and b > 0 are two constant shape parameters, and A scales the amplitude 
of the curvature. This is worth noticing that chirality is broken if a  = b . Following the three types of branches 
described experimentally—the two branches originating from an apical branching (exploratory and operating 
branches16) and lateral branches, we made use of three sets of separate parameters for this propagation mode. 
Parameters were determined experimentally. It is interesting to note that while the spontaneous curvature of 
the hypha may be a marker of different spatial occupation strategies, it does not seem to impact the total length 
of the hypha produced by the network. The notion of tortuosity is quantified in the literature as the persistence 
length24, i.e. the measure of hyphae extension before presenting a change in direction. The latter is derived from 
the correlation between the angle formed at each step of the trajectory by the path followed and the tangent to 
this path. Each trajectory must be treated individually. For our application, we rely on a simple global measure. 
Therefore, we constructed a specific tortuosity as the normalized arc-chord ratio α = (Ltot − Lp)/(Ltot + Lp) of 
the length Lp of the network composed only of nodes of degree 1 and 3, i.e. pruned from the curvature, with the 
total length of the network Ltot . Tortuosity was found in accordance for standard culture medium M2 and low-
nutrient medium M0 (resp. α = 0.038± 0.005 and 0.041±0.005 ), without any particular correlation in time or 
space. Although this is not the case in this work on M2 and M0 media, α can be expected to be different in the 
case of mutant strains showing less rectilinear elongation. In agreement with the low values of α found in this 
work, we implemented this notion in the simulation as follows. On average at each time step, the collection of 
cross products of two successive velocity vectors of the same apex is zero.

Branching chirality.  We verified that apical and lateral branches do not spontaneously generate a global sym-
metry breaking (i.e. chirality breaking) by comparing a collection of branches with a defined positive clockwise 
rotation direction, as shown on Fig. 3C,D. To this end, we have built four collections corresponding to the two 
culture media and the two types of branching. They are composed of 198 samples each. For apical branches on 
M2 growth medium, which we define as the reference condition, a binomial test is used to assess whether the 
frequency of occurrence of positive orientations (measured at 54%) deviates from a theoretical probability of 0.5. 
The observed p-value was estimated at ≈ 0.27 . Orientation in the positive or negative direction is then consid-
ered as equiprobable. We then compared the apical and lateral branches on culture media M2 (56% for lateral 
hyphae) and M0 (56% and 58% for apical and lateral hyphae respectively) to the reference using binomial tests 
adjusted for multiple comparisons using Bonferroni correction (control vs. all treated groups, like in Dunnett’s 

Figure 3.   Symmetry of local (A,B) and global (C,D) branching. (A,B) Direction of subapical and lateral 
branching compared to the local curvature of the hypha (subapical branching is shown). A is in the opposite 
direction, B is in the same direction. We found 82% and 72% for subapical and lateral branchings respectively 
corresponding to configuration A. (C,D) Clockwise (C) and counterclockwise (D) direction of the subapical 
(large angle apical branching) and lateral branching. We found 54% and 56% for subapical and lateral branching 
respectively corresponding to configuration C. All collections are composed of 198 samples. The error is 5% in 
all configurations.
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procedure). The p-values were found to be well above 0.05. We can then conclude that probabilities of clockwise 
and counterclockwise orientation are all found to be consistent with the equiprobability assumption.

The subapical rather than apical nature of the apical branching was described previously. Combined with the 
spontaneous curvature of the hypha (see the paragraph Spontaneous curvature), one can wonder whether the 
orientation of the operating hypha depends on the local curvature (whether branching can be observed inside 
out or outside out with respect to the curvature), as can be seen in Fig. 3A,B. We have reproduced the previ-
ous procedure to test this hypothesis. For the binomial test with a probability of success p = 0.5 applied to the 
reference condition, we found a p-value much lower than 0.05, allowing us to clearly reject the equiprobability 
hypothesis: during an apical branching, the exploratory and operating hyphae are probably located on both 
sides of the mother hypha, as shown in Fig. 3A. Surprisingly, the p-value adjusted to the reference is found to 
be 2.10−7 on the low-nutrient culture medium (M0), which rules out the correlation with the orientation of the 
mother hypha. Finally, we can retain that the right/left position relative to the parent segment of a lateral and 
apical operating branch is only given by the curvature of the parent segment, except in the case of the M0 culture 
medium, for which it is not possible to measure any correlation.

All the observations described in this section were used to feed the simulation. This more complete and 
realistic description allows us to take into account some of the more subtle effects observed, while introducing a 
relatively small number of empirical parameters as well as probability laws. As for the previous simulation, time 
and space parameters were calibrated from the experimental data. Typical experimental data and simulation 
after 15 h of growth are compared in Fig. 4.

Different growth phases.  The monitoring of the growth of the network can be quantified at each moment thanks 
to the counting of the vertices of different natures in the network. This work is made simple in the case of the 
simulation because there is no ambiguity about the qualification of the different nodes: V1 , V1ℓ , V3 , V3ℓ . In the 
following, we will rely on the number of V1 + V1ℓ (apexes) vertices as a function of time to monitor the growth 
of the thallus. However, these quantities do not contain any information on the spatial distribution of the apexes 
and are not sufficient to regain the different phases of growth. Building on the counting of V1 + V1ℓ , we define 
the density as a new characteristic observable that we write ρo(t) = N1(t)

S1(t)
 where N1(t) is the number of all 1-body 

vertices ( NV1 and NV1ℓ ) and S1(t) is a characteristic surface generated by the spatial distribution of V1 . In the case 
of a filamentous network, the notion of surface is tricky. As a first approach, we can rely on the surface occupied 
by the fraction of the substrate covered by hyphae. The latter can be simply calculated using the total length but 
does not contain information on the sprawl of the network. Another approach is based on the surface defined 
by the outer ring, using e.g. the convex hull. In this case, the density (i.e. hyphae length per unit surface) of the 
network in the surface is not taken into account. We rely in this work on the distribution of apex locations, 
in particular to discuss the competition between lateral branches favoring densification and apical branches 
favoring exploration. We propose to define this surface as the square of the characteristic length generated by 
the spatial distribution of the V1 vertices. In a previous work16, we introduced the inertial tensor I of the spatial 
distribution of the vertices V1 . We will briefly recall in the following the derivation method of the characteristic 
length. Let us first write the expression of this tensor :

(1)I =
∣

∣

∣

∣

∑

n(xn − x0) (xn − x0)
∑

n(xn − x0) (yn − y0)
∑

n(xn − x0) (yn − y0)
∑

n(yn − y0) (yn − y0)

∣

∣

∣

∣

Figure 4.   (A) Thallus of P. anserina reconstructed from 3× 4 tiles, extracted from experiment previously 
discussed in15 at t = 15 h after the ascospore germination. (B) Simulation of the growth of P. anserina after the 
same duration of growth, the simulation time being scaled on experimental time.
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with (xn, yn) the coordinates of the V1 (apical) collection of locations at time t and (x0, y0) the average of this col-
lection. Diagonalization of this tensor allows us to derive two eigenvalues ( �1 and �2 ) and two eigenvectors, which 
are the main axes of the V1 vertices cloud. These eigenvalues correspond to the dispersion of the vertices in the 
plane and have the dimension of the square of a length. We can then directly derive a surface by calculating the 
square root of their product 

√
�1 �2 . This surface is characteristic of the V1 distribution for each time step and we 

propose to use it as a proxy for S1 . We show in Fig. 5A the temporal variation of the two roots of the eigenvalues, √
�1 and 

√
�2 , of the V1 vertices extracted from networks obtained using both a simulation and an experiment.

The spatial extension of the thallus is constrained by its boundary conditions. The surface must be zero for 
t = 0 and must converge asymptotically to a finite value in the long run. These constraints must be reflected in the 
chosen law to adjust the time behaviour of the eigenvalues. The law which best describes the evolution of the roots 
of eigenvalues over time is ri(t) =

√
�i(t) = Ai (1− 2−ai t) where i refers to the two eigenvalues �1 and �2 , and ai , 

Ai are positive constants. Apart from the spatial extension, both longitudinal and transverse growth velocities of 
the V1 distribution can be extracted by deriving ri with respect to time, i.e. vi(t) = ∂t ri(t) = Ai ai loge(2) 2

−ai t.
We can therefore rewrite the density in a more convenient form, as the ratio ρ(t) = NV1(t)

r1(t) r2(t)
 . For the growth 

period considered in this work, ri(t) can be safely approximated using a linear function ri = Bi t , as can be seen 
in Fig. 5. In16 we have shown that NV1 can be written as NV1(t) = C 2ω t , with C > 0 and ω > 0 , and we estimated 
these last parameters. We can therefore derive the following expression for the density, ρ(t) = D 2ω t

t2
 , with 

D = C
B1 B2

 . The density diverges for both t → 0 and t → ∞ . In other words, density will show a minimum for 
an intermediate time, tmin , which defines two distinct growth phases. Note that a minimum always exists if 
S1 = Pn(t) , with Pn a polynomial of order n (with the term n = 0 to respect the initial condition S1(0) = 0 ) or if 
the time dependence characteristic length generated by the V1 cloud is of Brownian type (i.e. σ ∼

√
t ). Basically, 

if the characteristic S1 area is a t-polynomial, two distinct growth phases are identifiable on either side of t ≃ 1/ω , 
where ω is the characteristic growth parameter of the number of V1 . We can then derive an estimation of 
tmin = n

ω loge 2 , with n = 2 if the eigenvalues grow linearly in time.
Let us now compare the density ρo(t) obtained from the simulation with the theoretical form of ρ(t) dis-

cussed previously. First, we adjusted the spectra of NV1(t) , r1(t) and r2(t) independently in order to derive D 
and ω , allowing to regain ρ(t) . The corresponding density is shown in Fig. 6A. The grey area corresponds to the 
theoretical form of ρ(t) with one standard deviation (see below). The points correspond to the ρo(t) densities 
measured individually at each time step from the simulation. The uncertainties for the ρo(t) points and for the 
parameters introduced in the theoretical form of ρ(t) are calculated using the bootstrap method and relying on 
the Poisson hypothesis for counting process. The general behavior with a marked minimum is regained in both 
cases. The minimum of the simulation output (corresponding to ρo(t) ) is found approximately for tmin

0 ≃ 6 h, 
compatible with the value of tmin calculated by assuming a linear behaviour of the eigenvalues, tmin ≃ 5 h (cor-
responding to ρ(t)).

We show in Fig. 6B,C respectively, alternate results from the same analysis method, but with additional con-
straints. First, we have chosen parameters that maximize the density at the centre of the network, by increasing 
the lateral branching frequency and setting the angle of the operating branches to a large value, i.e. 120°. The pro-
duction of new material is then favourably located in the vicinity of the centre (Fig. 6B). Second, we maximized 

Figure 5.   Roots of the eigenvalues r1 =
√
�1 and r2 =

√
�2 of the apexes ( V1 ) cloud distribution—see Eq. (1)—

as a function of growth time. (A) Corresponds to the modelling of the growth, points correspond to the output 
data of simulation, shaded area are the theoretical function ri = Bi t . (B) Corresponds to experimental data, 
obtained from experiment M21 , see text for details. The grey area shows one standard deviation for both fits. 
Corresponding slopes Bi are 0.098± 0.002 , 0.107± 0.002 mm h −1 with R2 > 0.99 . In this last case the data have 
been manually shifted by t0 = 1h±10 min. Corresponding sphericity 2 �2/(�1 + �2) , with �1 ≥ �2 , is found to be 
constant at 0.88±0.02.
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the number of V1 vertices near the outer ring by prohibiting lateral branching and by setting the angle of the 
operating branches to the small value of 10° (Fig. 6C). All material production is then concentrated at the tips 
of the apexes located favourably in the outer crown. Since the density is written as the ratio of an exponential 
to a polynomial, we found in both cases that the density grows in the long run. With the chosen parameters, 
the branching frequency is higher than the reference in the first case and lower in the second. The minimum 
density being expected for a growth time tmin which varies in 1/ω , we regain that the value of tmin obtained for 
the reference is framed by the values obtained for the two proposed variants. We can then distinguish two spe-
cific functions for the apical and lateral branches. The former are related to the occupation of the long distance 
regions defining a perimeter, in which the latter will locally densify in order to exploit the available nutrients.

To conclude, we propose the following predictions regarding the mycelium growth. Following germination in 
a homogeneous environment, the growth of the network presents three distinct phases, which can be observed 
through the density.

–	 During the first growth phase, which lasts approximately 6 h, the growth dynamic maximises the space 
explored, in order to optimize the colonisation of its distant environment and to favour the future exploita-
tion of available resources. During this extension phase, the density is mechanically reduced.

–	 In the second phase, the lateral branching process appears and balances the mass distribution in the network, 
i.e. the density remains stable over a period comparable in duration to the first growth phase.

–	 During the third phase, exploitation of the colonized area, i.e. the capture of resources, becomes the domi-
nant behavior, thereby inducing a significant increase in the density. To this end, the mycelium of P. anserina 
produced lateral branches from any point in its network, which fixes it permanently in its environment. The 
development of the occupation of the already explored surfaces allows (i) to provide resources for the whole 
network, especially for regions that are far from the apexes and (ii) to avoid the presence of other competing 
organisms.

Finally, it is expected that the time at which the density reaches its minimum tmin depends only on the 
growth rate ω of the thallus. These different growth periods are not specific to the P. anserina fungal network, 
whose growth can be modeled as a binary tree. For example, different metabolic phases in human life course 
were reported25. In this case, the marker used is the daily energy expenditure, or in intensive form, the energy 
mass density.

Experimental quantification of the thallus growth.  In previous works15,16, we described the acquisi-
tion process and data processing of images of the P. anserina whole thallus. We obtained from the growth of the 
mycelium a collection of images regularly spaced in time (about 18 min) during the first 20 h of growth. The 
spatial resolution of the images (about 1 µ m) allows the observation of the fine structure of the mycelium, con-
sisting of hyphae of 5 µ m in diameter. A graph of the network formed by the thallus is then reconstructed from 
each image of the collection (see Fig. 4). In this graph, the tips (apexes) are degree 1 vertices, and their number 
is noted A. The network itself is composed of hyphae (degree 2 vertices), whose total length is noted L. We used 
these generic data to calibrate the experimental simulations, as described in “Modelling the thallus growth”.

In the following, based on the time series A and L obtained during the growth of the thallus from an ascospore 
and over a period of typically 20 h in a controlled environment, we propose to discuss the temporal dynamics of 
the density. According to the definition proposed in the previous “Modelling the thallus growth”, we construct the 
density at each time step using the eigenvalues of the collection of the tips locations and the number of apexes A.

Figure 6.   (A) Density versus time for output data of simulation (points) and theoretical function ρ(t) = D
2ω t

t2
 

with adjusted parameters (grey area for one standard deviation). (B) same as (A) but with many lateral branches 
and big angle for operating branch. (C) same as (A) but without lateral branches and small angle for exploratory 
branch.
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Standard culture medium M2 The starting point of each experiment is a germinated ascospore placed in 
standard growing conditions, at a temperature of 27◦ C. We carried out three independent experiments to obtain 
complete series of images of the thallus growth under two different conditions: growth on M2 culture medium, or 
M0 culture medium. The first medium (M2) is the most commonly used for P. anserina growth and reproduction 
in vitro. The carbon source is dextrin, a polysaccharide derived from starch. The M0 culture medium composition 
is the same as M2, but without any carbon source. However, it should be noted here that P. anserina is able to 
partially degrade the cellophane used to maintain the fungus in two dimensions14,15. However, this carbon source 
is largely in the minority compared to the standard M2 culture medium. All the protocols including standard 
culture conditions and media composition for this microorganism can be accessed online (see14,26). Experiments 
are named respectively M0 i  and M2 i  , with i = 1, 2 or 3 thereafter.

The general base 2 exponential form for a limited growth time of the number of apexes A = C 2ω t has already 
been extensively discussed in15,16, especially the extraction of the parameters ω and C. For M2 medium, the 
doubling frequency is found in this work respectively at 0.48± 0.03 , 0.46± 0.02 , 0.49± 0.03 h−1 (see Table 1).

We will focus in this work on the evolution of the surface, defined here as the product of the eigenvalues of 
the cloud formed by the collection of the apexes locations at each time step. We have represented in Fig. 5B the 
temporal evolution of r1 and r2 , for the M21 experiment. Both of them clearly follow a linear law, whose slopes B1 
and B2 , about 100 µm.h−1 , are found to be comparable between them, as well as compatible with the evolution 
predicted during the simulation.

This allows us to derive the temporal evolution of the density. We have represented density in Fig. 7A for the 
experiment M21 . We regain the three-steps evolution of the density, showing a pronounced minimum. We have 
also represented ρ in superimposition for the same experiment, computed from expected laws of the number of 
apexes A and surface S growth. The behavior for the smallest times is found in the trend but the dynamics is 
clearly lower. The curves are in very good agreement as soon as the growth time exceeds approximately 7 h, in 
the vicinity of the density minimum. In order to allow the comparison with the simulation, we extracted the 
growth rate ω and the corresponding prefactor D. In accordance with the simulation, we found 0.47±0.03 h−1 
for ωi and 222± 50 h2 mm−2 as average value of Di for the three experiments on M2 culture medium. We can 
also derive an estimation of tmin using tmin = n

ω loge 2 ≈ 6.0± 0.3 h, when the eigenvalues are both linear in time 
( n = 2 ). The values extracted from the different experiments and for the simulation are summarized in the 
Table 1.

Figure 7.   Experimental density in function of time. Culture media are respectively M21 (A) and M01 (B). 
Points are density computed at each time step, black solid line is density ρ computed from expected laws of 
apexes number A and surface S growth. Grey area shows one standard deviation error. Solid red and blue lines 
are fit based on β t

−α . Red and blue areas show one standard deviation. Respectively for M2 and M0 culture 
media, α were found to 2.1±0.3 and 1.6±0.3 with R2 = 0.96 and 0.95. With α = 2 (not shown) we found 
R
2 = 0.96 and 0.76.

Table 1.   Summary of numerical values for the data from simulation and from the experiments, allowing 
to regain the density. ρ(t) = D

2
ω t

t2
. ω is the exponential argument of the number of apexes and D =

C

B1B2
 

is obtained from the combination of the initial number of apexes C and the results of the eigenvalues fitting 
procedure (see Fig. 5 and text for details). To facilitate reading, ω values were multiplied by 100.

Simulation

Experiments

M21 M22 M23 M01 M02 M03

ω [h−1] ×100 59 ± 0.5 48 ± 3 46 ± 2 49 ± 3 37 ± 2 33 ± 2 33 ± 2

D [h2.mm−2] 454 ± 210 194 ± 44 266 ± 54 207 ± 42 416 ± 89 489 ± 94 420 ± 80



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8501  | https://doi.org/10.1038/s41598-023-35327-w

www.nature.com/scientificreports/

Low-nutrient culture medium M0 The partial agreement observed in the initial period of growth is based on 
growth on M2 culture medium. The question that arises is to discriminate whether this initial dynamic originates 
from an effect of the external environment, i.e. the available resources or a growth stress, or if this behavior is 
driven by cellular processes inscribed in the genotype of the fungus. In the latter case, the initial growth dynamic 
is not expected to be affected by the availability of resources or a stress. How do the phases evolve when the 
metabolism is slowed down by a nutrient-depleted environment? For this purpose, we conducted a second trip-
licate experiments with a low-nutrient medium M0, called M0 i  , with i = 1, 2, 3 in the following.

As expected16, both slopes of the eigenvalues B1 and B2 and the growth rate ω are reduced by one fourth, 
respectively to approximately 75 µ m h −1 and 0.34±0.02 h−1 in a nutrient-depleted environment. Consequently, 
D ≈ 450± 50 h2.mm−2 is found to be twice higher than in the M2 condition (see Table 1). A one-way analysis 
of variance on the two experimental conditions indicates a significant difference between M2 and M0 means 
( 222± 38 vs. 442± 41 , F(1, 4) = 45.72 , p = 0.0025 ), while a robust test for the equality of variance (Levene’s 
test) suggests biological variances can be considered equal across samples ( p = 0.8411).

However, the general dynamics are preserved, leading to density dynamics equivalent to the behavior reported 
previously, with a good agreement beyond the first growth phase and a very marked minimum around 10 h.

Discussion
The development of numerical imaging accompanied by the automatization of acquisition processes and image 
processing has recently opened a new experimental period with the development of numerous devices, whose 
objective is the extraction of dynamic quantities characteristic of the network architecture from images of a 
growing mycelium. These experimental devices have become increasingly efficient in extracting statistical data, 
without the need for a precise understanding of the molecular and cellular mechanisms governing hyphal growth 
or branching processes in particular19. Studies can be conducted at the hypha scale24,27, or at the mycelium 
scale in two dimensions28,29, or three dimensions30,31. In addition, quantitative observation of mycelium can 
support the development of fungal network modeling (as in30). In this context, based on a simulation of the P. 
anserina. mycelial network as a binary tree, and calibrated from experimental data, we seek to understand how 
the mycelium optimizes its expansion and densification. Thus, in a previous work, we showed that the observed 
distribution of apical branching angles corresponds to the maximization of radial extension of the thallus, while 
minimizing overlaps16. The study conducted here, has allowed us to propose advantages related to each of the two 
types of branching, i.e. apical and lateral branching. For this purpose, we were interested in the density of apexes, 
studied within the framework of the network simulation on the one hand, and with experimental observations 
on the other. The density observable has the great interest to take into account both the quantity and the spatial 
distribution of the hyphal material.

The various extractions made on the dynamic behavior of the mycelium in “Modelling the thallus growth” 
allowed us to feed the modeling of the thallus growth to derive fine predictions. Thus, the density ρ = A

r1 r2
 , 

constructed as the ratio of the number of apexes A and the product of the roots of the eigenvalues ( r1 , r2 ) of the 
inertia matrix I, consisting of the collection of the apexes locations. The expected behavior is composed of three 
phases of growth. The first one is a spatial extension, characterized by a rapid decrease of the density. The second 
is a phase of homogeneous extension, where extension and exploitation grow in a density-conserving manner. 
The third phase shows a dynamic of intense exploitation, where the density increases. A density minimum is 
found, which depends only on the growth rate ω of the number of apexes A. These phases seem generic and are 
also observed in human metabolism for example25.

We can then compare with direct observations of the growth of P. anserina. In both cases, the typical density 
dynamics is found, especially after a long time of growth, with a marked minimum, showing a transition between 
a first phase of decrease and an other one of density growth. A deviation with the initial phase of density decay is 
also found. The times at which the density reaches its minimum on the standard M2 medium, used to calibrate 
the model, and in the simulation are compatible. They are found around 6 h in both cases. It is interesting to note 
that this time is a function of only the polynomial describing the increase of the occupied surface through time, 
whose order is fixed in this work at n = 2 , leaving as the only adjustable parameter the growth rate of apexes num-
ber ω , i.e. tmin ∝ 1/ω . Growth on a low-nutrient medium M0, for which ω is lower by about a quarter compared 
to the M2 case leads to a higher tmin , found here of about 10 h. The phases of densification are then independent 
of the available resource, which will only have an impact on the speed at which the different phases are explored.

We are now interested in the initial difference between the observed and expected density. Recall that the 
density is calculated as the ratio of the number of tips A and the product of the roots of the eigenvalues of the 
collection of apexes locations r1 , r2 , which is expected to vary as t−2 . At long growth time, the behavior of A is 
exponential: A ∝ 2ω t . On the contrary, at short time, when the number of apexes is small, i.e. close to unity, the 
growth does not correspond anymore to the proposed law, and is rather linear (see Fig. 8A,B).

Two processes are responsible for the growth of the number of apexes A: apical and lateral branches. The 
former are specialized in the exploration of the environment16, while the latter are related to the densification 
of the network. Theses are crucial in the growth of the apexes number. The branching statistics follow a random 
distribution for both types of branching, preceded by a forbidden region, also called apical dominance (see Fig. 1). 
However, the numerical values associated with these laws are not identical. The region of apical dominance is 
of the order of 230 µ m, while that of the lateral branches is found to be of the order of 500 µ m. This difference 
sets the two growth phases. The first lateral hyphae appear when the initial apical branches exceed the critical 
length. In the first hours of growth, the velocity vh of the hyphae from the ascospore was found to grow steadily 
from 0 to 4.5 µ m min−1 (see Fig. 8C). Therefore, a new densification phase should appear after about a duration 
�t such that 

∫ �t
0 vh dt = 500 µ m, or 7 h of growth.
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The question that arises then is to identify whether the initial growth dynamics depends on the available 
resources, or if it is controlled by the initial conditions (as it can be observed for seeds), i.e. the stock of resources 
present in the ascospore, assumed to be identical in all the experiments carried out. Based on the reasonable 
assumption of i) a linear dependency of the roots of the eigenvalues of I, i.e. r1 r2 ∝ t−2 , and ii) A is constant in 
the initial period, then we must find that the density varies as t−2 . We show in Fig. 7 the fit of the experimental 
data with a βt−α law in the time range [0− 0.9 tmin] , with tmin the time such that the minimum of the density is 
ρ(tmin) . It is clear that the proposed fit is much better than the law derived from the long time behavior.

Now let us discuss the numerical values of the α exponents found, in relation with the proposed behavioral 
law. The exponents found are respectively 2.1, 2.5 and 2.3 for M2 and 1.6, 1.9, 1.1 for M0 culture medium, all 
uncertainties being smaller or equal to 0.3. These exponents are clearly higher in the M2 case, indicating a higher 
growth rate of A the apexes number, but remain in all cases compatible with a slope in t−2.

Finally, we can test the hypothesis of independence of the initial growth dynamics from the available resources. 
For this, we set α = 2 , and then check the dependency of the fit on the boundary conditions. We found that R2 
was in the range 0.6 to 0.9 when the exponent is free. With α = 2 , it comes that R2 remain constant or decrease 
by about 0.1. Given the uncertainties, we cannot conclude that the fit with exponent α set to 2 would be better, 
and that the initial growth process is independent of the culture medium. β are found for respectively M2 and 
M0 culture media 2300± 200 , 5400± 400 , 2100± 100 and 3300± 400 , 4900± 400 , 11,200± 2600 h2 mm−2 . 
The values of β extracted in this fit are not found to be compatible and allow us to conclude that the first order 
effect on the initial growth is due to the linear rather than exponential law of the number of apexes A.

Conclusion
In this work, we propose the simulation of the growth of the P. anserina branching network, based on a binary 
tree and whose parameters are finely improved from experimental observations. In particular, they take into 
account the separation of branching statistics of lateral and apical apexes, the spontaneous curvature of hyphae 
outside branching events, the average orientation of branches and aging effects due to extreme densification. 
This allows to construct an expression of the density based on the growth laws of the number of apexes A 
and a surface constructed with the eigenvalues of the matrix of apexes locations. A typical behavioral law on 
densification is then derived, which is expected to follow two phases, separated by a minimum, corresponding 
to a growth time tmin whose expression depends only on the growth rate of the apexes and the degree of the 
polynomial expressing the variation of the occupied surface. The typical behavior is well found experimentally, 

Figure 8.   Number of apexes as a function of time for the three replicates on M2 medium (A) and M0 medium 
(B) respectively. Only the initial period of growth is shown, defined up to the average time tmin for the three 
replicats on M0 medium. (C) Respective velocities of the six initial hyphae. Dashed line corresponds to the 
average of the asymptotic velocities of 20 apical hyphae (not shown). The grey banner represents one standard 
deviation of the distribution of these values.
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as well as the dependence of the value of tmin on the growth rate of A, and thus on the culture medium. The two 
phases of densification are explained by the difference in the lengths of the respective apical dominances of the 
apical and lateral branches. Moreover, a deviation from the typical law at the beginning of growth is observed 
and discussed. This behavior is compatible with a change observed in the growth dynamics of the number of 
apexes, being initially linear rather than exponential.

Finally, it appears that the density observable could be a judicious parameter for the characterization of a 
fungal thallus under constraints in further experiments (as for example here, the growth on a poor-nutrient 
medium).

Data availability
The data used in this work can be downloaded from a scientific data sharing site32.
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